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Abstract——The mood stabilizers lithium and val-
proic acid (VPA) are traditionally used to treat bipolar
disorder (BD), a severe mental illness arising from
complex interactions between genes and environment
that drive deficits in cellular plasticity and resiliency.
The therapeutic potential of these drugs in other central
nervous system diseases is also gaining support. This
article reviews the various mechanisms of action of
lithium and VPA gleaned from cellular and animal
models of neurologic, neurodegenerative, and neuropsy-
chiatric disorders. Clinical evidence is included when
available to provide a comprehensive perspective of the
field and to acknowledge some of the limitations of these
treatments. First, the review describes how action at
these drugs’ primary targets—glycogen synthase kinase-
3 for lithium and histone deacetylases for VPA—induces
the transcription and expression of neurotrophic,
angiogenic, and neuroprotective proteins. Cell survival

signaling cascades, oxidative stress pathways, and pro-
tein quality control mechanisms may further underlie
lithium and VPA’s beneficial actions. The ability of
cotreatment to augment neuroprotection and enhance
stem cell homing and migration is also discussed, as are
microRNAs as new therapeutic targets. Finally, pre-
clinical findings have shown that the neuroprotective
benefits of these agents facilitate anti-inflammation,
angiogenesis, neurogenesis, blood-brain barrier integ-
rity, and disease-specific neuroprotection. These mech-
anisms can be compared with dysregulated disease
mechanisms to suggest core cellular and molecular
disturbances identifiable by specific risk biomarkers.
Future clinical endeavors are warranted to determine
the therapeutic potential of lithium and VPA across the
spectrum of central nervous system diseases, with
particular emphasis on a personalized medicine ap-
proach toward treating these disorders.

ABBREVIATIONS: Ab, b-amyloid peptide; AD, Alzheimer’s disease; ALS, amyotrophic lateral sclerosis; AMD3100, 1,19-[1,4-phenylenebis
(methylene)]bis [1,4,8,11-tetraazacyclotetradecane]; AP-1, activator protein 1; APP, amyloid precursor protein; AR-A014418, N-(4-
methoxybenzyl)-N9-(5-nitro-1,3-thiazol-2-yl)urea; BBB, blood-brain barrier; Bcl-2, B-cell-lymphoma 2; BD, bipolar disorder; BDNF, brain-
derived neurotrophic factor; CGCs, cerebellar granule cells; CNS, central nervous system; CREB, cAMP response element-binding protein;
CXCR4, CXC chemokine receptor 4; DG, dentate gyrus; FXS, fragile X syndrome; GDNF, glial cell line-derived neurotrophic factor; GM6001,
N-[(2R)-2-(hydroxamidocarbonylmethyl)-4-methylpentanoyl]-L-tryptophan methylamide; GRP78, 78-kDa glucose-regulated protein; GSK-3,
glycogen synthase kinase-3; HD, Huntington’s disease; HDACs, histone deacetylases; HSF-1, heat shock factor-1; HSP70, heat shock protein
70; ITF2357, {6-[(diethylamino)methyl]naphthalen-2-yl}methyl [4-(hydroxycarbamoyl)phenyl]carbamate; LPS, lipopolysaccharide; LY294002,
2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one; MCAO, middle cerebral artery occlusion; miRNA, microRNA; MMP, matrix metal-
loproteinase; MSCs, mesenchymal stem cells; mHtt, mutant huntingtin; NF-kB, nuclear factor-kB; NMDA, N-methyl-D-aspartate; PI3K,
phosphatidylinositol 3-kinase; PSD-95, postsynaptic density-95; QA, quinolinic acid; ROS, reactive oxygen species; SB, sodium butyrate;
SB216763, 3-(2,4-dichlorophenyl)-4-(1-methyl-1H-indol-3-yl)-1H-pyrrole-2,5-dione; SMA, spinal muscular atrophy; SOD, superoxide dis-
mutase; SVZ, subventricular zone; TBI, traumatic brain injury; TSA, trichostatin A; U0126, 1,4-diamino-2,3-dicyano-1,4-bis[2-amino-
phenylthio]butadiene; UPS, ubiquitin-proteasome system; VEGF, vascular endothelial growth factor; VPA, valproic acid.
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I. Introduction

The mood stabilizers lithium and valproic acid (VPA)
are primarily used to treat bipolar disorder (BD), a
common, severe, and chronic mental illness that affects
approximately 1%–3% of the population and is one of the
major causes of disability worldwide (for review, see
Goodwin and Jamison, 2007). However, accumulating
evidence indicates that these agents also hold promise for
treating neurologic and/or neurodegenerative diseases
via their diverse mechanisms of action. To provide a clear
and comprehensive picture of the mechanisms that may
underlie the beneficial effects of lithium and VPA, this
review focuses on two primary targets: glycogen synthase
kinase-3 (GSK-3) for lithium and histone deacetylases
(HDACs) for VPA. Here, we propose that GSK-3 and
HDAC inhibition are critical to the facilitation of the
numerous molecular mechanisms that may be exploited
for therapeutic use. We anticipate that novel therapies
will emerge from characterizing the mechanisms used by
lithium and VPA either as monotherapy or in combina-
tion; both will be considered in great detail in this review.
Although lithium and VPA have long been used to

treat BD, the mechanisms underlying their therapeutic
effects remain elusive. Furthermore, it is likely that the
interactions of many different genetic, epigenetic, and
environmental factors contribute to this complex and
heterogeneous mood disorder. Although the etiology of
BD remains poorly understood, it is believed to involve
multiple factors, including dysregulation of signaling
pathways and gene expression, loss of synaptic plastic-
ity, decreased cellular resilience, reduced brain cell
density, and abnormalities in neuroanatomical struc-
ture and function. Lithium may counteract some of
these deficits via its neurotrophic effects; for example, it
has been shown to affect brain derived neurotrophic
factor (BDNF) levels in individuals with BD (Suwalska
et al., 2010; de Sousa et al., 2011). In addition, lithium
treatment has been shown to increase gray matter
volume in patients with BD in whole brain, cortex,
hippocampus, and anterior cingulate (Sassi et al., 2002;
Bearden et al., 2007, 2008; Moore et al., 2000b, 2009).
Lithium also increases brain volume in limbic struc-
tures, such as the hippocampus (Yucel et al., 2007,
2008), that are implicated in emotional regulation.
Untreated patients with BD showed decreased left
anterior cingulate volumes compared with either
healthy control subjects or lithium-treated patients
(Sassi et al., 2004).N-Acetyl-aspartate (NAA), a putative
marker for neuronal viability and function, was also
reported to be increased in the brain of patients with BD
after lithium treatment (Moore et al., 2000a; Hajek
et al., 2012). Of interest, increased gray matter volume
was found in patients with BD who responded clini-
cally to lithium, suggesting a therapeutic role for
this neurotrophic effect in clinical response to lithium

(Moore et al., 2009; Lyoo et al., 2010). Collectively, this
indirect evidence suggests that lithium augments
neurotrophic mechanisms in BD and warrants further
investigation in other brain diseases.

This review discusses numerous mechanisms used by
lithium and VPA that may be effective in treating other
central nervous system (CNS) disorders. We scrutinize
neurologic disease mechanisms implicated in stroke,
traumatic brain injury (TBI), Huntington’s disease (HD),
Alzheimer’s disease (AD), amyotrophic lateral sclerosis
(ALS), and Fragile X Syndrome (FXS). In particular,
preclinical evidence of the mechanisms used by these
mood stabilizers to thwart disease processes and achieve
their beneficial effects will be presented. These include
neurotrophism, neuroprotection, oxidative stress, protein
quality control, anti-inflammation, stem cell migration,
neurovascular remodeling, blood-brain barrier (BBB)
integrity, and microRNA (miRNA) regulation. There
are similarities and differences in the biologic processes
affected by lithium and VPA (Gupta et al., 2012). Both
lithium and VPA have multiple targets in addition to
GSK-3 and HDACs; however, it is beyond the scope of
this review to consider all of these. The interested reader
is referred to several excellent reviews describing
additional targets (Jope, 2003, 2011; Gould and Manji,
2005; Zarate et al., 2006; Hunsberger et al., 2009; Chiu
and Chuang, 2010; Quiroz et al., 2010).

A. Lithium and GSK-3

For more than half a century, the monovalent cation
lithium has been the primary drug used to treat BD. It
is effective against acute mania, prophylactic for re-
current manic and depressive episodes, and reduces the
risk of suicide (Geddes et al., 2004; Cipriani et al., 2005;
Ohgami et al., 2009). It can also augment the efficacy of
antidepressants commonly used for the treatment of
major depressive disorder (MDD) (Crossley and Bauer,
2007). At therapeutic serum concentrations (0.621.2
mM), lithium is known to inhibit a group of phospho-
monoesterases in mammals, including inositol poly-
phosphate 1-phosphatase, inositol monophosphate
phosphatase, fructose 1,6-bisphosphatase, and bisphos-
phate nucleotidase, in addition to the metabolic enzyme
phosphoglucomutase and GSK-3. Downstream effectors,
such as adenylate cyclase, the phosphoinositol cascade,
and metabolism of arachidonic acid, are also affected by
lithium treatment (for a review, see Quiroz et al., 2004;
Gould et al., 2004c; Rao and Rapoport, 2009). Although
the mood-stabilizing effects of lithium may result from
inhibiting these enzymes, the multifaceted protein
GSK-3 is believed to be the main facilitator of lithium’s
mood stabilizing and neuroprotective effects, because of
its array of cellular and physiologic functions (Fig. 1).

GSK-3 is an evolutionarily conserved, ubiquitous
serine-threonine kinase consisting of a and b isoforms
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(for a review, see Chiu and Chuang, 2010). GSK-3
dysfunction has been linked to the pathophysiology of
mood disorders, schizophrenia, AD, diabetes, and others
(reviewed in Meijer et al., 2004; Huang and Klein, 2006;
Jope et al., 2007; Chiu and Chuang, 2010; Li and Jope,
2010). In rodentmodels, the pharmacological inhibition or
gene knockout/knockdown of GSK-3 mimicked lithium’s
antidepressant and anti-manic effects (Kaidanovich-
Beilin et al., 2004, 2009; O’Brien et al., 2004; Gould
et al., 2004b; Rosa et al., 2008; Jope, 2011; Omata et al.,
2011). Despite limited clinical data, some evidence from
genetic and postmortem studies supports the role of
GSK-3 in mood disorders (for a review, see Jope, 2011).
For example, elevated GSK-3 activity was found in post
mortem samples from individuals with MDD (Karege
et al., 2007, 2011), whereas serine-phosphorylation of
GSK-3 in peripheral blood mononuclear cells was iden-
tified to be decreased with disease and increased after
therapy (Li et al., 2007, 2010b).
Lithium inhibits GSK-3 by binding directly to the

enzyme’s magnesium-sensitive site (Klein and Melton,
1996; Stambolic et al., 1996) and indirectly by enhancing
phosphorylation of this kinase at specific serine residues.
The phosphatidylinositol 3-kinase (PI3K)/Akt pathway
was found to mediate the indirect inhibitory effects of
lithium on this enzyme by elevating phosphorylation of
GSK-3a at Ser21 (Chalecka-Franaszek and Chuang,
1999), providing the first evidence that lithium indirectly
inhibits GSK-3 via enhanced phosphorylation. In
addition, GSK-3b activity can also be negatively re-
gulated by its phosphorylation at Ser9 (Jope, 2003). To
date, multiple mechanisms have been identified that

contribute to GSK-3 phosphorylation, including the
39,59-cyclic adenosine monophosphate (cAMP)–dependent
activation of protein kinase A (PKA) (Jope, 1999); the
PI3K-dependent activation of protein kinase C (PKC)
(Kirshenboim et al., 2004); and the enhanced inhibition
of protein phosphatase-l through the action of inhibitor-2
complex, which auto-regulates GSK-3 (Zhang et al., 2003).
A mouse study further showed that lithium increased the
serine phosphorylation of GSK-3 by disrupting the
formation of b-arrestin 2/protein phosphatase 2A/Akt
complex that dephosphorylated and inactivated Akt
(Beaulieu et al., 2008). Because a complete analysis of
the neurobiology of GSK-39s action is beyond the scope of
the current review, we refer interested readers to several
excellent reviews on the subject (Jope, 2003, 2011; Meijer
et al., 2004; Rowe and Chuang, 2004; Huang and Klein,
2006; Jope and Roh, 2006; Rowe et al., 2007; Chiu and
Chuang, 2010; Li and Jope, 2010).

B. VPA and HDACs

Several anti-convulsants—VPA, carbamazepine, and
lamotrigine—are also effective in treating BD (Yatham,
2004). Similar to lithium, VPA has strong anti-manic
effects, but it is less effective against depressive episodes.
It has been suggested that the efficacy of VPA in BD
results from enhanced g-aminobutyric acid (GABA)
neurotransmission and the inhibition of enzymes
involved in GABA metabolism, such as succinate semi-
aldehyde dehydrogenase, succinate semialdehyde reduc-
tase, and GABA transaminase (for a review, see Gould
et al., 2004c). In addition, the anti-convulsive action of
VPA is thought to be mediated by its inhibitory effects on

Fig. 1. A schematic illustration of the central hypothesis of molecular actions of mood stabilizers lithium and VPA. Through the inhibition of GSK-3
and HDACs, respectively, lithium and VPA are hypothesized to regulate the transcription and expression of factors critically involved in
neuroprotective, neurotrophic, anti-inflammatory, neurogenic and angiogenic, mood-stabilizing, antidepressant-like, and anxiolytic effects, in addition
to regulating stem cell migration and miRNAs. The underlying mechanisms of these actions have been elucidated by both in vitro and in vivo
experimental settings and are discussed in this review. Lines with solid arrows represent stimulatory connections; lines with flattened ends represent
inhibitory connections. Dashed lines represent pathways with reduced activity as a result of drug treatment.
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the sodium channel at high frequencies (reviewed in
Macdonald and Kelly, 1995). VPA also inhibits HDACs
at therapeutic serum levels (0.420.8 mM) (Fig. 1).
Histone proteins organize DNA into nucleosomes,

which are regular repeating structures of chromatin.
This organization is required for the efficient packag-
ing of large amounts of eukaryotic genomic DNA. In
the process of deacetylation, HDACs remove charge-
neutralizing acetyl groups from the lysine residues on
tails of histones and favor a more transcriptionally
inactive chromatin conformation. In contrast, histone
acetyltransferases (HATs) increase acetylation and
favor a more transcriptionally active chromatin con-
formation. Therefore, VPA inhibits HDACs to promote
a more transcriptionally active chromatin structure.
HDACs fall into at least two major classes: class I

contains isoforms 1–3 and 8, and class II contains
isoforms 4–7 and 9–10 (Chuang et al., 2009). At clinically
relevant levels, VPA effectively inhibits HDAC (Gottlicher
et al., 2001; Phiel et al., 2001), making it valuable for
investigations into the therapeutic role of chromatin
remodeling in disorders of the CNS. VPA and its analogs
inhibit the activity of HDAC isoforms from both classes,
although it appears not to affect HDAC6 and 10 isoforms
that belong to class IIb (Gurvich et al., 2004). VPA
significantly inhibits class I and, to a lesser extent, class
II HDACs (Gottlicher et al., 2001). However, a more
recent work indicated that VPA’s inhibition of class II
HDACs might be attributable to the contaminating
activities of class I HDACs (Fass et al., 2010). Additional
studies are necessary to clarify this issue. The epigenetic
control of genes through modification of histones and the
resultant remodeling of chromatin has been shown to
profoundly affect development, synaptic plasticity, learn-
ing, memory, drug abuse, alcoholism, circadian rhythm,
and the efficacy of antidepressants (Abel and Zukin,
2008; McClung and Nestler, 2008; Chuang et al., 2009).

II. Neuroprotective Effects of Mood Stabilizers
Harnessing the ability of mood stabilizers to enhance

neuroprotection has therapeutic implications for a wide
range of CNS diseases. We begin by highlighting the
critical signaling molecules and mechanisms that
contribute to the neuroprotective actions of lithium
and VPA, including selected neurotrophic, angiogenic,
and anti-apoptotic factors; survival signaling cascades;
oxidative stress pathways; and protein quality control
mechanisms. We then discuss the augmented therapeu-
tic effects of combined lithium and VPA treatment
achieved in primary cultured neurons and stem cells
and provide evidence for miRNAs as novel targets and
facilitators of lithium and VPA.

A. Neurotrophic and Angiogenic Factors Modulated by
Lithium and VPA

Neurotrophic and angiogenic factors play vital roles
during neural development and synaptic plasticity.

Most neurotrophic factors, which enhance the growth
and survival of developing neurons and maintain the
vitality of mature neurons, fall into one of three broad
families as follows: 1) neurotrophins (Huang and
Reichardt, 2001), 2) glial cell-line derived neurotrophic
factor (GDNF) family ligands (Paratcha and Ledda,
2008), and 3) neuropoietic cytokines (Bauer et al., 2007).
Angiogenic factors, which support the formation of new
vasculature from preexisting blood vessels, have been
implicated in numerous disease mechanisms (reviewed
in Carmeliet, 2003). This section focuses on BDNF,
GDNF, and angiogenic vascular endothelial growth
factor (VEGF), three key factors augmented after the
administration of lithium or VPA.

1. BDNF. BDNF, which signals through the TrkB
receptor to augment cortical development, synaptic
plasticity, neurogenesis, and neuronal survival, is known
to play a vital role in neuropsychiatric disorders (for
a review, see Autry and Monteggia, 2012). Evidence also
exists that the neuroprotective effects of lithium and
VPA are facilitated, at least in part, by the induction of
BDNF and activation of its receptor. Pretreatment with
lithium or BDNF, for instance, protected primary cortical
neurons against glutamate excitotoxicity (Hashimoto
et al., 2002b), and conversely, use of a Trk tyrosine kinase
inhibitor or BDNF-neutralizing antibody negated this
neuroprotection. An extension of this study demonstrated
that lithium treatment both increased BDNF protein
levels and activated its receptor and that lithium-induced
neuroprotection did not occur in cortical neurons derived
from both homozygous and heterozygous BDNF-knockout
mice.

Building on these findings, additional studies showed
that both lithium and VPA increased levels of exon
IV–containing BDNF mRNA and increased the activity
of BDNF promoter IV in cortical neurons (Yasuda et al.,
2009). In addition, GSK-3 inhibition contributed to
the lithium-induced activation of BDNF promoter IV,
whereas GSK-3 inhibitors mimicked this activation.
Conversely, HDAC inhibition contributed to VPA-induced
promoter IV activation. In hypoxia, chronic lithium
treatment is known to be neuroprotective (as measured
by cerebral glucose metabolic rate), apparently because
it elevates levels of BDNF protein and phosphorylated
cAMP response element binding protein (CREB)
(Omata et al., 2008). In addition to its neuroprotective
effects, BDNF has been found to enhance neurogenesis,
contributing further to the therapeutic effects of
lithium (Chen et al., 2000; Wexler et al., 2008) and
VPA (Hao et al., 2004; Laeng et al., 2004). Clinically,
lithium treatment augmented serum levels of BDNF in
patients with early AD (Leyhe et al., 2009). These results
support BDNF regulation in a clinical population and
suggest considerable potential of this regulation for the
treatment of neurodegenerative diseases.

2. GDNF. Lithium and VPA have been shown, in
vivo and in vitro, to regulate GDNF, in which pleiotropic
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functions include migration, chemo-attraction, and dif-
ferentiation (on neuroblasts) and axonal growth, axonal
guidance, survival, and synapse function (on neurons)
(for a review, see Paratcha and Ledda, 2008). In rat
models of depression, six weeks of lithium treatment
increased GDNF protein levels in hippocampus, stria-
tum, and prefrontal cortex, and these increases appeared
to contribute to the drug’s antidepressant-like effects
(Angelucci et al., 2003). Both lithium and GDNF,
moreover, protected against mitochondrial and endo-
plasmic reticulum (ER) stress-mediated apoptosis in-
duced by aluminum (Savory et al., 2003).
VPA has also been shown, in primary neuronal-glial

cocultures from rat midbrain, to protect against
neurotoxicity induced by lipopolysaccharide (LPS), in
part because of its inhibitory effects on pro-inflamma-
tory factors (Peng et al., 2005). In a similar midbrain
neuronal-glial coculture, astrocytes were shown to
release GDNF and BDNF, which mediate VPA’s
neuroprotective effects on dopaminergic neurons (Chen
et al., 2006). Other HDAC inhibitors have also been
demonstrated to exert neuroprotective effects. In
neuronal-glial cocultures, for instance, sodium buty-
rate (SB) and trichostatin A (TSA) protected dopami-
nergic neurons by inducing GDNF and, possibly,
BDNF in astrocytes (Wu et al., 2008). Finally, after
spinal cord injury, GDNF and BDNF may have
contributed to the improvement of locomotion produced
by VPA treatment (Lv et al., 2012).
3. VEGF. VEGF is a prominent angiogenic factor

(Ferrara et al., 2003) that induces and promotes
angiogenesis to increase trophic support through the
formation of new blood vessels from existing vascula-
ture. Angiogenesis then should be considered as an
important mechanism that offers trophic and neuro-
protective effects to neuronal and glial cells, in addition
to enhancing neurogenesis and synaptic plasticity
where VEGF has been implicated (Newton et al.,
2003; Newton and Duman, 2004; Warner-Schmidt
and Duman, 2007). VEGF’s angiogenic signals are
mediated through two primary receptors, VEGFR-1
and VEGFR-2, that play a variety of roles. These
include inducing anti-apoptotic proteins (such as B-cell
lymphoma 2 [Bcl-2]) to preserve endothelial cells and
promoting monocyte chemotaxis in bone marrow–

derived cells to induce vascular leakage (reviewed by
Ferrara et al., 2003).
VEGF has been shown to modulate neurogenesis

(Jin et al., 2002) and contribute to the behavioral
actions of antidepressants (Warner-Schmidt and
Duman, 2007). In addition to antidepressants, VEGF
is also regulated by mood stabilizers. In cultured brain
cells, for instance, treatment with lithium increased
VEGF levels in both endothelial cells and astrocytes.
This increase in endothelial cells, moreover, was
associated with enhanced GSK-3b Ser9 phosphoryla-
tion, an effect mimicked by the GSK-3 inhibitor

SB216763 (Guo et al., 2009) and blocked by the PI3K
inhibitor LY294002. In contrast, SB216763 did not
mimic, nor did LY294002 affect, lithium upregulation
of VEGF in astrocytes, although LY294002 abolished
lithium-induced GSK-3 phosphorylation, suggesting
cell type–specific regulatory mechanisms.

In cultured endothelial cells, VPA enhanced VEGF-
induced angiogenesis (Jin et al., 2011). Chronic post-
insult treatment with VPA increased VEGF protein
levels in the ischemic cerebral cortex (Wang et al.,
2012). This VEGF upregulation was mediated by the
transcription factor hypoxia inducible factor-1a (HIF-
1a) and contributed to angiogenesis and functional
recovery after ischemic stroke in rats (see section III.A).

B. Factors Affecting Apoptotic Signaling: Bcl-2, p53,
Bax, Caspase Signaling, and HSP70

Apoptosis, or programmed cell death, involves
numerous biochemical signaling cascades. Both lith-
ium and VPA increased mRNA expression of the anti-
apoptotic protein Bcl-2 in rat frontal cortex (Chen
et al., 1999b). In a mouse model of ALS, VPA and two
other HDAC inhibitors were shown to upregulate Bcl-2
mRNA in spinal cord (Rouaux et al., 2007). In primary
brain neuronal cultures challenged with glutamate
excitotoxicity mediated by N-methyl D-aspartate
(NMDA) receptors, lithium increased the expression
of Bcl-2, decreased the expression of the proapoptotic
proteins p53 and Bax, and suppressed the mitochon-
drial release of glutamate-induced cytochrome c (Chen
and Chuang, 1999). Pretreatment with lithium, more-
over, prevented the activation of caspase-3 cleavage of
lamin B1 that usually results from mitochondrial
release of cytochrome c. In addition to modulating
anti-apoptotic and proapoptotic proteins, lithium was
found to modulate NMDA receptor–mediated synaptic
activity and excitotoxicity by attenuating the constitu-
tive phosphorylation at Tyr1472 of the NR2B subunit
of the NMDA receptor, which is activated by the Src
tyrosine kinase Fyn (Hashimoto et al., 2002a, 2003a).

Heat shock proteins (HSPs) are a group of molecular
chaperones that assist in regulating protein folding
and refolding of misfolded proteins, where they help
restore cellular homeostasis and promote cell survival
(see section II.E). Studies have found that HSPs, such
as HSP70, exert a wide variety of neuroprotective
effects against apoptosis (Takayama et al., 2003)
through varied mechanisms, ranging from antagoniz-
ing apoptosis-inducing factors (Ravagnan et al., 2001),
inhibiting the activation of nuclear factor-kB (NF-kB)
by stabilizing IkB protein (Feinstein et al., 1996; Zheng
et al., 2008), stabilizing Akt-1 protein (Gao and
Newton, 2002), and preventing mitochondrial cyto-
chrome c release and caspase activation (Beere et al.,
2000). Of interest, HSP70 expression is regulated by heat
shock factor-1 (HSF-1), a transcription factor negatively
regulated by GSK-3b–dependent phosphorylation (Bijur
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and Jope, 2000). The neuroprotective effects of lithium in
a stroke model are in fact associated with a marked
increase in the DNA binding activity of HSF-1 and
subsequent elevations in the expression of HSP70
protein in the ischemic brain (Ren et al., 2003).
Findings from an experiment of SH-SY5Y cells

challenged with the mitochondrial complex I inhibitor
rotenone suggest that VPA’s neuroprotective effects
may also involve HSP70 and may be associated with
reductions in the release of cytochrome c and the
cleavage of caspase-3 and -9 (Pan et al., 2005). In rat
cortical neuronal cultures, HSP70 participated in VPA
neuroprotection against short-term glutamate excito-
toxicity. This VPA-induced HSP70 was triggered by
inhibition of class I HDACs, as well as acetylation and
recruitment of the transcription factor Sp1 at the
HSP70 promoter (Marinova et al., 2009). In addition,
VPA-induced HDAC inhibition also altered methylation
levels of histone (H3K4Me2) at the HSP70 promoter
and caused its induction in both neurons and astrocytes
(Marinova et al., 2011). In various animal models,
overexpression of HSP70 has been recognized as
a potential therapeutic target against ischemic neuronal
injury and will be discussed in detail in the section III.A.

C. Cell Survival Signaling Cascades

Activated by the stimulation of trophic-factor recep-
tors on the cell surface, the neuroprotective mecha-
nisms of lithium and VPA involve multiple survival
signaling cascades, including the PI3K/Akt pathway,
Wnt/b-catenin pathway, and the MAP kinase-kinase
(MEK)/extracellular-signal regulated kinase (ERK)
pathway.
1. The PI3K/Akt Pathway. BDNF induction is an

early and essential step in lithium’s neuroprotection
against glutamate excitotoxicity. BDNF’s trophic action
is likely to be involved in lithium-induced activation of
the cell survival PI3K/Akt and MEK/ERK pathways.
Activation of Akt, a serine/threonine kinase regulated
by PI3K, involves phosphorylation at residues of Thr308
and Ser473 (Alessi and Cohen, 1998; Jacinto et al.,
2006). In cultured rat cerebellar granule cells (CGCs),
lithium treatment rapidly normalized glutamate-
induced inactivation of Akt by activating PI3K and
subsequently increasing the phosphorylation of Akt at
its Ser473 residue (Chalecka-Franaszek and Chuang,
1999). After activation, Akt in turn affects several anti-
apoptotic targets, including Bcl-2–associated death
promoter, CREB, members of the forkhead family,
and procaspase-9 (Neri et al., 2002; Nicholson and
Anderson, 2002; Huang and Reichardt, 2003). In cultured
human neuroblastoma cells, caspase-3 activation induced
by neurotoxins that mimic neurochemical changes asso-
ciated with Parkinson’s disease was inhibited by lithium
treatment in a PI3K-dependent manner (King et al.,
2001). Against HIV-induced toxicity, both in vitro and in
vivo, lithium-induced neuroprotection appears to be

mediated through the PI3K/Akt pathways (Everall et al.,
2002; Dou et al., 2005). However, because some studies
detected no changes in Akt phosphorylation levels at
specific time points after the application of lithium in
certain cell lines, the effects of lithium on the PI3K/Akt
pathway may be cell type–specific and time-dependent
(De Sarno et al., 2002; Zhang et al., 2003).

Although considered to be an HDAC inhibitor, VPA
has been reported to cause gradual increases in
phosphorylation of Akt and GSK-3b at Ser473 and
Ser9 residues, respectively, under some in vitro con-
ditions (Chen et al., 1999a; De Sarno et al., 2002).
Because lithium and VPA can both upregulate BDNF
expression, VPA may increase GSK-3 phosphorylation
via BDNF-mediated activation of the PI3K/Akt pathway.
In fact, VPA has been implicated in the activation of both
the PI3K/Akt and MEK/ERK cellular signaling path-
ways (Kostrouchova et al., 2007). In cultured cortical
neurons, pretreatment with either a PI3K or Akt
inhibitor attenuated VPA-induced upregulation of
HSP70 (Marinova et al., 2009). In a rat cerebral ischemia
model, injection with other HDAC inhibitors augmented
HSP70 and reversed ischemia-induced downregulation
of Akt phosphorylation (Kim et al., 2007). A recent study
in cultured human neuroblastoma cells also demon-
strated that the effect of VPA on monoamine oxidase A
induction was mediated by the PI3K/Akt/forkhead
signaling pathway (Wu and Shih, 2011).

2. The Wnt/b-Catenin Pathway. By controlling
axon remodeling and synapse formation, the Wnt
pathway plays an important role in regulating neuronal
connectivity in the nervous system (Ciani and Salinas,
2005). GSK-3 activity is also negatively regulated by
Wnt-stimulated activation of the Frizzled receptor in
addition to the aforementioned protein kinases (e.g.,
PKA, PKC, and Akt). As a substrate of GSK-3, the
transcription factor b-catenin is part of the Wnt
pathway, and its cytoplasmic levels are decreased by
GSK-3 through phosphorylation-dependent proteaso-
mal degradation (Jope and Johnson, 2004; Takahashi-
Yanaga and Sasaguri, 2007). In conjunction with
T cell–specific transcription factor (Tcf)/lymphoid en-
hancer binding factor (Lef), increases in cytoplasmic
accumulations of b-catenin facilitate its translocation
into the nucleus and, subsequently, enhance the
transcription of diverse genes, such as growth factors
(Sinha et al., 2005; Silva et al., 2007) and those involved
in apoptotic inhibition (Feng, 1979; Seidensticker and
Behrens, 2000; Huelsken and Behrens, 2002). Activa-
tion of the canonical Wnt/b-catenin pathway has been
shown to contribute to adult hippocampal neural
progenitor cell proliferation triggered by lithium treat-
ment (Wexler et al., 2008). At therapeutic concentra-
tions, treatment with lithium was also found to increase
b-catenin levels both in vitro (Stambolic et al., 1996;
Chen and Chuang, 1999) and in vivo (O’Brien et al., 2004;
Gould et al., 2004a) and to promote b-catenin–dependent
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transcriptional events (Jope and Johnson, 2004; O’Brien
et al., 2004; Marmol, 2008).
Of interest, knockdown of b-catenin protein in mouse

brain resulted in a depression-like phenotype (Gould
et al., 2008), and overexpression of b-catenin mimicked
the antidepressant-like effects of lithium (Gould et al.,
2007). In addition, b-amyloid peptide (Ab) toxicity in
hippocampal slices was associated with loss of Wnt
signaling function (Inestrosa et al., 2000), whereas
chronic lithium treatment protected against Ab-
induced hippocampal neurodegeneration by activat-
ing the Wnt/b-catenin pathway in rat brains (De Ferrari
et al., 2003). Lithium also inhibited HIV replication in
aWnt/b-catenin–dependent manner (Kumar et al., 2008).
As a result, the idea that lithium-induced accumulation
of b-catenin may account for much of its neuroprotective
and therapeutic effects has led some to propose elevated
b-catenin as a novel therapeutic strategy for treating
mood disorders.
VPA also alters Wnt signaling in cultured human

and animal cells and induces Wnt-dependent gene
expression at doses that cause developmental effects
(Wiltse, 2005). Upregulation of the Wnt/b-catenin
signaling pathway and the subsequent imbalance of
oxidative homeostasis produced by VPA administra-
tion during early pregnancy may facilitate susceptibil-
ity to autism (Zhang et al., 2012a). However, as
mediated through the b-catenin-Lef-Tcf–dependent
transcriptional activity, cotreatment with VPA was
found to potentiate lithium-induced neuroprotective
effects against excitotoxicity in aging CGCs (Leng
et al., 2008). In addition, VPA altered angiogenic
processes in human umbilical vein endothelial cells
by increasing the expression of b-catenin and enhanc-
ing spheroid sprout formation (Jin et al., 2011). It has
been suggested, in fact, that VPA-induced increases in
acetylation and the nuclear translocation of b-catenin
largely account for its ability to protect neurons from
hypoxia-induced apoptosis and to improve animal
survival after hemorrhagic shock (Leng et al., 2008).
3. The MEK/ERK Pathway. Another signaling

pathway mediating the trophic actions and effects of
lithium and VPA is the MEK/ERK cascade. The find-
ing that both K252a and the MEK inhibitor U0126
blocked antidepressant-like effects induced by BDNF
(Shirayama et al., 2002) supports the involvement of
TrkB in the activation of the MEK/ERK pathway.
ERK regulates several downstream effector systems,

such as NF-kB and ribosomal S6 kinase (RSK), and in
turn inhibits GSK-3b and activates CREB (Chang
et al., 2003; Steelman et al., 2004). CREB is a tran-
scription factor and a common downstream target of
both PI3K/Akt and MEK/ERK pathways. When acti-
vated through phosphorylation, CREB is involved in cell
survival by promoting the expression of cell-protective
proteins, such as BDNF and Bcl-2 (Finkbeiner, 2000).
Lithium treatment after ischemia was found to enhance

ERK phosphorylation, whereas lithium-induced increases
in BrdU-positive cells and improvement of cognitive
function were prevented by U0126 (Yan et al., 2007).
Because lithium has been reported to have opposite
effects on the MEK/ERK pathway in different types of
neural cells, it should be noted that lithium’s effects on
this pathway may also be cell type–specific (Pardo et al.,
2003).

VPA activates the ERK pathway, and activation of
this cascade has been associated with its neuroprotec-
tive effects in a variety of cell types. In fact, VPA
treatment not only increases the expression of ERK-
regulated genes (such as Bcl-2), it has also been shown
to promote neurite growth and cell survival in primary
neurons and in the cultured human neuroblastoma cell
line SH-SY5Y (Yuan et al., 2001; Di Daniel et al.,
2005). In human umbilical vein endothelial cells,
activation of the MEK/ERK pathway mediated VPA-
induced phosphorylation of Bcl-2 and inhibition of
serum starvation-induced apoptosis (Michaelis et al.,
2006); in peripheral Schwann cells, VPA used the same
signaling pathway to mediate the evocation of cell
proliferation (Fei et al., 2011). Moreover, in a sleep
deprivation animal model of manic-like behavior, VPA
treatment prevented the attenuation of ERK activa-
tion, CREB phosphorylation, and the expression of Bcl-
2 and BDNF in the frontal cortex (Park et al., 2012).

D. Oxidative Stress Pathways

Oxidative stress is caused by the imbalance between
reactive oxygen species and the cell’s ability to quench
these free radicals, which can lead to ensuing damage of
the cellular proteins, lipids, DNA, and organelles, such
as the mitochondria; it can also activate numerous
stress-sensitive signaling processes (reviewed in Droge,
2002). Some of these stress-sensitive signaling processes
overlap with the aforementioned survival signaling
pathways (e.g., the MAPK signaling cascade), and others
involve autophagy and mitochondrial dysfunction (Lee
et al., 2012a). It is beyond the scope of this review to
delve into specific stress-sensitive signaling pathways;
we will only briefly discuss some of the evidence that
oxidative stress pathways are implicated in diverse CNS
disorders and facilitated by mood stabilizers.

Mood stabilizers have been reported to produce
antioxidant effects that may contribute to their neuro-
protective properties. For instance, chronic treatment
with lithium (1 mM) or VPA (0.6 mM) protected human
neural (SH-SY5Y) cell lines against oxidative stress,
but not glial (SVG and U87) cell lines (Lai et al., 2006).
This elegant study demonstrated that, when oxidative
stress was induced by either 5mM rotenone or 100 mM
H2O2, lithium and VPA treatment attenuated release
of cytochrome c and activation of caspase 3 in SH-SY5Y
cells. On the other hand, ER stress induced by 1 mM
thapsigargin was not protected by either lithium or
VPA. This suggests that the intrinsic mitochondrial
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apoptotic pathway may be important for these neuro-
protective effects. In fact, the authors also reported that
both lithium and VPA upregulated Bcl-2, an anti-
apoptotic factor that can suppress release of cytochome
c, during oxidative stress but not during ER stress in
SH-SY5Y cells. However, another study found that
chronic lithium or VPA treatment protected against
thapsigargin-induced ER stress in PC12 cells (Hiroi
et al., 2005). These discrepancies might be attributable
to cell type differences and remain to be elucidated.
GSK-3b inhibition was also neuroprotective after
rotenone-induced oxidative stress but not H2O2-induced
oxidative stress (Lai et al., 2006). Clearly, multiple
mechanisms are at play to facilitate cell type–specific
neuroprotection.
Oxidative stress mechanisms have also been evalu-

ated in human B lymphoblast cell lines (BLCLs) from
both healthy control subjects and patients with BD. In
fact, increased reactive oxygen species (ROS) have been
found in both plasma and serum samples from patients
with BD (Kuloglu et al., 2002; Savas et al., 2006;
Andreazza et al., 2009). These ROS can be sensed by
a family of calcium-permeable ion channels, the tran-
sient receptor protein (TRP) family that has been
implicated in the pathophysiology of BD-I (Xu et al.,
2006, 2009; Andreopoulos et al., 2004; Perova et al.,
2008). BLCLs were challenged with the oxidative
stressor rotenone (2.5 and 10 mM), cell viability was
monitored, and the expression and function of the TRP
family ion channel (TRPM2 and TRPC3) were deter-
mined (Roedding et al., 2012). Cell viability was de-
creased after rotenone treatment, with BLCLs from
individuals with BD-I found to be more susceptible to
oxidative stress than control subjects. This study further
implicates TRP family channels as contributing to the
pathophysiology of BD, because of the changes in their
regulation and functional response after oxidative stress.
Oxidative stress mechanisms have also been associ-

ated with manic episodes in BD. Elevated oxidative
metabolism markers, including thriobarbituric acid
reactive substances, superoxide dismutase (SOD), and
catalase were found to be elevated in unmedicated
manic patients when compared with both lithium-
treated manic patients and control subjects (Machado-
Vieira et al., 2007). Furthermore, in healthy control
subjects treated with therapeutic doses of lithium (2–4
weeks), selective decreases in oxidative stress markers
were observed, including SOD and H2O2 (Khairova
et al., 2012). This supports the notion that lithium has
neuroprotective properties in healthy subjects, sug-
gesting that these benefits may extend to the treat-
ment of CNS diseases beyond BD. Oxidative stress has
also been reported to exacerbate the development of
symptoms in numerous human CNS disorders, in-
cluding BD (Andreazza et al., 2008), stroke (Chen et al.,
2011), TBI (Ansari et al., 2008), HD (Klepac et al., 2007),
AD (Perry et al., 2002), and ALS (Barber and Shaw,

2010), suggesting that the antioxidant effects of mood
stabilizers, which enhance neuroprotective mecha-
nisms, may have broad utility in the treatment of
numerous CNS disorders.

E. Protein Quality Control Mechanisms

1. Induction of the Ubiquitin-Proteasome System and
Autophagy. In eukaryotic cells, the ubiquitin-protea-
some system (UPS) and autophagy-lysosomal pathway
are two major intracellular quality control mechanisms
for protein clearance against abnormal protein accu-
mulation (Ross and Poirier, 2005). As noted above,
treatment with either lithium or VPA alone increased
HSP70 expression both in vitro and in vivo (Klionsky
and Emr, 2000; Levine and Kroemer, 2008). Through
the UPS and autophagy, HSPs promote the degrada-
tion of abnormally folded proteins (Hendrick and Hartl,
1993; Fink, 1999; Ma and Hendershot, 2001; Hartl and
Hayer-Hartl, 2002; Ross and Poirier, 2005). However,
short-lived proteins, in general, are predominantly
degraded by proteasomes, whereas aggregation-prone
proteins appear to be better substrates for autophagic-
lysosomal degradation (Klionsky and Emr, 2000;
Levine and Kroemer, 2008).

Autophagy induction is considered to be a potential
neuroprotective mechanism. Rapamycin is currently
the most commonly used pharmacological agent for
inducing autophagy, which it does by inhibiting the
mammalian target of rapamycin (mTOR). Of note,
rapamycin has been shown to be beneficial in various
models of neurodegenerative diseases (Ravikumar
et al., 2004; Berger et al., 2006; Rubinsztein et al.,
2007). The ability of lithium to deplete free inositol and
subsequently decrease levels of inositol 1,4,5-trisphos-
phate (IP3), through inhibiting inositol monophospha-
tase and inositol transporters (Phiel and Klein, 2001),
was identified as a novel mTOR-independent route for
inducing autophagy (Sarkar et al., 2005; Sarkar and
Rubinsztein, 2006). VPA, carbamazepine, and other
mood stabilizers that decrease IP3 levels can also
induce autophagy (Sarkar et al., 2005). At therapeutic
concentrations, lithium not only facilitated the clear-
ance of mutant huntingtin (mHtt) and a-synuclein
(Sarkar et al., 2005) but also induced clearance of
protease-resistant prion protein in prion-infected cells
(Heiseke et al., 2009). This autophagy-inducing prop-
erty of lithium has been demonstrated to be protective
in ALS model mice (Fornai et al., 2008), and its use in
combination with rapamycin has been proposed as
a possible therapy in various animal models of HD
(Sarkar et al., 2008). Together, these mechanisms are
believed to be beneficial in neurodegenerative disorders
characterized by the accumulation of misfolded proteins
(Cuervo, 2004; Berger et al., 2006; Rubinsztein et al.,
2007; Levine and Kroemer, 2008).

2. GRP78 Upregulation. The ER is the primary site
for protein synthesis, folding, and trafficking. It acts as
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an intracellular calcium repository and is highly
sensitive to perturbation of its intraluminal environ-
ment. In addition to upregulating Bcl-2, lithium or
VPA treatment was shown to protect against ER stress
by upregulating a molecular chaperone of the HSP70
family, the 78-kDa glucose-regulated protein (GRP78)
(Hiroi et al., 2005). GRP78 binds to calcium, partic-
ipates in protein folding, plays a role in stress-induced
autophagy, and protects cells from the deleterious
effects of misfolded proteins in the ER (Katayama
et al., 1999; Kaufman, 1999; Yu et al., 1999; Ni et al.,
2011). GRP78 can be induced by various apoptotic
insults, including the ER calcium-ATPase inhibitor
thapsigargin (Aoki et al., 1997; He et al., 2000).
Triggered by calcium release from the ER, transcrip-
tion factor c-Fos (a component of the activator protein 1
[AP-1] heterodimeric transcription factor complex)
appears to be involved in thapsigargin’s induction
of GRP78 (He et al., 2000), although the fact that
the GRP78 promoter contains no recognizable AP-1–
interacting sequence motifs (He et al., 2000) suggests
that AP-1’s role in regulating GRP78 is only indirect.
In addition to upregulating GRP78 (Wang et al., 2001;

Hiroi et al., 2005; Shao et al., 2006), lithium similarly
induced c-Fos expression and subsequent AP-1–binding
activity (Kalasapudi et al., 1990; Gao et al., 1993; Ozaki
and Chuang, 1997), but without affecting basal calcium
levels (Hiroi et al., 2005). Accordingly, lithium pretreat-
ment reversed thapsigargin-induced downregulation of
the anti-apoptotic protein Bcl-2 in PC12 cells, and its
cytoprotective effects included upregulation of c-Fos and
GRP78 and attenuation of thapsigargin-triggered in-
tracellular calcium release. These beneficial effects were
blocked, moreover, by curcumin (Hiroi et al., 2005), an
AP-1 inhibitor. On the other hand, VPA pretreatment
also upregulated this ER stress protein (Wang et al.,
1999, 2001; Bown et al., 2000; Hiroi et al., 2005), and
induced similar protective effects against ER stress in
PC12 cells (Hiroi et al., 2005), as well as oxidative damage
in primary cultured rat cerebrocortical cells (Wang et al.,
2003). Because ER dysfunction has been linked to
impaired synaptic plasticity and to the pathophysiology
of diseases, such as BD (Hough et al., 1999; Hayashi
et al., 2009), AD (Mattson et al., 2000), and cerebral
ischemia (Mattson et al., 2000), the induction of GRP78
by lithium and VPA against ER stress may well be
clinically relevant. In support of GRP78’s therapeutic
relevance, it was recently implicated in protection against
a-synuclein–induced neurotoxicity in a rodent model of
Parkinson’s disease (Gorbatyuk et al., 2012) and cell
death caused by mHtt aggregates in a cell culture model
of HD (Jiang et al., 2012).

F. Augmented Protective Effects by Lithium and
VPA Cotreatment

As mentioned previously, lithium and VPA have
diverse neuroprotective mechanisms, ranging from the

augmentation of neurotrophic factors (such as BDNF)
to the facilitation of anti-apoptotic factors (such as Bcl-
2) and the regulation of numerous survival-signaling
cascades (such as enhancing the PI3K/Akt signaling
pathway). These diverse signaling effects are primarily
mediated by inhibition of GSK-3 and HDAC. In the
following section, we examine how combination treat-
ment provides enhanced beneficial effects in different
model systems.

1. Enhanced Neuroprotection by Cotreatment.
As CGC neuronal cultures age, lithium loses its ability
to enhance serine phosphorylation of GSK-3 and
protect CGCs from glutamate-induced apoptosis. VPA
also has little protective effect against glutamate-
induced cell death in older CGCs. However, in the
first study to demonstrate these drugs’ synergistic
neuroprotective effects, Leng and colleagues showed
that cotreatment with lithium and VPA completely
blocked glutamate excitotoxicity in aging CGCs (Leng
et al., 2008). Gene silencing with siRNA to GSK-3a or
GSK-3b mimicked the ability of lithium to induce this
synergistic neuroprotection when used in combination
with VPA. Conversely, treatment with other class I
and II HDAC inhibitors or transfection with an
HDAC1 isoform-specific siRNA in conjunction with
lithium treatment also enhanced neuroprotection.

The neuroprotective effects elicited in intact neurons
cotreated with lithium and VPA, moreover, are closely
associated with a potentiation in GSK-3 inhibition, as
revealed by augmented phosphorylation of both GSK-
3a and b, and attenuated phosphorylation of tau
protein, a major GSK-3 substrate. In a cell-free system
of CGC lysate, combined treatment also induced a more
than additive decrease in GSK-3b enzymatic activity
(Leng et al., 2008). These observations suggest that
GSK-3 inhibition is a likely molecular target for this
enhanced neuroprotection, despite the fact that the
role of HDAC-regulated genes has yet to be investi-
gated. It is also important to note that although
combination treatment with lithium and VPA was no
more effective than lithium alone in preventing relapse
in patients with BD-I (The BALANCE investigators
and collaborators, 2010), recent data from preclinical
HD and ALS models indicate that this combined
treatment may be useful for treating these disorders
(see sections III.C and III.E).

2. Enhancing the Homing and Migratory Capacity of
Stem Cells. Over the past 20 years, stem cell therapy
has been investigated as a potential treatment of
neurodegenerative diseases (reviewed in Goldman,
2005; Lunn et al., 2011). After transplantation of stem
cells, directing migration and ensuring survival and
integration are essential for successful development of
these therapies for clinical use.

Mesenchymal stem cells (MSCs) derived from bone
marrow have been demonstrated to produce beneficial
effects in diverse animal models of neurodegenerative
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diseases (Joyce et al., 2010). Although MSCs can reach
an injured brain region and release trophic factors to
hasten endogenous repair and regeneration, it is
increasingly recognized that the poor homing and
migratory abilities of transplanted MSCs limit their
effectiveness as a treatment strategy (Karp and Leng
Teo, 2009). Enhancing the homing and migratory
capacity of transplanted MSCs could therefore be
expected to improve their therapeutic efficacy.
MSC migration toward ischemic brain lesions is

mediated by the interaction between stromal cell–
derived factor 1a (SDF-1a), a molecule endowed with
potent chemotactic activity, and its specific a-chemo-
kine receptor CXC-chemokine receptor 4 (CXCR4)
(Wang et al., 2008), in which expression in hematopoi-
etic stem cells is enhanced by VPA (Gul et al., 2009).
Because MSC migration is regulated by the Wnt
signaling pathway in which activation inhibits GSK-
3b (Neth et al., 2006), lithium’s ability to inhibit GSK-
3b allows it to activate the Wnt downstream signaling
pathway. For this reason, combined treatment with
lithium and VPA additively enhanced MSC migration
in vitro (Tsai et al., 2010).
Three-hour exposure of MSCs to 2.5 mM VPA

markedly increased the mRNA and protein levels of
CXCR4 (Tsai et al., 2010). This effect of VPA requires
inhibition of HDACs and involves histone hyperacety-
lation at the CXCR4 gene promoter. VPA treatment
also enhanced MSC migration mediated by SDF-1a,
which was completely blocked by the CXCR4 antago-
nist AMD3100. On the other hand, MSCs treated with
2.5 mM lithium for one day showed selective elevation
of mRNA and protein levels and enzymatic activity of
matrix metalloproteinase-9 (MMP-9), effects mimicked
by the pharmacological inhibition or gene silencing of
GSK-3b. Lithium treatment also potentiated MSC
migration across the extracellular matrix, which was
mediated by SDF-1a and suppressed by the MMP-9
inhibitors doxycycline and GM6001. Significantly,
where AMD3100 and GM6001 were both present, the
additive enhancement of MSC migration induced by
VPA and lithium cotreatment was completely blocked.
These findings suggest that the two drugs operate
through distinct targets and mediators to stimulate
MSC migration: VPA through HDAC-CXCR4 and
lithium through GSK-3b-MMP-9 (Tsai et al., 2010).
For a discussion of VPA and lithium cotreatment in
a model of ischemic stroke, see section III.A.
Hematopoietic stem cells (HSCs) from the peripheral

blood have been shown to transdifferentiate into
neurons and glial cells in the brain (Mezey et al., 2000;
Cogle et al., 2004; Sigurjonsson et al., 2005). Circulating
HSCs are decreased in early AD, and this decrease is
significantly correlated with age (Maler et al., 2006).
Transplantation of HSCs has been shown to promote
angiogenesis and enhance neuroplastic effects in the
ischemic brain (Shyu et al., 2006). Although HSCs have

the potential for wide clinical application, insufficient
cell numbers have limited their use. Attempts are now
being made to amplify these stem cells in an un-
committed state, while maintaining their differentiation
potential. The combination of VPA and lithium treat-
ment has been shown to delay hematopoietic stem/
progenitor cells (HSPCs) differentiation and to increase
the potential for cell survival (Walasek et al., 2012).
Specifically, VPA and lithium cotreatment preserved the
immature cell phenotype of HSPCs in the hematopoietic
differentiation-inducing culture and regulated transcrip-
tion factor networks at the molecular level by preserving
expression of stem cell–related genes and repressing
genes involved in differentiation. These findings provide
an ex vivo strategy to obtain sufficient autologous
HSPCs before transplantation by using a combination
of lithium and VPA. However, this study by Walasek
et al. did not investigate whether this combination
treatment would affect the transdifferentiating ability of
HSPCs. Further investigation is warranted.

G. New Directions: miRNAs Targeted by Lithium
and VPA

miRNAs are non–protein-coding RNAs of 21–24
nucleotides. Abundant in all multicellular organisms,
they function in translational repression and mRNA
degradation by binding either to the 392UTR of
mRNAs (Lai, 2002) (predominantly) or to coding
regions (Forman et al., 2008), where they have the
potential to silence hundreds of genes. This mechanism
allows miRNAs to modulate complex transcriptomic
and proteomic networks and to play an important
regulatory role in nervous system function. Brain-
enriched miRNAs, for instance, have been reported to
regulate spine development and synaptic plasticity
(Schratt et al., 2006; Siegel et al., 2011).

The unique regulatory mechanisms used by miRNAs
have also been used to elucidate transcriptional mech-
anisms used by mood stabilizers. In the rat hippocam-
pus, in fact, chronic treatment with either lithium or
VPA has been found to selectively modulate miRNAs
(Zhou et al., 2009). It is particularly interesting to note
that among those miRNAs regulated by mood stabi-
lizers, three miRNAs (miR-24, -34a, -128) target six BD
susceptibility genes: calpain 6, dipeptidyl-peptidase 10,
estrogen-related receptor gamma, member A of family
with sequence similarity 126, metabotropic glutamate
receptor 7 (GRM7), and thyroid hormone receptor beta.
Future studies are warranted to strengthen the associ-
ation of these six BD susceptibility genes with both the
pathophysiology of BD and their potential regulation
via miRNA-mediated mechanisms. GRM7 regulation
via miR-34a has been confirmed in vitro (Zhou et al.,
2009). In vivo regulation of both miR-34a and GRM7
after long-term treatment with either lithium or VPA
has also been reported (Zhou et al., 2009). Another
study found that lithium regulates a select set of
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miRNAs in human lymphoblastoid cells (Zhou et al.,
2009). Of interest, some of these lithium-responsive
miRNAs (miR-34a and miR-221) were identified in both
rats and humans, suggesting that the transition from
preclinical to clinical research will prove to be fruitful.
For instance, a recent preliminary study with a small
sample size correlating plasma miR-134 levels in
successfully medicated manic patients with BD (Rong
et al., 2011) further suggests an additional role for miRNAs
in psychiatry, where they may be effective biomarkers
to predict lithium response. Moreover, miR-134 has
recently been reported to be dysregulated in schizo-
phrenia in dorsolateral prefrontal cortex (Santarelli
et al., 2011). Clearly additional studies are warranted
to substantiate miRNA’s potential as biomarkers, but
these studies and others provide tantalizing hints in
support of their exciting promise.
Additional support exists for miRNA mechanisms

underlying the therapeutic actions of mood stabilizers.
For instance, alterations in the muscarinic acetylcholine
receptor system are thought to be associated with BD
(Goodwin and Jamison, 2007). Muscarinic M1-receptor
knockout mice exhibited mania-like behavioral deficits
(e.g., hypersensitivity to amphetamine-induced hyper-
locomotion), and lithium treatment normalized these
behavioral deficits in part by enhancing M1-receptor-
ERK pathway signaling (Creson et al., 2011). This
enhancement of M1 was attributable in part to down-
regulation of a previously recognized lithium responsive
miRNA (let-7b) (Zhou et al., 2009). Therefore, identify-
ing the miRNAmechanisms that mood stabilizers use to
achieve their therapeutic effects is likely to provide
insight into another transcriptional layer of regulatory
control that may identify numerous unrealized thera-
peutic targets.
In addition, miRNA dysregulation has been impli-

cated in many different pathologic conditions, including
neurodegenerative, neuropsychiatric, and neurologic
diseases (Hebert and De Strooper, 2009; Eacker et al.,
2009; Dinan, 2010; Kim et al., 2010; Moreau et al., 2011;
Hunsberger et al., 2012). A very recent article reported
miRNA regulation after ischemic stroke (e.g., miR-446f,
miR-446h, miR-155, miR-1224, and miR-297a) and the
potential for underlying the benefits of postinsult VPA
treatment (e.g., miR-885-3p and miR-331) in a rat model
of cerebral ischemia (Hunsberger et al., 2012). Collec-
tively, this support suggests that miRNAs may underlie
disease processes that contribute to numerous neuro-
logic disorders. Furthermore, insight into the miRNA
targets and pathways currently under investigation and
the in silico analysis for predicted targets (Dweep et al.,
2011) may provide critical knowledge for elucidating the
complex signaling networks underlying fundamental
disease processes. In addition, uncovering which
miRNA binding sites in susceptibility genes are mu-
tated in patients will help link miRNA mechanisms to
genetic vulnerabilities and may help explain why some

patients respond to treatment with mood stabilizers and
others do not.

Because of the insights gleaned to date, miRNA
research appears to hold great promise for the identi-
fication of currently unknown mechanisms of transcrip-
tional regulation that contribute to the neurobiological
effects of mood stabilizers and of dysregulated signaling
networks that contribute to CNS disorders. Indeed,
a recent article by Salmena and colleagues provides
a unifying hypothesis detailing how mRNAs, tran-
scribed noncoding pseudogenes, and long noncoding
RNAs may communicate and interact using miRNA
binding sites (Salmena et al., 2011). In accordance with
this hypothesis, the presence of a noncoding pseudogene
with miRNA response elements may compete for
miRNAs and effectively switch from being a target to
a sponge to dampen the effect of a particular miRNA. It
has also been speculated that miRNAs in signaling
networks act as key regulatory nodes (Inui et al., 2010).
Theories such as these suggest that the ability to
modulate key miRNAs could be used to repress disease
pathology or activate the therapeutic mechanisms un-
derlying mood stabilizers in a manner not currently
achievable. A future challenge is how to integrate
transcriptomic and proteomic data to evaluate how the
myriad of regulatory controls (e.g., through miRNAs,
epigenetics, and posttranslational modifications) con-
tribute to therapeutic effects and to the dysregulation of
brain processes associated with CNS disorders. Over-
coming this challenge should provide unparalleled new
insights into the complex mechanisms of pathophysiol-
ogy and revolutionize current targets and methods of
treatment of neuropsychiatric and neurodegenerative
diseases.

III. Repurposing Mood Stabilizers for CNS
Disorders Beyond BD

Loosely defined, drug repurposing is using known
drugs to treat conditions for which they are not
currently intended. Lithium and VPA have a long
history of safe use in the treatment of BD and, in the
case of VPA, epilepsy. Because of their numerous
beneficial effects, they could be readily repurposed to
treat other CNS diseases. Indeed, the largest study of
its kind to date recently reported that long-term
lithium treatment augmented the neuronal viability
marker NAA in prefrontal cortex of patients with BD in
a two center study (Hajek et al., 2012). Decreased NAA
expression measured by noninvasive proton magnetic
resonance spectroscopy has been reported in both
neurologic and neurodegenerative conditions, where
it has been associated with loss of neurons and axons.
Clinical studies are now warranted to investigate the
long-term treatment effects of lithium and VPA in CNS
disorders beyond BD, perhaps with use of a methodol-
ogy similar to that use by Hajek et al. (2012). Tables 1
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and 2 list preclinical studies supporting the neuro-
protective actions of lithium and VPA, respectively, in
various animal models of CNS diseases. Below, we
summarize evidence from selected models that support
the translation of these findings into highly anticipated
and needed clinical benefits.

A. Stroke

Stroke is the third leading cause of death in the
United States and a major cause of serious long-term
disability in adults. In addition, stroke victims are
frequently burdened with vascular depression and
dementia that is difficult to treat with convention-
al medicine. Of all strokes, 87% are ischemic and
the rest are hemorrhagic (Roger et al., 2011). For acute
ischemic stroke, thrombolysis with intravenous
recombinant tissue plasminogen activator (rtPA) is
the only treatment approved by the US Food and Drug
Administration (FDA) to date. However, because of the
narrow therapeutic window of less than 4.5 hours and
risk of intracerebral hemorrhage, it is estimated that
rtPA is used in only 1.8%–2.1% of patients with
ischemic stroke (Barber et al., 2001; Kleindorfer
et al., 2008).
Although there is clearly an urgent need to develop

novel treatments for stroke, poststroke pathophysiol-
ogy is complex and involves early- and late-phase
processes (such as apoptosis, neuroinflammation, BBB
breakdown, neurovascular repair, and neurovascular
regeneration). Accumulating evidence demonstrates
that lithium and VPA exert beneficial effects through-
out this pathophysiological process (for a review, see
Chuang et al., 2009, 2011; Wang et al., 2011b) and hold
clinical potential for its treatment.
1. Lithium-Induced Effects in Experimental Stroke

Models.
a. Neuroprotection and behavioral improvement.

The neuroprotective effects of lithium against cerebral
ischemia were first demonstrated in a rat model of
permanent middle cerebral artery occlusion (pMCAO)
(Nonaka and Chuang, 1998). This pioneering study
showed that long-term pretreatment with lithium at
therapeutically relevant doses decreased scores in-
dicative of neurologic deficit and volume of brain
infarct. Chronic lithium pretreatment also reduced
apoptotic death in the penumbra of the ischemic cortex
in a transient MCAO (tMCAO) model (Xu et al., 2003).
In addition to pretreatment, subcutaneous injection of
therapeutic doses of lithium into tMCAO rats three
hours after the onset of occlusion markedly decreased
infarct volume and suppressed neurologic deficits, as
measured by sensory, motor, and reflex tests (Ren
et al., 2003). Lithium pretreatment in gerbils after
global cerebral ischemia was also found to suppress
most ischemia-induced changes in exploratory behav-
ioral and memory impairments (Bian et al., 2007).
These behavioral benefits in gerbils were associated

with an increased number of viable cells and a decrease
in apoptotic cells in the CA1 hippocampal ischemic
area.

b. Anti-excitotoxic and anti-apoptotic effects. In
a rat model of global cerebral ischemia, lithium was
reported to inhibit ischemia-induced hyperactivation of
the NMDA receptor by inhibiting phosphorylation of
the NMDA subunit 2A tyrosine and its interactions
with Src and Fyn through PSD-95 in the rat hippo-
campus (Ma and Zhang, 2003). In a tMCAO model,
postischemic lithium treatment (presumably through
GSK-3 inhibition) upregulated heat shock responses,
including activation of HSF-1 and induction of HSP70
in the cortical penumbra (Ren et al., 2003). In addition,
in organotypic cultures of rat hippocampus subjected to
oxygen and glucose deprivation, lithium was neuro-
protective in conjunction with HSP27 activation
(Cimarosti et al., 2001). In the mouse brain, lithium
also attenuated hypoxia-induced serine dephosphoryla-
tion of GSK-3a and b (Roh et al., 2005). These findings
suggest that lithium protection against ischemia-
induced injury involves multiple mechanisms, including
GSK-3 inhibition. In addition to inducing anti-apoptotic
HSP70, lithium-induced neuroprotection was also ac-
companied by downregulation of proapoptotic p53 in the
CA1 but upregulation of anti-apoptotic Bcl-2 in the
global ischemic brain of gerbils (Bian et al., 2007).

c. Anti-inflammation. It is now generally acknowl-
edged that ischemia-induced brain injury results at
least in part from neuroinflammation mediated by
microglia, monocytes, or macrophages. To date, lith-
ium’s anti-inflammatory effects have been demon-
strated in rat models of neonatal hypoxia-ischemia
and hemorrhagic stroke, but not in ischemic stroke.
Under neonatal hypoxia-ischemia conditions, postin-
sult treatment with lithium suppressed microglial
activation and attenuated overexpression of proinflam-
matory cytokines and chemokines (Li et al., 2011).
Pretreatment of intracerebral hemorrhagic rats with
lithium for three days suppressed the expression
of cyclooxygenase-2 (COX-2) and reactive microglia
in the perihematomal regions (Kang et al., 2012),
and this was associated with decreased cell death
and improved sensorimotor recovery, underscoring
lithium’s anti-inflammatory effects. Because GSK-3
inhibition is known to reduce neutrophil infiltration
and decrease the expression of proinflammatory
factors in a rat tMCAO model (Koh et al., 2008),
inhibition of this kinase may also be involved in
mediating lithium’s anti-inflammatory effects in the
context of stroke.

d. Angiogenesis. One key component of poststroke
neurovascular remodeling is angiogenesis, a process in
which new capillaries are formed on existing blood
vessels through directed proliferation and the migra-
tion of endothelial progenitor cells. Poststroke angio-
genesis increases collateral circulation and restores
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blood flow to injured tissue. These new vessels also
provide neurotrophic support for concurrent neuro-
genesis and synaptogenesis, ultimately leading to
functional recovery (Beck and Plate, 2009). For these
reasons, enhancing angiogenesis after stroke may hold
great promise for the treatment. Neurovascular remod-
eling in the chronic phase of stroke determines the
ultimate extent of recovery. A functional MRI study in
tMCAO rats demonstrated the neurohemodynamic
aspects of lithium-induced recovery from ischemia. In
this study, a delayed lithium injection (12 hours after
ischemic onset), followed by daily injections, signifi-
cantly enhanced the ratios of mean activated volume
and total activation of magnitude for both blood oxygen
level dependence and functional cerebral blood volume
on day 15 (Kim et al., 2008). Lithium elevated levels of
CD31 staining, a marker of microvasculature, and
functional cerebral blood volume in the peri-infarct
regions, suggesting possible vascular transformation
(Kim et al., 2008). An increase in MMP-9 staining and
its colocalization with CD31 further suggest that
neurovascular remodeling depends on MMP-9 in the

recovering brain area. Treatment of rat brain endothe-
lial cells with lithium was also found to increase
protein levels of VEGF, apparently through the PI3K
and GSK-3 signaling pathways (Guo et al., 2009).
Because VEGF has been linked to angiogenesis,
neurogenesis, and neuroprotection (Fan and Yang,
2007), VEGF overexpression may contribute to lith-
ium’s ability to promote neurovascular remodeling and
functional recovery after ischemic stroke.

e. Neurogenesis. Neurogenesis, which includes cell
proliferation, migration, and differentiation, is the
process of forming integrated neurons from progenitor
cells (Kornack and Rakic, 2001). In the adult brain,
neurogenesis usually occurs in the subventricular zone
(SVZ) and hippocampal dentate gyrus (DG). The neural
stem cells in the SVZ migrate into the olfactory bulb
and then differentiate into interneurons, and new
neurons in the subgranular zone migrate into the
adjacent DG granule cell layer. It is known that
cerebral ischemia enhances neurogenesis in regions
that are traditionally neurogenic and nonneurogenic,
perhaps as part of the self-repair system of ischemic

TABLE 1
Beneficial effects of the mood stabilizer lithium in multiple models of CNS disorders

Preclinical studies supporting the repurposing of lithium as a modulator of neuroprotection in various animal models of CNS diseases.

Disease Experimental models References

Ischemic stroke Rat and mouse MCAO models; gerbil and rat global
ischemia model; hippocampal organotypic cultures

Nonaka and Chuang, 1998; Cimarosti et al., 2001; Ma
and Zhang, 2003; Ren et al., 2003; Xu et al., 2003; Roh
et al., 2005; Bian et al., 2007; Yan et al., 2007; Kim
et al., 2008; Li et al., 2010a, 2011; Tsai et al., 2011;

Hemorrhagic stroke Rat intracerebral hemorrhagic model Kang et al., 2012
TBI Rat and mouse models of controlled cortical impact Shapira et al., 2007; Zhu et al., 2010; Dash et al., 2011;

Yu et al., 2012a,b
HD Rat excitotoxic model; rat corticostriatal slices;

transgenic mice; neuroblastoma cells
Wei et al., 2001; Carmichael et al., 2002; Wood and

Morton, 2003; Senatorov et al., 2004; Berger et al.,
2005; Senatorov and Chuang, 2007; Sarkar et al.,
2008; Crespo-Biel et al., 2009; Chiu et al., 2011

AD Cultured cells and hippocampal slices; rabbits and rats;
transgenic mice; Drosophila

Hong et al., 1997; Munoz-Montano et al., 1997; Alvarez
et al., 1999, 2002; Inestrosa et al., 2000; Wei et al.,
2000; Sang et al., 2001; Sun et al., 2002; De Ferrari
et al., 2003; Ghribi et al., 2003; Perez et al., 2003;
Phiel et al., 2003; Tsuji et al., 2003; Mudher et al.,
2004; Rametti et al., 2004, 2008; Su et al., 2004;
Nakashima et al., 2005; Noble et al., 2005; Scali et al.,
2006; Rockenstein et al., 2007; Martin et al., 2009;
Leroy et al., 2010; Sofola et al., 2010; Sy et al., 2011;
Zhang et al., 2011a

ALS Transgenic mice Shin et al., 2007; Feng et al., 2008; Fornai et al., 2008;
Ferrucci et al., 2010; Fulceri et al., 2011;

FXS Transgenic Drosophila and mouse models McBride et al., 2005; Min et al., 2009; Choi et al., 2010;
Mines et al., 2010; Mines and Jope, 2011; Liu et al.,
2011, 2012b

PD Cellular, rat and mouse MPTP models; 6-
hydroxydopamine models

King et al., 2001; Chen et al., 2004; Youdim and Arraf,
2004; Koh et al., 2008; Duka et al., 2009; Kim et al.,
2011; Arraf et al., 2012; Castro et al., 2012

Retinal degeneration Retinal ganglion cells in vivo and in vitro; retinal
neurocytes in vitro

Huang et al., 2003; Huang and Klein, 2006; Schuettauf
et al., 2006; Cho and Chen, 2008; Zhuang et al., 2009

Multiple sclerosis Mouse experimental autoimmune encephalomyelitis De Sarno et al., 2008
Spinal cord injury Adult rats Shimizu et al., 2000; Yick et al., 2004; Su et al., 2007;

Dill et al., 2008
Alcohol-induced degeneration Cultured neurons; neural stem cells; infant mice and

Drosophila
Zhong et al., 2006; Chakraborty et al., 2008; Ishii et al.,

2008; French and Heberlein, 2009; Liu et al., 2009;
Luo, 2010; Saito et al., 2010

Down syndrome Transgenic mice Huang et al., 2000; Dou et al., 2005; Bianchi et al., 2010;
Spinocerebellar ataxia-1 Transgenic mice Watase et al., 2007
HIV-associated neurotoxicity Mouse model of encephalitis; cultured neurons Maggirwar et al., 1999; Everall et al., 2002;
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injury (Arvidsson et al., 2002). In a rat model of
transient global ischemia with four-vessel occlusion,
chronic lithium treatment improved spatial learning
and memory deficits and increased the survival and
generation of newborn cells in the DG, thereby
potentiating hippocampal neurogenesis (Yan et al.,
2007). It has been suggested that postischemic neuro-
genesis involves growth factor–induced activation of
receptor tyrosine kinases and subsequent stimulation
of PI3K/Akt and ERK signaling pathways (Shioda
et al., 2009). Consistently, lithium treatment enhanced
ERK phosphorylation after ischemia, whereas the ERK
inhibitor U0126 abolished the effects of lithium on
neurogenesis and behavioral improvement (Yan et al.,
2007).
f. Effects on MSC migration after transplantation.

Lithium- or VPA-primed MSCs transplanted by tail
vein injection into tMCAO rats 24 hours after ischemic
onset significantly increased the number of MSCs
homing to brain infarct regions, such as the cortex
and striatum, as measured two weeks after trans-
plantation (Tsai et al., 2011). For a more detailed
discussion of how priming with lithium and/or VPA
affects MSC migration, see section II.F. MCAO rats
receiving lithium- and/or VPA-primed MSCs exhibited
improved functional recovery, reduced infarct volume,
and enhanced angiogenesis in the penumbra regions.
Of note, MSCs that have been coprimed with lithium
and VPA showed further improvement in homing
ability, angiogenesis, and functional recovery after
transplantation into ischemic rats. Of significance,
pharmacological inhibition of MMP-9 reversed these
beneficial effects of lithium priming, and inhibition of
CXCR4 reversed the benefits of VPA priming, suggest-
ing that the mechanisms underlying these benefits
likely involve lithium-induced MMP-9 upregulation

and VPA-induced CXCR4 overexpression. These find-
ings indicate a potential for enhancing MSC migration
and homing capacity after transplantation into stroke
victims by priming them with GSK-3 and HDAC
inhibitors.

2. VPA-Induced Effects in Experimental Stroke
Models.

a. Neuroprotective effects and behavioral benefits.
VPA’s protective effects against brain ischemic injury
are well established. Initial studies using tMCAO found
that subcutaneous injection with VPA (300 mg/kg)
immediately after the onset of tMCAO, followed by
twice-daily injections thereafter, markedly decreased
infarct size, suppressed ischemia-induced apoptosis,
and reduced neurologic deficits (Ren et al., 2004). VPA
treatment in MCAO rats increased histone H3 acetyla-
tion and HSP70 upregulation in both ipsilateral and
contralateral brain hemispheres, suggesting the in-
volvement of HDAC inhibition and HSP70 induction
in mediating VPA-induced neuroprotection. Postinsult
treatment with VPA or other HDAC inhibitors (such as
SB or TSA) within at least three hours of ischemic onset
in a rat pMCAO model also significantly decreased
infarct volume and induced long-term improvement in
neurologic performance (Kim et al., 2007). Of note, it
has been recently shown that treatment with 100 mg/kg
VPA for seven days starting 24 hours after pMCAO in
rats significantly improved neurologic performance of
foot fault test, adhesive test, and neurologic severity
score measured 7–28 days after ischemia, although this
treatment did not reduce infarct volume (Liu et al.,
2012a). These findings suggest that the beneficial effects
of VPA on neurologic outcomes may be independent of
the infarct volume reduction.

b. Anti-inflammation. In a rat pMCAO model, VPA
treatment markedly reduced the number of both

TABLE 2
Beneficial effects of the mood stabilizer VPA in multiple models of CNS disorders

Preclinical studies supporting the repurposing of VPA as a modulator of neuroprotection in various animal models of CNS diseases.

Disease Experimental models References

Ischemic stroke Rat and mouse MCAO models; rat global ischemia
model

Ren et al., 2004; Kim et al., 2007; Qian et al., 2010; Tsai
et al., 2011; Wang et al., 2011a, 2012; Xuan et al.,
2012

Hemorrhagic stroke Rat intracerebral hemorrhagic model Sinn et al., 2007
TBI Rat model of controlled cortical impact Dash et al., 2010
HD Transgenic mice Zadori et al., 2009; Chiu et al., 2011;
AD Cultured cells and hippocampal slices; transgenic mice;

Drosophila
Su et al., 2004; Qing et al., 2008; Smith et al., 2010; Hu

et al., 2011
ALS Transgenic mice Sugai et al., 2004; Rouaux et al., 2007; Feng et al., 2008
FXS FXS lymphoblastoid cell lines Tabolacci et al., 2005, 2008
PD LPS-treated midbrain neuron-glia co-cultures; cellular,

rat and mouse MPTP models; rotenone-challenged
cellular and rat models

Peng et al., 2005; Chen et al., 2006, 2007; Wu et al.,
2008; Castro et al., 2012; Kidd and Schneider, 2010,
2011; Monti et al., 2010; Xiong et al., 2011

Retinal degeneration Rat retinal ganglion cells; rat retinal ischemia model;
optic nerve crush; mice

Biermann et al., 2010, 2011; Zhang et al., 2011b, 2012b

Spinal cord injury Adult rats and mice; organotypic culture of spinal cord Abematsu et al., 2010; Lv et al., 2011, 2012; Penas et al.,
2011; Lee et al., 2012b

Spinal muscular atrophy SMA fibroblast cell lines; transgenic mice Sumner et al., 2003; Tsai et al., 2006, 2008; Harahap
et al., 2012

HIV-associated neurotoxicity Mouse model of encephalitis; cultured neurons Dou et al., 2005

Therapeutic Potential of Mood Stabilizers 119



activated microglia and infiltrating monocytes/macro-
phages and suppressed ischemia-induced upregulation
of proinflammatory factors, inducible nitric oxide
synthase, and COX-2 (Kim et al., 2007). The anti-
inflammatory effects of VPA have also been demon-
strated in vitro. In rat midbrain neuron-glia cocultures,
for example, the neuroprotection of VPA against LPS-
induced dopaminergic neurotoxicity was, at least in
part, found to be attributable to a decrease in levels of
proinflammatory factors released from activated
microglia (Peng et al., 2005). Specifically, pretreating
cocultures with VPA markedly reduced LPS-induced
increases in the release of tumor necrosis factor-a
(TNF-a), nitric oxide, and intracellular ROS. These
anti-inflammatory effects correlate with a decrease in
the number of microglia. Treatment of rat microglia-
enriched cultures with VPA induced microglial death
with multiple hallmarks of apoptosis (Chen et al.,
2007). VPA-induced microglial apoptosis was also
accompanied by disrupted mitochondrial membrane
potential and hyperacetylation of histone H3—effects
mimicked by treatment with other HDAC inhibitors.
This HDAC inhibition-dependent microglial apoptosis
induced by VPA provides a novel mechanism of
protection against neuroinflammation.
Experiments with animal models of brain ischemia

have further shown that HDAC inhibitors other than
VPA (such as vorinostat, SB, and TSA) also super-
induced HSP70 (Ren et al., 2004; Faraco et al., 2006;
Kim et al., 2007). In a mouse tMCAO model, HSP70
overexpression inactivated the key inflammatory tran-
scription factor NF-kB and prevented nuclear trans-
location of activated NF-kB subunits (Zheng et al.,
2008). In addition, postinsult VPA treatment in a rat
model of intracerebral hemorrhagic stroke was found to
reduce the number of terminal deoxynucleotidyl trans-
ferase (TdT)-mediated dUTP nick end labeling
(TUNEL)-positive cells, upregulate Bcl-2/Bcl-Xl, down-
regulate Bax, and inhibit caspase activity (Sinn et al.,
2007). VPA further mitigated cerebral inflammation by
inhibiting neutrophil infiltration, suppressing micro-
glial activation, and downregulating proinflammatory
factors. Thus, suppression of neuroinflammation and
apoptosis appears to be mediated by HDAC inhibition
and comprises multiple mechanisms that contribute to
the neuroprotective effects induced by VPA. Accord-
ingly, VPA-induced inhibition of HDACs has been
shown to suppress microglial activation, reduce levels
of proinflammatory factors, and induce HSP70—anti-
inflammatory effects that may mediate neuroprotection
against hippocampal neuronal loss and cognitive defi-
cits in rat models of transient global ischemia (Xuan
et al., 2012).
c. BBB protection. Disruption of the BBB is critical

to the pathogenesis of brain ischemia and other
neurologic disorders, allowing intravascular proteins
and fluid to penetrate into the cerebral parenchymal

extracellular space, followed by leukocyte infiltration,
vasogenic edema, and hemorrhage. One study found
that postinsult treatment with VPA (200 and 300 mg/kg
i.p.) robustly attenuated tMCAO-induced BBB dis-
ruption and brain edema (Wang et al., 2011a). Of note,
VPA-induced BBB protection was dose-dependent
and persisted for at least 72 hours after transient
ischemia.

The BBB can be disrupted by abnormal activity of
MMPs, a family of zinc-dependent endopeptidases
known to perform multiphasic roles in ischemic stroke
(Rosell and Lo, 2008). The abnormal upregulation of
both MMP-2 and -9 induced by ischemia, for instance, is
linked to BBB disruption by degrading tight junctions
and basal lamina proteins and disrupting cell-matrix
homeostasis. VPA strongly reduced MCAO-induced
MMP-9 activity and protein elevation and concomi-
tantly restored protein levels of tight junctions, claudin-
5 and ZO-1, which are degraded 24 hours after MCAO
(Wang et al., 2011a). MMP-9 expression has been shown
to be regulated by NF-kB (Van den Steen et al., 2002), in
which activation may be inhibited by VPA through
upregulation of HSP70, as mentioned above. Consistent
with this notion, treatment with VPA or SB completely
blocked MCAO-induced nuclear translocation of the NF-
kB p65 subunit (Wang et al., 2011a). Taken together,
the evidence suggests that VPA’s ability to protect the
BBB likely involves the initial inhibition of HDACs,
followed by suppression of MCAO-induced NF-kB
activation, MMP-9 overexpression, and tight junction
degradation.

d. Angiogenesis. As measured on day 14 after
tMCAO, long-term postinsult administration of VPA
(200 mg/kg i.p.) markedly reduced infarct volume and
improved functional recovery (Wang et al., 2012).
Concurrently, VPA treatment enhanced postischemic
angiogenesis by increasing microvessel density, facili-
tating endothelial cell proliferation and upregulating
regional cerebral blood flow in the ipsilateral cortex. In
addition, ischemia is followed by an increase in levels of
three key proangiogenic factors: VEGF, MMP-2, and
MMP-9. These molecules are regulated by HIF-1,
a transcription factor responsible for gene transcription
that facilitates adaptation and survival after hypoxia or
ischemia (Ke and Costa, 2006). As measured on days 7
and 14 after MCAO, VPA treatment was shown to
potentiate MCAO-induced HIF-1a accumulation and to
upregulate downstream levels of VEGF and MMP-2/9
activity in the ipsilateral cortex. Inhibition of HIF-1a,
moreover, reversed the elevated postischemic angiogen-
esis and functional recovery induced by VPA.

Taken together, these findings indicate that long-
term VPA treatment enhances postischemic angiogen-
esis and promotes long-term functional recovery in an
experimental model of ischemic stroke. The findings
are further supported by reports from an in vitro
study that the HDAC inhibitors VPA and vorinostat
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enhanced VEGF-induced spheroid sprout formation in
human umbilical vein endothelial cells and that VPA
displayed a trend toward increasing endothelial cell
migration (Jin et al., 2011). Of note, VPA appeared to
play a dual role in preserving postischemic endothelial
cell function: it limited cell damage by inhibiting
MMP-9 and VEGF in the acute phase but enhanced
angiogenesis by upregulating VEGF and MMP-2/9 in
the later recovery phase (Wang et al., 2012). To date,
little is known about the mechanisms underlying this
time-dependent switch in VPA-induced activity after
MCAO. Further investigation is certainly warranted.
e. Neurogenesis. When studied in vitro and in vivo,

VPA has been shown to promote hippocampal neuro-
genesis (Hsieh et al., 2004; Yu et al., 2009). In addition,
even under conditions of favored lineage-specific
differentiation, VPA was also found to inhibit the
differentiation of astrocytes and oligodendrocytes
(Hsieh et al., 2004). In fact, VPA-induced inhibition of
HDAC has been shown to upregulate several regula-
tory factors favoring neurogenic transcription (such as
NeuroD, Ngn1, Math1, and p15). Chromatin immuno-
precipitation analysis further showed that, in neuronal
differentiation of both hippocampal neural progenitor
cells and adult hippocampal neurogenesis, acetylated
histone H4 was associated with the promoter of Ngn1
(Yu et al., 2009). In a rat pMCAO model, delayed VPA
treatment promoted white matter repair by increasing
survival of oligodendrocytes and differentiation of
oligodendrocyte progenitor cells and enhanced neuro-
genesis by increasing the number of newly formed
neuroblasts in the ischemic boundary zone 28 days
after ischemia (Liu et al., 2012a). In addition, VPA
increased acetylated histone H4 levels in neuroblasts
and neural progenitor cells, suggesting the involve-
ment of HDAC inhibition in VPA’s proneurogenic
effects. The HDAC inhibitors SB and TSA, which are
structurally similar and dissimilar to VPA, respec-
tively, were also found to exert postischemic proneuro-
genic effects in a rat pMCAO model (Kim et al., 2009).
In addition, postinsult treatment with SB of rats
undergoing pMCAO was shown to stimulate BrdU
incorporation in the SVZ, DG, striatum, and frontal
cortex; post-MCAO treatment with SB or TSA was also
shown to increase the population of cells expressing
nestin, GFAP, CREB, BDNF, and polysialic acid-
neural cell adhesion molecule (PSA-NCAM), a neuro-
blast marker with important neurobiological functions.
After treatment with HDAC inhibitors, moreover,
extensive colocalization of BrdU and PSA-NCAM was
noted in multiple brain regions. BDNF and phospho-
CREB, which are known to regulate neurogenesis,
were robustly upregulated by treatment with SB or
TSA. It is noteworthy that intraventricular injection of
the TrkB antagonist K252a markedly suppressed SB-
induced cell proliferation detected by BrdU and Ki67 in
the ipsilateral SVZ, DG, and other brain regions. It also

blocked nestin expression and CREB activation and
attenuated the long-lasting behavioral benefits of SB.
Together, these results suggest that proliferation, mi-
gration, and differentiation induced by HDAC inhibition
require BDNF-TrkB signaling, which therefore, contrib-
utes to long-term behavioral improvement after stroke.

Overall, these findings highlight the ability of lithium
and VPA to improve functional outcomes, suppress cell
death, attenuate neuroinflammation, enhance migra-
tion of transplanted MSCs, and promote angiogenesis
and neurogenesis in diverse animal models of cerebral
ischemia. Figure 2 is a proposed model of how these two
mood stabilizers induce multiple neurobiological effects
in the MCAO ischemic model. These beneficial effects
further confirm the considerable therapeutic potential of
these mood-stabilizing drugs in the treatment of certain
conditions of human stroke. Nevertheless, caution is
warranted because of the limited therapeutic window of
both lithium and VPA dosing, because adverse effects
arise rapidly at toxic doses. These adverse effects can
significantly negate the beneficial outcomes of long-term
treatment. Therefore, appropriate dosing for both of
these drugs is essential for their therapeutic potential to
be realized, particularly because effective dosing for
stroke and other neurodegenerative diseases is cur-
rently lacking. We anticipate that combining treatment
of lithium and VPAmay also provide unique advantages
toward reducing harmful adverse effects by requiring
lower doses for clinical benefit.

B. TBI

TBI is characterized by initial injury to neurons, glia,
and vascular structures, followed by secondary injury
from excitotoxicity, BBB breakdown, brain edema,
neuroinflammation, and neurodegeneration. Secondary
injury is often accompanied by behavioral and cognitive
deficits and neuropsychiatric disturbances (such as
depression, anxiety, and posttraumatic stress disorder)
(for a review, see Ursano et al., 2010). Since 2001, more
than 200,000 military personnel in the United States
have sustained TBI, which is increasingly considered to
be a signature wound of the wars in Iraq and
Afghanistan. In addition, in developed countries, TBI
is one of the leading causes of mortality and disability
among young persons, and its incidence is rapidly
increasing. Moreover, despite extensive research aimed
at developing therapies for TBI, no FDA-approved drug
yet exists for its treatment. Because of TBI’s complex
pathology, any effective therapy will need drugs that
can act on multiple cell survival and death pathways,
either alone or in combination (Margulies et al., 2009);
in this regard, accumulating evidence indicates that
lithium and VPA are both strong candidates.

1. Lithium-Induced Effects on Neurodegeneration,
Neuroinflammation, Behavioral Improvement, and Ab
Accumulation in Models of TBI. In cases of mild TBI
in mice, pretreatment with lithium (or another GSK-3
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inhibitor) 30 minutes before injury alleviated depressive
behavior 24 hours after mild TBI (Shapira et al., 2007).
In the hippocampus, mild TBI increased phosphoryla-
tion of Akt, phosphorylation of GSK-3b at Ser9, and
accumulation of downstream b-catenin, suggesting the
activation of this prosurvival cascade. The evidence thus
suggests that inhibiting GSK-3b may be beneficial in
TBI. In a mouse model of moderate TBI produced by
controlled cortical impact, a method widely used for the
accurate control of mechanical input, chronic lithium
pretreatment for 14 days attenuated the loss of hemi-
spheric tissue, brain edema, IL-1b expression, and
hippocampal neuronal degeneration. In addition, these
effects of lithium pretreatment in moderate TBI mice
were associated with improved spatial learning and
memory (Zhu et al., 2010).
Postinsult treatment with lithium also exerts robust

neuroprotective effects in TBI. With a therapeutic
window of 3–6 hours after injury, lithium treatment
was recently reported to reduce controlled cortical
impact–induced lesion volume in a TBI mouse model,
when assessed at three days and three weeks after
injury (Yu et al., 2012a). This postinsult lithium
treatment attenuated TBI-induced neuronal death,
microglial activation, COX-2 induction, and MMP-9
expression and preserved the integrity of the BBB, in
addition to normalizing TBI-induced hyperlocomotor
activity, anxiety-like behavior, and motor coordination.

Under these experimental conditions, lithium also
robustly increased GSK-3b phosphorylation at Ser9,
suggesting that inhibition of this kinase is involved in
mediating the drug’s beneficial effects. In another
study, controlled cortical impact–induced TBI was also
found to cause a delayed increase in GSK-3b Ser9
phosphorylation. In contrast, postinsult (30 minutes
after injury) lithium administration for five days was
associated with elevated phosphorylation of this kinase
and subsequent b-catenin accumulation with reduced
hippocampal CA3 neuron loss and with lower deficits
in hippocampus-dependent learning and memory, as
measured at 14–28 days after injury (Dash et al.,
2011). That lithium’s behavioral benefits are partially
mimicked by the GSK-3 selective inhibitor SB-216763
supports the theory that lithium’s protective effects
against TBI involve GSK-3 inhibition. Of note, how-
ever, lithium treatment may well have other targets
that contribute to its beneficial effects.

Of note, TBI has been identified as a major risk
factor for developing AD. Memory impairments are
frequent in both patients with TBI and animal models
(Spikman et al., 2012), and Ab levels were found to be
elevated in CSF and postmortem brain samples from
patient with TBI (Uryu et al., 2007). Hyperactivity of
GSK-3 has been implicated in the pathogenesis of AD
(Hooper et al., 2008), an idea supported by the fact that
lithium treatment produces many benefits in various

Fig. 2. A proposed model to demonstrate the molecular actions of lithium and VPA in preclinical models of cerebral ischemia. By inhibiting GSK-3 and
HDACs, respectively, lithium and VPA induce transcriptional activation of diverse neuroprotective and neurotrophic genes in the ischemic brain.
HSP70 expression is enhanced by mechanisms involving lithium-induced HSF-1 activation and VPA-induced Sp1 activation by acetylation. HSP70 is
neuroprotective and anti-inflammatory, presumably because it inhibits NF-kB, in which activity is inhibited by VPA and, possibly, by lithium. NF-kB
inhibition also contributes to protection against BBB breakdown by downregulating MMP-9 shortly after ischemia. VEGF and MMP-9 are induced by
long-term lithium or VPA treatment and are key protein molecules involved in potentiating angiogenesis. In addition, BDNF is transcriptionally
activated by lithium and VPA, and BDNF-TrkB signaling is essential for enhancing neurogenesis. BDNF and VEGF also contribute to neuroprotection
and the behavioral benefits of mood stabilizers. Furthermore, ischemia-induced NMDA receptor overstimulation and calcium overflow in the ischemic
brain are inhibited by lithium treatment through inhibition of NR2 subunit tyrosine phosphorylation. This could suppress excitotoxicity-induced p38
and Jun N-terminal kinase (JNK) and subsequent activator protein 1 (AP-1) activation to block neuronal apoptosis. Lines with solid arrows represent
stimulatory connections; lines with flattened ends represent inhibitory connections. Dashed lines represent pathways with reduced activity as a result
of lithium or VPA treatment.
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models of this disease (see section III.D). In recent
findings from our laboratory, lithium treatment in the
corpus callosum and hippocampus robustly reduced
a number of molecules and processes induced by TBI,
including Ab load, amyloid precursor protein (APP), tau
hyperphosphorylation, and overexpression of b-APP–-
cleaving enzyme-1 (Yu et al., 2012b). Of importance,
lithium also ameliorated TBI-induced deficits in spatial
learning and memory, as assessed by the Morris water-
maze and Y-maze tests; these effects were associated
with increased hippocampal preservation. Together,
these findings demonstrate multiple beneficial effects
of lithium in TBI and underscore the continued need for
its clinical investigation.
2. VPA-Induced Effects on Neurodegeneration,

Neuroinflammation, and Functional Recovery in Mod-
els of TBI. Although less is known about the thera-
peutic potential of VPA in TBI, preclinical animal
studies have similarly revealed beneficial effects. In
a rat model of TBI, postinjury systemic VPA adminis-
tration reduced cortical contusion volume, decreased
BBB permeability, and, of most importance, improved
motor function and spatial memory (Dash et al., 2010).
VPA also dose-dependently increased histone acetyla-
tion and reduced GSK-3 activity in the hippocampus.
Similar results were observed in a previous study from
the same group using another HDAC inhibitor, SB, in
combination with behavioral training (Dash et al.,
2009). In addition, HDAC inhibition also reduced TBI-
induced microglial inflammatory response in rats
(Zhang et al., 2008). In a mouse model of closed head
injury, a single dose of the HDAC inhibitor ITF2357
given 24 hours after injury significantly increased
levels of acetylated histone H3, HSP70, and phosphor-
ylated Akt (Shein et al., 2009). Other benefits included
reduced neurologic deficits, attenuated neuronal de-
generation, and reduced lesion volume. These results
confirm the hypothesis that VPA’s effects are mediated
through HDAC inhibition and that VPA merits further
investigation as a potential treatment of TBI.
3. Clinical Trials of VPA Treatment in TBI. In

a two-year randomized double-blind trial, VPA treat-
ment began within 24 hours after injury and lasted for
one or six months. VPA substantially reduced the rate of
early seizure, although this benefit was not significant,
compared with short-term (one week) treatment with
phenytoin; neither drug prevented late seizures (Temkin
et al., 1999). In addition, no significant adverse or
beneficial effects were associated with VPA in another
clinical study, as assessed by a battery of neuro-
psychological measurements administered 1, 6, and 12
months after TBI (Dikmen et al., 2000). On the basis of
this trial, it was suggested that VPA should not be used
for prophylaxis of posttraumatic seizures. Although
VPA showed no benefit over phenytoin, it is possible
that treatment could be optimized by shortening the
treatment time window, controlling the dropout rate,

and including a placebo group. Because these two
clinical trials were conducted over a decade ago and
evidence is accumulating for VPA’s robust benefits in
preclinical TBI models, there is a need to re-examine
the clinical effects of VPA and other HDAC inhibitors
in patients with TBI. A recent study showed that VPA
treatment caused an acute ischemic stroke in a patient
with a mutation of methylenetetrahydrofolate reduc-
tase (Varoglu, 2009). Mutation of this enzyme results
in a decrease in its activity and induces hyperhomo-
cysteinemia, a possible risk factor for epilepsy and
occlusive vascular disease. The use of VPA could
exacerbate hyperhomocysteinemia by reducing folic
acid and vitamin B12 levels. Therefore, genetic
examination or the determination of plasma levels of
homocysteine may prevent these risks associated with
VPA treatment.

C. HD

HD is a devastating inherited neurodegenerative
disease. It is estimated by the World Health Organi-
zation (WHO) that HD affects 180,000 Americans,
30,000 of whom currently have the disease and 150,000
of whom have a 50% chance of developing it. A member
of the polyglutamine (polyQ) family of disorders, HD is
caused by a trinucleotide CAG-repeat in the gene that
encodes a polyQ stretch to an unnaturally high number
($35) of glutamines in the N terminus of the disease-
causing huntingtin (Htt) protein (Macdonald, 1993).
This abnormally expanded mutant Htt (mHtt) causes
neurotoxicity, possibly through both a toxic gain of
function and a loss of wild-type Htt protein (Zuccato
et al., 2001). The presence of mHtt ultimately results in
the selective loss of neurons in the brain that
particularly affects medium-sized spiny neurons in
the striatum and, to a lesser extent, neurons in the
cortex (Friedlander, 2003; Hickey and Chesselet,
2003). Clinically, patients with HD experience various
cognitive, psychiatric, and physical symptoms, such as
memory loss, changes in personality, emotional de-
terioration, and uncontrollable jerky movements. HD
is lethal, with death occurring ;15 years after the
initial symptoms (Martin and Gusella, 1986; Vonsattel
and DiFiglia, 1998; Ross and Tabrizi, 2011). No cure for
HD presently exists, nor are there effective treatments
to halt disease progression. The search for neuro-
protective agents to combat this dreaded disease is
therefore of critical importance.

1. Lithium-Induced Effects on Apoptosis, Cell Pro-
liferation, and Neuroprotection in Excitotoxic Models of
HD. Both preclinical and clinical studies have impli-
cated excitotoxicity, a mechanism of neuronal death
caused by supersensitivity to (or hyperactivation of)
excitatory amino acid receptors, in the neuropathology
of HD (Taylor-Robinson et al., 1996; Levine et al.,
1999; Zeron et al., 2001, 2002). The development of an
excitotoxic animal model of HD was based on the fact
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that intrastriatal injection with kainic or quinolinic
acid (QA), both glutamate receptor agonists, mimicked
the loss of medium-sized spiny neurons and produced
many of the neuroanatomical changes found in the
brain of patients with HD (Coyle and Schwarcz, 1976;
Schwarcz and Whetsell, 1982; Foster et al., 1983; Beal
et al., 1986). QA is also endogenously produced, among
other toxic substances, by activated microglia and
macrophages. Infusion of this compound into the
striatum has been reported to downregulate cytopro-
tective Bcl-2 and upregulate proapoptotic p53 and c-
Myc (Liang et al., 2005). Furthermore, it has been
hypothesized that QA-induced striatal neuronal apo-
ptosis may be the result, at least in part, of a failed cell
cycle attempt (Liang et al., 2007). Administration of
the succinate dehydrogenase inhibitor 3-nitropropionic
acid (3-NP) also mimics striatal HD pathology (Brouillet
et al., 1999). The excitotoxic features of HD suggest that
lithium and VPA could be useful for its treatment.
Initial research in the rat excitotoxic model of HD

found that lithium pretreatment, at doses within the
therapeutic range, markedly reduced the size of QA-
induced striatal lesions and the loss of striatal
medium-sized neurons (Senatorov et al., 2004). Lith-
ium’s protective effects correlated with upregulation of
Bcl-2, downregulation of Bax, and suppression of
caspase-3 activation. In addition, the ability of lithium
to protect against QA-induced excitotoxicity was
further confirmed in mature rat corticostriatal organo-
typic cultures (Senatorov and Chuang, 2007). This
preparation has the advantages of both in vivo and in
vitro approaches, because it preserves organotypic
organization and interneuronal connections. Lithium
pretreatment stimulated the proliferation of striatal
cells near the site of QA-induced injuries, and some of
these replicating cells had the phenotype of neurons or
astroglia (Senatorov et al., 2004). These observations
were corroborated by reports that lithium increased
neurogenesis in the rat hippocampus in vivo (Chen
et al., 2000). In rat cortical neuronal cultures, lithium
stimulated the proliferation of neuroblasts and antag-
onized glutamate or corticosterone-induced loss of
neuroblast proliferation (Hashimoto et al., 2003b).
These studies demonstrate lithium’s anti-apoptotic,
cell-proliferating, and neuroprotective effects in differ-
ent models of HD.
2. Investigating Mood Stabilizers in Transgenic

Models of HD. HD pathogenesis is frequently modeled
through the transgenic expression of mHtt, which
causes aggregate formation and toxicity in cell models
and in vivo (Carmichael et al., 2002). In the brains of
N171-82Q and YAC128 transgenic mouse models of HD,
GSK-3 and HDAC hyperactivity has been associated
with the onset of behavioral symptoms of the disease
(Chiu et al., 2011). As discussed above, GSK-3 dysfunc-
tion has been implicated in many neuropsychiatric
disorders, and activation of this kinase has been linked

to apoptotic cell death induced by multiple insults. In
a neuroblastoma cellular model of HD, the protective
effects of lithium in reducing mHtt aggregates and cell
death were mimicked either by treatment with a GSK-
3b inhibitor or overexpression of a dominant-negative
GSK-3b mutant (Carmichael et al., 2002). In Drosoph-
ila, lithium-induced protection against the toxicity of
aggregate-prone proteins was mimicked by AR-
A014418, a GSK-3b inhibitor (Berger et al., 2005).
HDACs, on the other hand, play a key role in the
homeostasis of histone acetylation of chromatin and
regulation of transcription. Imbalances in protein
acetylation and transcription are associated with a wide
variety of brain disorders, as discussed above. In HD,
moreover, mHtt has been shown to affect diverse
transcriptional regulatory pathways (Cha, 2007). Tran-
scriptional dysregulation is in fact an early and pro-
gressive event in HD and is an important causative
factor in the disease (Sugars and Rubinsztein, 2003;
Hodges et al., 2006).

Wild-type Htt has been shown to activate transcrip-
tion of the BDNF gene (Zuccato et al., 2001), whereas
mHtt represses it (Zuccato et al., 2003, 2007); of note,
BDNF is a neurotrophin essential for striatal neuron
survival (Nakao et al., 1995; Ventimiglia et al., 1995).
BDNF plays a central role in cortical development and
synaptic plasticity. Accordingly, in HD, loss of this
trophic support from the cortex is considered to be one
of the causal factors of striatal death, and decreased
BDNF has been reported both in animal models of HD
(Duan et al., 2003, 2008) and in the striatum of
patients with HD (Ferrer et al., 2000; Zuccato et al.,
2001). In contrast, enhanced BDNF expression has
been shown to protect neurons from neurochemical
insults associated with HD, both in cultured cells
(Saudou et al., 1998) and in rodents (Bemelmans et al.,
1999; Canals et al., 2004; Kells et al., 2004). Emerging
evidence indicates that treatment with lithium and
VPA affects both transcriptional activity and gene
expression. Long-term treatment with either of these
two drugs increased BDNF expression in the rat brain
(Fukumoto et al., 2001). As reported above, moreover,
both lithium inhibition of GSK-3b and VPA inhibi-
tion of HDACs activate BDNF promoter IV in cortical
neurons (Yasuda et al., 2009). In various in vitro
and in vivo models of HD, however, treatment with
lithium or VPA has had mixed results in protecting
against mHtt toxicity (Wei et al., 2001; Carmichael
et al., 2002; Wood and Morton, 2003; Zadori et al.,
2009).

3. Effects of Mood Stabilizers on Clearance of mHtt.
Abnormal proteolytic processing of mHtt is believed to
be another critical step in the onset of HD. This
cleavage of mHtt in human HD tissue was found to be
partially mediated by calpain, a calcium-activated
neutral protease in which activity is elevated in the
caudate of human HD tissues (Gafni and Ellerby,
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2002). In both cultured primary brain neurons and
a rat 3-NP model of HD, pretreatment with lithium
attenuated 3-NP–induced cellular death and striatal
neurodegeneration by preventing calpain and sub-
sequent activation of cyclin-dependent kinase 5
(Cdk5) (Crespo-Biel et al., 2009). Eliminating mHtt
expression, moreover, not only halted symptom pro-
gression but also led to a regression of disease-like
symptoms (Yamamoto et al., 2000). These results
suggest that improved clearance of the mutant protein
can prevent cellular dysfunction and neurodegenera-
tion in HD.
As described in section II.E, the UPS and autophagy

are two major intracellular mechanisms for the clear-
ance of abnormal protein accumulation. These mecha-
nism are therefore believed to be particularly beneficial
in those neurodegenerative disorders (such as HD)
characterized by the accumulation of misfolded, dis-
ease-causing proteins (Luo and Le, 2010; Hegde and
Upadhya, 2011; Li and Li, 2011; Nijholt et al., 2011).
Because both lithium and VPA induce autophagy
independent of mTOR activation, lithium in combina-
tion with rapamycin has been proposed as a rational HD
therapy and has been tested in various models of the
disease (Sarkar et al., 2008). This autophagy-inducing
property has also been hypothesized to contribute to
lithium’s protective effects in ALS (Fornai et al., 2008).
In HD models, overexpression of HSPs, molecular

chaperones that promote the degradation of abnor-
mally folded proteins, has been shown to reduce the
formation of Htt aggregates and to suppress the
neurodegeneration and toxicity associated with this
disease (Chan et al., 2000; Jana et al., 2000; Fujimoto
et al., 2005). The brains of HD animal models, however,
show a decrease in HSP70 and its cochaperone HSP40
(Hay et al., 2004; Chiang et al., 2007; Duan et al., 2008;
Yamanaka et al., 2008), which have been found to
colocalize with Htt aggregates (Jana et al., 2000). Of
significance, in cultured neurons and rats subjected to
cerebral ischemia, after treatment with either lithium
or VPA, expression of HSP70 was found to increase
(Ren et al., 2003, 2004; Kim et al., 2007; Marinova
et al., 2009, 2011).
4. Effects of Combined Lithium and VPA Treatment

on Behavior in Transgenic Models of HD. The most
frequently studied transgenic mouse model of HD is
the R6/2, which carries a 145 CAG repeat expansion
and shows behavioral motor deficits as early as 5–6
weeks of age. In this model, postsymptomatic lithium
treatment significantly improved rotarod performance
but had no overall effect on survival (Wood and
Morton, 2003). However, because cotreatment with
lithium and VPA synergistically protected cultured
brain neurons from glutamate excitotoxicity (Leng
et al., 2008), combination therapy is expected to provide
additional benefits in neurodegenerative conditions.
Figure 3 shows a hypothetical working model of

the molecular actions of combined lithium and VPA
treatment in preclinical models of HD.

The therapeutic potential of combined treatment
with lithium and VPA was recently assessed (Chiu
et al., 2011) in two transgenic mouse models of HD
with distinct genetic backgrounds and disease pro-
gressions: N171-82Q and YAC128 (Schilling et al.,
1999; Slow et al., 2003). Although neither additive nor
synergistic in every aspect of this disease, combined
lithium and VPA treatment produced overall reliable
behavioral benefits in both models. This combined
treatment alleviated impaired locomotion and depres-
sive-like behaviors more strongly than treatment with
either drug alone. Combination therapy was also more
successful than single-drug therapy at improving
motor skill learning and coordination in N171-82Q
mice and at suppressing anxiety-like behaviors in
YAC128 mice.

In addition to motor and cognitive impairments,
patients with HD frequently experience psychiatric
disturbances, such as anxiety and depression (Di Maio
et al., 1993), that severely reduce their daily function-
ing and quality of life (Hamilton et al., 2003; Wheelock
et al., 2003). In the brains of HD mice treated with
lithium and VPA together, the activity of GSK-3b and
HDACs was consistently decreased, and expression of
BDNF and HSP70 was rapidly elevated and sustained
(Chiu et al., 2011). Because BDNF is considered a key
mediator of the clinical efficacy of antidepressants and
anxiolytic drugs (Woo and Lu, 2006), these actions
have particular relevance for the drugs’ behavioral
effects. Perhaps of more importance, in N171-82Q
mice, cotreatment markedly prolonged survival. Taken
together, the data suggest that combined lithium and
VPA treatment could be even more effective against
HD if administered early in the course of the disease
(Chiu et al., 2011). Potential patients with HD can be
identified by genetic testing before the onset of
symptoms; thus, these data provide a strong rationale
for using a combination of lithium and VPA to treat
HD.

5. Clinical Trials of Lithium and VPA Treatment in
HD. Before their neuroprotective properties were
discovered, the clinical use of lithium or VPA in
patients with HD was explored decades ago. In
patients with HD, lithium strikingly reduced chorea
and markedly improved voluntary movements (Anden
et al., 1973) and motor function (Mattsson, 1973). One
study found that patients in the early stages of the
disease were more likely to benefit from lithium
treatment (Foerster and Regli, 1977); in that study,
lithium conferred beneficial mood- and temper-stabilizing
effects. Combined therapy with lithium and neuro-
leptics has also proven to be beneficial in several
patients with HD (Anden et al., 1973; Manyam and
Bravo-Fernandez, 1973; Leonard et al., 1974, 1975;
Schenk and Leijnse-Ybema, 1974). On the other hand,
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VPA has been suggested as a rational choice as
a neuroleptic therapy in HD treatment (Tremolizzo
et al., 2007). A case study showed that VPA dose-
dependently improved myoclonic hyperkinesia in eight
patients with HD (Saft et al., 2006). When given in
combination with olanzapine, VPA at the lowest effective
dose (60–80 mg/ml in plasma) also appeared to be
beneficial for relieving both psychosis and movement
symptoms in patients with HD (Grove et al., 2000).
Other reports showed that lithium had no beneficial

effects in patients with HD (Aminoff and Marshall,
1974; Vestergaard et al., 1977). In some instances,
lithium treatment, particularly when used as the sole
therapeutic agent, even worsened motor and cognitive
performance (Carman et al., 1974; Leonard et al.,
1974). VPA has also been reported to have no beneficial
effects (Symington et al., 1978) or to lead to a state of
tolerance (Tan et al., 1976) on involuntary movements
in patients with HD. In these ancient trials reporting
no effect, however, the patient samples were small and
the duration of drug treatment was short. Large-scale
new clinical trials with long treatment duration are
necessary to resolve these discrepancies and assess the
potential benefits of using mood-stabilizing drugs to
treat HD. Lithium and VPA are already FDA-approved
medications with a long history of safe use in humans,
and in light of results from recent promising preclinical
studies, combined treatment with lithium and VPA or
other neuroprotective drugs is recommended for future

clinical investigation. Because the symptoms of this
disease are devastating and worsen progressively
without remission until death, the potential effects on
behaviors may significantly improve quality of life for
individuals with HD and their caregivers.

D. AD

In 2011, AD affected an estimated 5.4 million
Americans and was the sixth leading cause of death.
Clinically, it is characterized by progressive memory
loss, personality changes, and ultimately, dementia.
There is essentially no treatment available to arrest or
reverse the deterioration of neurons in AD, although the
FDA has approved five drugs that can temporarily slow
disease progression (Tariot et al., 2011). The pathogen-
esis of AD is not well understood; however, the
accumulation of Ab in the brain is believed to be the
primary cause (Hardy and Selkoe, 2002). This neuro-
pathological hallmark of AD presumably results from
an imbalance between Ab production and clearance.
The hyperphosphorylation of tau, a microtubule-binding
protein (Selkoe, 2001), has also been implicated in the
early development of neurofibrillary pathology (tauopa-
thies) associated with AD and other neurodegenerative
diseases (Lee et al., 2001; Planel et al., 2001).

Therefore, in the treatment of AD, Ab accumulation
and tau hyperphosphorylation are the primary treat-
ment targets. It is well-established that GSK-3 acts as
an Ab production regulator (Phiel et al., 2003; Su et al.,

Fig. 3. A hypothetical working model to demonstrate molecular actions of combined lithium and VPA treatment in preclinical models of HD. In HD,
the expression of mHtt affects a diverse set of transcriptional regulatory pathways and produces aggregates and toxicity in the striatal neurons.
Transcriptional dysregulation, an early and progressive event in HD, is an important causative factor in this disease. Combined lithium and VPA
treatment, by more consistently inhibiting both GSK-3 and HDACs, disinhibits several transcription factors, and subsequently elevates the expression
of cytoprotective proteins, such as BDNF, HSP70, and Bcl-2. Suppressed GSK-3 activity further reduces the activity of the proapoptotic protein p53 and
its negative regulatory effect on Bcl-2. Superinduction of HSP70 together with upregulated Bcl-2 and downregulated p53 attenuate apoptosis. As
a molecular chaperone, HSP70 can also facilitate degradation of misfolded proteins via the ubiquitin-proteasome system (UPS). On the other hand, by
decreasing inositol 1,4,5-trisphosphate (IP3) levels, lithium and VPA induce autophagy, a key physiologic process for the bulk degradation of
cytoplasmic proteins that has recently been recognized as one of the important regulators of neuronal survival and function. Induction of these
intracellular protein quality control mechanisms enhances the clearance of mHtt and, thus, reduces mHtt-induced transcriptional dysregulation and
toxicity. Moreover, increased expression of BDNF, an important neurotrophic support for striatal neurons, further protects against neurochemical
insults associated with HD and promotes neurogenesis. These neuroprotective effects after lithium and VPA coadministration contribute to behavioral
improvement and prolong the lifespan of transgenic HD mice. Lines with solid arrows represent stimulatory connections; lines with flattened ends
represent inhibitory connections. Dashed lines represent pathways with reduced activity as a result of combined treatment.
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2004; Rockenstein et al., 2007) and a tau kinase
(Hanger et al., 1992; Lovestone et al., 1994; Brownlees
et al., 1997). Because abnormal increases in GSK-3
levels and activity are associated with pathogenesis
and neuronal death in the brain of individuals with AD
(Munoz-Montano et al., 1999; Bhat et al., 2004), the
mood stabilizers lithium and VPA, which have been
shown to inhibit GSK-3, could have potential thera-
peutic use in treating this disorder.
1. Effects of Mood Stabilizers on GSK-3 Inhibition in

AD Models. Ab peptide is derived from APP by
sequential secretase-dependent proteolytic processing.
Through GSK-3 inhibition, chronic treatment with
lithium or VPA has been reported to block Ab
production. For example, chronic lithium treatment
was found to block Ab accumulation in the brains of
mice overproducing APP (Phiel et al., 2003), pre-
sumably by interfering with the reaction of g-secretase.
As discussed in section III.B.1, lithium could also
decrease Ab burden by inhibiting APP processing
through BACE-1 inhibition in the brain of TBI mice
(Yu et al., 2012b). Although this effect of lithium in
vitro was mimicked by transfection with siRNA of
GSK-3a but not GSK-3b (Phiel et al., 2003), other in
vitro and in vivo studies found that GSK-3b inhibition
also mimicked the ability of lithium or VPA to suppress
the process of Ab formation from APP (Su et al., 2002,
2004; Qing et al., 2008). A recent study in an adult-
onset Drosophila model of AD demonstrated a novel
mechanism, whereby GSK-3 directly regulated Ab42
levels in the absence of any effects on APP processing
(Sofola et al., 2010).
By inhibiting GSK-3, moreover, lithium has been

demonstrated, both in vivo and in vitro, to reduce tau
phosphorylation (Hong et al., 1997; Munoz-Montano
et al., 1997; Sang et al., 2001). In transgenic mouse
models of AD, chronic lithium treatment decreased
mutant tau protein aggregation (Perez et al., 2003) and
arrested the development of neurofibrillary tangles
(Leroy et al., 2010). In mouse models of tauopathies,
chronic lithium treatment not only inhibited tau
phosphorylation and neuronal degeneration mediated
by GSK-3 (Noble et al., 2005), but also promoted
ubiquitination, thereby decreasing tau-induced lesions
(Nakashima et al., 2005). In addition to GSK-3, tau
phosphorylation was also regulated by PP2A (Tanaka
et al., 1998). It has been reported that the activity of
PP2A is reduced in the brain of individuals with AD
(Trojanowski and Lee, 1995). PP2A inhibition pre-
vented tau dephosphorylation, a process that precedes
and is required for tau cleavage and degradation
(Rametti et al., 2004). In cultured cortical neurons,
lithium was found to down-regulate tau transcription
(Rametti et al., 2008). In the rat brain, lithium
treatment not only increased PP2A activity (Tsuji
et al., 2003), but also decreased tau phosphorylation,
which in turn, facilitated tau destruction (Rametti

et al., 2004). Finally, the fact that blockade of PP2A
activity in cultured neurons reversed lithium-induced
down-regulation of total tau proteins mediated by
GSK-3b inhibition (Martin et al., 2009) suggests that
PP2A is involved in lithium’s action.

2. Effects of Mood Stabilizers on Other Molecular
Targets in AD Models. In addition to inhibiting GSK-
3, lithium and VPA have other protective effects re-
levant to the pathogenesis of AD. In hippocampal slices,
lithium treatment prevents acetylcholinesterase-
promoted Ab toxicity and associated loss of func-
tion of Wnt signaling components (Inestrosa et al.,
2000). By rescuing b-catenin levels in rat brains,
long-term lithium treatment was found to be neuro-
protective against Ab-induced hippocampal neurode-
generation (De Ferrari et al., 2003). It was also found
that induction of Dickkopf protein 1 (DKK1), a Wnt
pathway inhibitor (Krupnik et al., 1999), was associ-
ated with neurodegeneration in the brains of individ-
uals with AD (Caricasole et al., 2004). Researchers
demonstrated that, in the CA1 region of the rat
hippocampus, systemic administration of lithium re-
versed local infusion of DKK1-induced neuronal cell
death and astrocytosis (Scali et al., 2006). Lithium has
further been shown to protect against Ab-induced ER
stress and the subsequent activation of caspases and
NF-kB in the hippocampus of rabbits (Ghribi et al.,
2003). This effect presumably comes from the induction
of the chaperone protein GRP78 (Hiroi et al., 2005), as
discussed in section II.E.2.

VPA, on the other hand, has been shown to enhance
microglial phagocytosis of Ab in vitro (Smith et al.,
2010). In human astrocytes, moreover, VPA (but not
lithium) has been shown to act as a potent inducer of
clusterin expression and secretion (Nuutinen et al.,
2010). Clusterin is a small, HSP-like molecular
chaperone, in which secretion is induced by stress.
Expression of clusterin is increased in AD (May et al.,
1990); it is present in neuritic plaques and binds to and
enhances the clearance of Ab in the brain (Nuutinen
et al., 2009). VPA’s ability to induce clusterin expres-
sion and secretion is therefore a distinct protective
mechanism. Chronic lithium treatment also largely
suppressed exogenous Ab-induced downregulation of
Bcl-2 and neuronal death in vitro (Hong et al., 1997;
Alvarez et al., 1999, 2002; Wei et al., 2000). Of note,
Bcl-2 protein levels in the brains of a mouse model of
AD were inversely correlated with miR-34a expression
(Guan et al., 2009), a miRNA that has recently
emerged as a common target for lithium and VPA
(Zhou et al., 2009). These findings suggest that miRNA
regulation may be a novel mechanism for the pro-
tective effects of these mood stabilizers in AD.

3. Effects of Mood Stabilizers on Recovery of
Cognitive Function in AD Models. In Drosophila
models of tauopathies, lithium is known to reverse
axonal transport and locomotor deficits by inhibiting
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GSK-3b (Mudher et al., 2004). In normal healthy rats,
long-term lithium treatment improved learning and
memory (Nocjar et al., 2007), and it ameliorated spatial
learning deficits in rats injected with preformed Ab
fibrils (De Ferrari et al., 2003). By inhibiting GSK-3b
signaling, lithium treatment of 3 months also reduced
Ab burden and tau hyperphosphorylation, prevented
neurodegeneration in the cortex and hippocampus, and
normalized memory deficits in transgenic mice over-
expressing human APP (Rockenstein et al., 2007).
Because dysregulation of histone acetylation is also

implicated in the memory impairment and pathogen-
esis of neurodegenerative diseases, using HDAC
inhibitors to control the elevation of histone acetylation
could be another novel approach for the treatment of
memory deficits in AD. HDAC2 is known to negatively
regulate memory formation and synaptic plasticity
(Guan et al., 2009), and its expression has been found
to be increased in experimental AD models and
patients (Graff et al., 2012). In a mouse model of
neurodegeneration, shRNA-induced knockdown of
HDAC2 restored structural and synaptic plasticity
and abolished memory impairments (Graff et al.,
2012). In transgenic AD mice, relatively low doses of
the HDAC inhibitor VPA significantly reduced the
formation of neuritic plaques and improved memory
deficits (Qing et al., 2008). In animal models of this
disease, moreover, injections of other HDAC inhibitors
(such as SB, phenylbutyrate, or vorinostat) completely
restored contextual memory (Kilgore et al., 2010;
Ricobaraza et al., 2012). A recent study using SB in
AD mice indicated, in fact, that HDAC inhibitors may
be therapeutically beneficial even when administered
at an advanced stage of the disease (Govindarajan
et al., 2011). In contrast, another preclinical animal
study showed that, although administering a low dose
of VPA (30 mg/kg) at a later stage could affect
neuropathological changes, cognitive deficits could only
be reduced by early intervention; this effect was
attributed to GSK-3 inhibition (Qing et al., 2008).
The role of HDAC inhibition in this low-dose VPA-
induced effect requires further investigation.
4. Clinical Trials of Lithium and VPA Treatment in

AD. The use of lithium and VPA in the treatment of
AD has already been investigated clinically. Studies of
individuals with BD found that patients with a history
of lithium treatment had significantly better cognition
and memory scores than did patients receiving other
treatments (Terao et al., 2006). Long-term lithium
treatment was also found to reduce the prevalence of
AD in older patients with BD (Nunes et al., 2007). A
10-year Danish study reported that patients receiving
continued lithium treatment had a reduced rate of
dementia, compared with those who received only one
prescription of lithium, and this rate was equal to that
in the general population (Kessing et al., 2008); it
should be noted, however, that the study did not

specify the indication for the lithium prespcription.
In addition, a recent study showed that long-term
treatment (12 months) with lithium (0.2520.5 mM)
decreased phospho-tau levels in CSF and improved
cognitive performance on the AD Assessment Scale
(Forlenza et al., 2011). Moreover, lithium tolerability
was excellent, with a 91% adherence rate. In contrast,
a trial in which 33 patients with AD received 10 weeks
of lithium treatment reported no effect on GSK-3
activity or cognitive performance (Hampel et al., 2009),
and other studies with small samples and short
duration have similarly reported no therapeutic effect
of lithium treatment in patients with AD (Brinkman
et al., 1984; Macdonald et al., 2008).

As with lithium, VPA clinical trials conducted on
patients with AD have produced mixed results. A
recent case study suggested that low-dose divalproex
may reduce the risk of adverse effects and led to
behavioral improvement in patients with AD with
agitation (Dolder and McKinsey, 2010). A 10-week
safety and tolerability study with a sample of 20
outpatients with probable AD revealed that the
maximum tolerated dosage of divalproex sodium was
,1000 mg/day, whereas the most common adverse
effects were sleepiness and tiredness (Profenno et al.,
2005). In patients with mild to moderate AD, dival-
proex treatment (10–12 mg/kg/day) did not delay the
emergence of agitation and cognitive impairment and,
more alarmingly, was found to accelerate brain volume
loss with significant toxic effects (Tariot et al., 2011).
VPA treatment was also found to be ineffective for the
management of agitation and aggression in older
patients with moderate to severe AD (Herrmann
et al., 2007). Of note, most of these reports used fixed
doses and had few data on VPA’s effects on the
pathogenesis or neuropathology of AD. Taken together,
these preliminary results suggest that studies with
longer treatment phases and larger groups of patient
with AD are needed to observe the potential benefits of
lithium. With regard to potential improvement of
pathologic and cognitive impairments, VPA treatment
should be administered with flexible dosing and in the
early stages of AD.

E. ALS

ALS is an adult-onset neurodegenerative disease
characterized by progressive loss of motor neurons in
the motor cortex and spinal cord, resulting in gener-
alized weakness, muscle atrophy, paralysis, and death
within five years after disease onset (Rowland, 1994).
Damage to surrounding glial cells, muscle cells,
interneurons, and Renshaw inhibitory neurons have
also been reported, in addition to the loss of motor
neurons (Boillee et al., 2006; Dobrowolny et al., 2008;
Fornai et al., 2008). Most ALS cases occur sporadically,
with no family history of the disease (Boillee et al.,
2006; Wijesekera and Leigh, 2009). Sporadic and
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autosomal-dominant familial forms of ALS are, how-
ever, clinically similar. Approximately 20% of familial
ALS is attributed to gain-of-function mutations in the
gene encoding Cu/Zn superoxide dismutase 1 (SOD1),
a key antioxidant enzyme (Rosen et al., 1993; Andersen
and Al-Chalabi, 2011). Mice expressing mutant Cu/Zn
SOD1 exhibit ALS-like phenotypes, including prema-
ture death, behavioral abnormalities, and the forma-
tion of intracellular aggregates of SOD1 in the brain
and spinal cord.
1. Effects of Lithium Treatment in ALS. Lithium’s

neuroprotective mechanisms have been suggested as a
possible treatment of ALS, particularly because upregu-
lation of GSK-3b, hyperphosphorylation of b-catenin
(Yang et al., 2008) and downregulation of VEGF and its
receptors (Brockington et al., 2006) have all been
identified in postmortem tissue samples from patients
with ALS. As described above, lithium treatment in-
creased the expression of VEGF, a growth factor that
has been shown to prolong survival in ALS mice (Wang
et al., 2007), and to protect motor neurons against
excitotoxicity (Tolosa et al., 2008). In organotypic slice
cultures of spinal cord, long-term treatment with lithium
dose-dependently inhibited the GSK-3b signaling path-
way and, thereby, prevented excitotoxic cell death of motor
neurons (Caldero et al., 2010). Treatment with lithium
alone or in conjunction with an antioxidant also improved
motor function and slowed disease progression in a mouse
model of ALS (Shin et al., 2007; Fornai et al., 2008;
Ferrucci et al., 2010). Because defective autophagy has
been found in diseased motor neurons (Venkatachalam
et al., 2008), the autophagy-inducing properties of
lithium are also believed to contribute to its protective
effects in ALS (Fornai et al., 2008; Fulceri et al., 2011).
However, one recent study in a female mouse ALS model
found that lithium had no beneficial or neuroprotective
effects (Pizzasegola et al., 2009). Although differences in
sex and the genetic background of the mice cannot be
excluded, the remarkably low serum steady-state lithium
level (0.05–0.07 mM) found in these female mice from the
latter study may account for this discrepancy.
2. Effects of VPA Treatment in ALS. Alteration in

the gene that encodes the survival motor neuron (SMN)
protein is responsible for spinal muscular atrophy
(SMA) (Lefebvre et al., 1995). This gene is present as
two homologous copies in the human genome: the
telomeric SMN1 and the centromeric SMN2. Homozy-
gous deletion or point mutation of SMN1 causes SMA,
whereas differential copy numbers of SMN2 modulate
the phenotype of this disease (Rochette et al., 1997;
Gavrilov et al., 1998). Of interest, abnormal copy numbers
of SMN1 (single and triple) have been implicated as a risk
factor in sporadic ALS (Corcia et al., 2002, 2006, 2009;
Blauw et al., 2012).
Although the roles of SMN2 were reported to be

inconclusive (Veldink et al., 2001; Blauw et al., 2012;
Corcia et al., 2012), genetic studies suggest that SMN

expression helps to modify disease severity in both
SOD1 mouse models (Kunst et al., 2000) and patients
with sporadic ALS (Veldink et al., 2001). Lower SMN2
copy numbers and lower SMN protein levels were
found to be associated with an increased susceptibility
to and severity of ALS (Turner et al., 2009; Veldink
et al., 2005). In SMA fibroblast cultures, VPA admin-
istration activated SMN2 transcription, modulated the
expression of splicing factors (Harahap et al., 2012),
and increased the expression of SMN protein (Sumner
et al., 2003). The upregulated level of SMN protein has
also been shown to depend on the number of SMN2
copies (Brichta et al., 2003). Although further explora-
tion is required, these results suggest that VPA may
have therapeutic potential in the treatment of ALS.

In ALS mice, CREB-binding protein, a transcrip-
tional coactivator with histone acetyltransferase activ-
ity, was specifically reduced in motor neurons of the
lumbar spinal cord. Consistently, decreased histone
acetylation levels were observed in degenerating motor
neurons (Rouaux et al., 2003). Numerous studies have
reported the beneficial effects of HDAC inhibitors on
different aspects of neurodegeneration (Guo et al.,
2009). Although results are inconsistent in ALS mice,
treatment with VPA maintained histone acetylation in
the spinal cord, restored CREB-binding protein levels
in motor neurons, and slowed the degeneration of
motor neurons (Rouaux et al., 2007; Crochemore et al.,
2009). Although treatment with VPA was found to
protect motor neurons against glutamate toxicity in an
organotypic culture of spinal cord and, in one study,
prolonged lifespan in a G93A mouse model of ALS
(Sugai et al., 2004), another study using the same
mouse model found that long-term dietary VPA
administration protected motor neurons but did not
significantly affect lifespan (Crochemore et al., 2009).

3. Clinical Trials of Lithium and VPA Treatment in
ALS. Although results from the aforementioned pre-
clinical studies raise the possibility that lithium and
VPA have putative utility for the treatment of ALS,
clinical trials of these mood stabilizers have, to date,
provided controversial results. A 15-month pilot clin-
ical trial in randomized patients with ALS found that,
when compared with matched control patients treated
with riluzole alone, cotreatment with riluzole and
lithium markedly reduced mortality (Fornai et al.,
2008). However, another randomized, double-blind,
controlled clinical trial found that this combined
treatment did not slow the progression of sporadic
ALS more than riluzole plus placebo (Aggarwal et al.,
2010). In a sibling-matched, sex-balanced, investigator-
blinded trial, long-term lithium treatment was found to
be ineffective on any treatment measure (Gill et al.,
2009). Three of the latest trials also refute any
beneficial effect of lithium treatment in patients with
ALS (Chio et al., 2010; Miller et al., 2011; Verstraete
et al., 2012), and a randomized sequential trial using
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a fixed dose of VPA found it to be equally ineffective in
patients with ALS (Piepers et al., 2009).
Because of these disappointing results, future in-

dependent and competitive trials may not be conducted
(de Carvalho and Pinto, 2011). Nevertheless, pre-
clinical studies in ALS mice suggest that combined
treatment with lithium and VPA produces a greater
and more consistent effect in delaying the onset of
disease symptoms, decreasing neurologic deficit scores
and prolonging lifespan, compared with monotherapy
with either drug (Feng et al., 2008). As with HD, this
preclinical evidence encourages future clinical trials
using this combined treatment, which may lead to
potential additive or synergistic protective effects that
may also reduce the required dosages of both drugs,
thereby minimizing their adverse effects. We suggest
that future trials be conducted with a larger number of
subjects early in the disease course, longer duration of
treatment, and various doses of drug to clarify
treatment discrepancies and the efficacy of these mood
stabilizers in ALS.

F. FXS

FXS is caused by a full mutation of the fragile X
mental retardation-1 (FMR1) gene with an abnormal
expansion of more than 200 CGG repeats within the
gene promoter (Verkerk et al., 1991). This expan-
sion triggers hypermethylation of cytosines in the
CpGs of the gene and hypoacetylation of associated
histones, resulting in transcriptional silencing of FMR1
(Verkerk et al., 1991; Sutcliffe et al., 1992; Hornstra et al.,
1993). This gene encodes the fragile X mental re-
tardation protein (FMRP), an RNA-binding protein that
negatively regulates translation at synapses (Garber
et al., 2006).
FXS is the most common inherited single-gene

disorder associated with mental retardation. Patients
with FXS exhibit cognitive impairments, seizures,
hyperactivity, and autistic behaviors. Another signifi-
cant problem for many affected young individuals is
symptomatic attention deficit hyperactivity disorder
(Baumgardner et al., 1995). The discovery of this
autism-related gene led to the development of FMRP
knockout animals, which not only serve as animal
models of FXS but have also improved our understand-
ing of the pathophysiological mechanisms of autism
(Hagerman et al., 2005). No cure presently exists for
FXS; current medical treatments are focused on
behavioral improvement.
1. Therapeutic Potential of Lithium Treatment in

FXS. It has been suggested that the absence of FMRP
in the brain of individuals with FXS enhances the
activation of the metabotropic glutamate receptor
(mGluR), which results in long-term depression (Bear
et al., 2004; Dolen et al., 2007). If so, the use of mGluR
antagonists may prove to be effective for treating this
disorder. In a Drosophila model of FXS that measured

naive and conditioned courtship behaviors after treat-
ment, mGluR antagonists were found to rescue both
behavioral and cognitive deficits (McBride et al., 2005).
Lithium treatment, which modulates signaling in a
manner similar to mGluR antagonists, also increased
naive courtship and restored short-termmemory in FXS
flies (McBride et al., 2005). A later study further found
that treatment with mGluR antagonists or lithium
effectively prevented age-related cognitive impairments
in this Drosophila model of FXS (Choi et al., 2010).

In the brain of FXS mice, the inhibitory serine-
phosphorylation of GSK-3 was found to be impaired
(Min et al., 2009, 2010). Although levels of this GSK-3
phosphorylation can be increased by 2-methyl-6-
phenylethynyl-pyridine (MPEP), an mGluR5 antag-
onist (Min et al., 2009; Mines et al., 2010), the
combination of an mGluR5 antagonist with a GSK-3
inhibitor did not produce additive therapeutic effects
in FXS mice (Min et al., 2009). These findings
suggest that GSK-3 is the fundamental component
of FXS pathology and indicate that GSK-3 is a
potential therapeutic target. In fact, recent studies
using mouse models of FXS demonstrated that lithium,
a potent GSK-3 inhibitor, may be therapeutically useful
for treating the disease (Mines and Jope, 2011). These
studies showed that, in FXS mouse models, lithium
treatment not only corrected hypophosphorylation of
GSK-3 but also ameliorated aberrant dendritic spine
morphology, deficient social interactions, and impaired
learning ability (Min et al., 2009, 2010; Liu et al., 2011).
In addition, the increased rate of cerebral protein
synthesis observed in FXS mice, presumably a conse-
quence of FMRP deficiency, was also significantly
reversed by long-term lithium treatment (Liu et al.,
2012b). Consistent with preclinical findings, lithium
treatment in a pilot clinical study showed positive effects
on behavior, adaptive skills, and cognitive measures in
15 FXS patients aged 6–23 years (Berry-Kravis et al.,
2008).

2. Therapeutic Potential of VPA Treatment in FXS.
Increasing histone acetylation has been identified as an
epigenetic alteration to facilitate gene transcription. In
cells from normal individuals, FMR1 was associated
with acetylated histone H3 and H4, whereas in the cells
of patients with FXS, reduced acetylation was observed
(Coffee et al., 1999). Because the loss of transcriptional
activity of FMR1 appears to be the major cause of FXS,
pharmacological reactivation of this gene may serve as a
possible therapeutic approach. As both a mood stabilizer
and HDAC inhibitor, VPA may have dual beneficial
effects in FXS: ameliorating behavior and reactivating
FMR1.

Treatment of Fragile X cells with 5-aza-2-deoxycytidine,
a DNA demethylating agent, resulted in reassociation
of acetylated histone H3 and H4 with FMR1 promoter
and transcriptional reactivation (Tabolacci et al.,
2005). In addition, a clinical study found that
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treatment with L-acetylcarnitine, which regulates
FMR1 activity (possibly via increased histone acetyla-
tion; Tabolacci et al., 2005), effectively ameliorated the
symptoms of attention deficit hyperactivity disorder
in children with FXS (Torrioli et al., 2008). VPA
alone was found to produce only modest reactivation
of FMR1 in different FXS lymphoblastoid cell lines
(Tabolacci et al., 2008) and had no effect on DNA
demethylation. Of note, the effect of VPA on reac-
tivation of the FMR1 gene in other types of tissue
may be varied and still remains unclear. In addition,
VPA has already been proven to be an effective
treatment of behavioral and psychiatric symptoms
in patients with autism or FXS (Sovner, 1989;
Hagerman et al., 1999; Torrioli et al., 2010). For these
reasons, using VPA to treat FXS cannot be excluded,
although further research on its basic mechanisms is
needed.

IV. Limitations for Lithium and VPA Treatment

As the aforementioned evidence suggests, lithium and
VPA have tremendous potential for the treatment of
a variety of CNS and neurodegenerative disorders.
Nevertheless, their use is associated with numerous
concerns relating to toxicity, teratogenicity, dosing,
patient age, comorbidites, and patient stability, and
these must be addressed.
The toxicity of lithium was recently and systemati-

cally reviewed by McKnight and colleagues (2012).
This review examined 385 studies (from the 1950s to
the present) and included 33 studies examining renal
function, 77 studies examining thyroid function, 60
studies examining parathyroid function, 24 studies
examining hair, 77 studies examining skin, 55 studies
examining weight, and 62 studies examining teratoge-
nicity (McKnight et al., 2012). The main conclusions
drawn from this comprehensive meta-analysis were
that lithium increased the risk of polyuria, hypothy-
roidism, hyperparathyroidism, and weight gain; of
surprise, little clinical support was found for the notion
that lithium significantly impaired renal function in
most patients (0.53% in patients treated with lithium,
compared with 0.2% in the general population). The
review also concluded that the risk of teratogenicity in
infants exposed to lithium was not significantly
different when compared with control subjects; however,
there is still some uncertainty of risk to women who
wish to become pregnant, suggesting that patients, in
conjunction with their doctors, must balance these risks
between harm to the infant and maternal mental health
before continuing or discontinuing lithium treatment.
The review also noted that acute lithium toxicity

(doses above 1.2 mM) did occur, particularly in patients
made susceptible after surgery, renal failure, heart
failure, or even severe illness resulting in diarrhea and
vomiting. Therefore, to avoid lithium toxicity, monitoring

serum lithium levels every three months is recommen-
ded, along with daily dosing rather than multiple daily
dosing (Malhi and Tanious, 2011). Among the potential
limitations of this exhaustive review are as follows: 1)
lack of many long-term randomized or controlled cohort
studies, 2) relatively small sample sizes, 3) lithium doses
considered to be mainly in therapeutic range (0.4–1.0
mM) rather than at concentrations of toxicity (above 1.2
mM), 4) incomplete dosing information reported, 5)
exclusion of patients with a history of lithium toxicity
or sparse information to monitor these individuals and
evaluate their clinical response to lithium treatment,
and 6) tendency for a high dropout rate in important
cohort studies, with little information regarding the
cause of removal from the study. Even with these
limitations, the authors provide an extensive systematic
quantification of the potential risks associated with
lithium treatment.

For current recommendations on optimal plasma
lithium levels (0.4–1.0 mM) in treating BD and the
risks associated with lithium treatment, the interested
reader is referred to a practical guide (Malhi et al.,
2011). These authors developed a lithiumeter, a visual
scale for optimal lithium plasma levels for the treat-
ment of BD. Future investigations may develop this
scale further to assess optimal lithium plasma levels in
combination therapies with VPA and also for dosing
considerations based on factors, such as patients’
comorbidities, age, and sex. Although a careful study
showing efficacy, tolerability, and safety of lithium in
older patients with BD is currently unavailable, a recent
review reported that lithium use in late-life BD was not
only effective in treating manic and depressive symp-
toms, it also provided the benefit of reducing cognitive
impairment and suicide rates (D’Souza et al., 2011).
However, caution is warranted when monitoring dosing
in older patients, because lithium plasma and brain
levels do not correlate in older patients in the same
manner as in younger patients (Forester et al., 2009).
Moreover, higher brain lithium levels were found to
correlate with both frontal lobe dysfunction and in-
creased depressive symptoms in older adults with BD.

VPA toxicity was also recently reviewed (Chateauvieux
et al., 2010). Adverse effects after treatment included
weight gain (Grosso et al., 2009; Wirrell, 2003), de-
creased reproductive potential (Isojarvi, 2008; Verrotti
et al., 2011), and a three-fold increase in birth de-
fects (spina bifida, anencephaly, cardiac defects,
dysmorphic features, valproate syndrome, and cra-
niofacial, skeletal, or limb defects) (Clayton-Smith
and Donnai, 1995; Genton et al., 2006; Ornoy, 2009).
In a recent review surveying drug treatments for
mood disorders during pregnancy, it was reported that
the use of VPA, in addition to chlorimipramine, par-
oxetine, and atypical antipsychotics, should be avoided
(Gentile, 2011); in contrast, lithium was associ-
ated with no significant teratogenic risks, making it
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potentially appropriate for treating pregnant patients
(Gentile, 2012).
Additional adverse effects from VPA treatment

include decreasing IQ in children after fetal exposure
(Bromley et al., 2009; Meador et al., 2009) and some
neurologic adverse effects (inducing ischemic stroke
and exacerbating epilepsy) (Buechler and Buchhalter,
2007; Varoglu, 2009). The studies correlating VPA
treatment with neurologic adverse effects were case
reports and require additional randomized and con-
trolled studies to substantiate these potential risks in
a larger sample size. There have also been reports of
hepatotoxicity and hematopoietic damage (thrombocy-
topenia, platelet dysfunction, factor XIII deficiency,
hypofibrinogenemia, and vitamin K-dependent factor
deficiency) after VPA treatment (Koenig et al., 2006;
McFarland et al., 2008). Of interest, lithium was
suggested to be used in treating hematopoietic deficits
via increasing colony-stimulating factor (reviewed in
Focosi et al., 2009). VPA was also reported to increase
prevalence of von Wilbrant disease (Serdaroglu et al.,
2002; Koenig et al., 2008), a coagulation abnormality
presenting with increased bleeding tendency in the
form of easy bruising, nosebleeds, and bleeding gums,
and a nine-fold increase in aplastic anemia (Handoko
et al., 2006), a condition in which a patient has lower
red blood cells, white blood cells, and platelets because
of bone marrow not producing sufficient new cells.
Clearly, precautions are warranted with both lithium
and VPA treatments, and the risks must be weighed
against the benefits.
A final consideration of the limitations on these two

drugs to develop them into successful clinical treatments
beyond BD is the lack of financial incentive for un-
patentable drugs. This is based on problems with the
current patent-based drug development process. Cur-
rently, market demand and novelty are rewarded over
the reduction in global disease burden. A revised disease
burden incentive system would reward actual perfor-
mance of a new drug based on reducing the number of
patients with a specific disease or improving quality of
life (Barton and Emanuel, 2005). Without imposing
monetary incentives to favor such a prize-based system
that focuses on the social value of health benefits to
inspire drug innovation (Gandjour and Chernyak, 2011),
developing these unpatentable therapies will prove to be
difficult where large-scale randomized trials are re-
quired to determine efficacy and tolerability.

V. Conclusions and Future Directions

The past decade has seen remarkable growth in our
understanding of the mechanisms of action of lithium
and VPA. In vitro studies have revealed that both of
these mood-stabilizing drugs have robust neuroprotective
effects against glutamate-induced excitotoxicity and
a number of other insults in experimental settings. In

diverse preclinical animal models of CNS disorders
(including stroke, HD, AD, ALS, and others), lithium and
VPA have also been shown to improve behavioral and
cognitive performance, suppress neurodegeneration
and neuroinflammation, enhance neurogenesis and an-
giogenesis, and prolong cell survival. When considering
these drugs’ therapeutic potential, it is advisable to
address common mechanisms that may underlie these
benefits and thwart disease pathology.

Characterizing the unifying mechanisms that are
common to different diseases will provide clear targets
for facilitating beneficial effects across diverse CNS
disorders. This review focused on GSK-3 and HDAC,
two primary targets of lithium and VPA, respectively,
in which dysregulation has been implicated in diverse
neuropathological conditions. Although both drugs
induce neuroprotective and neurotrophic effects, they
use different molecular signaling pathways to regulate
transcriptional activation of cell survival signaling
cascades, oxidative stress pathways, protein quality
control mechanisms, and numerous other beneficial
effects. In promoting cell survival, lithium and VPA
appear to affect many different downstream molecules
(such as the neurotrophins BDNF and GDNF and
angiogenic VEGF) and anti-apoptotic proteins (such as
HSP70, Bcl-2, and Bcl-Xl). In promoting cellular
plasticity and resiliency, lithium and VPA affect
similar downstream molecules, such as BDNF and
Bcl-2; however, the associated changes in physiologic
function are different from that of promoting cell
survival mechanisms. These differences may provide
critical distinctions between impaired cellular plastic-
ity and different phases of neurodegeneration and cell
death when treating diverse CNS indications.

Further investigation is clearly warranted to estab-
lish the core cellular and molecular disturbances that
characterize the degree of impaired cellular plasticity
and neurodegeneration and ultimately determine the
associated changes in physiologic function (e.g., pre-
symptomatic, early, and late symptoms) that lead to
disease. This type of careful characterization will allow
for personalized treatments to be timed for specific
disease stages to slow or halt the progression from
impaired cellular resilience to a breakdown in the
maintenance of cellular integrity. In addition to timing
treatment, combing the use of effective and specific
risk biomarkers (genetic, molecular, cellular, and
neuroimaging based) may prove to be helpful for
paving the way for personalize medicine by targeting
at-risk individuals before symptoms arise. Additional
considerations may include targeting specific cell types
and CNS regions. Keeping in mind these numerous
considerations and the limitations associated with both
agents, long-term clinical trials on a large scale are
now warranted to repurpose lithium and VPA for
therapeutic use in diverse new indications, ranging
from stroke to neurodegenerative diseases.
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In this respect, it is important to reiterate that in
some experimental conditions in which treatment with
lithium or VPA alone was either ineffective or only
marginally beneficial, enhanced neuroprotection was
observed as a result of cotreatment with both agents.
This augmented neuroprotection was associated with
potentiating GSK-3 inhibition and may involve partic-
ular miRNA mechanisms currently under investiga-
tion, although understanding the precise underlying
mechanisms in detail will require future study. The
benefits of cotreatment also extend to enhancing MSC
migration via the upregulation of MMP-9 and CXCR4
by lithium and VPA, respectively. In addition, in
transgenic mouse models of ALS and HD, cotreatment
with lithium and VPA more robustly and consistently
delayed disease syndrome progression, decreased
behavioral deficits, and increased lifespan. These
preclinical studies confirmed that using lithium and
VPA together is a rational strategy with significant
potential for treating neurodegenerative and neuro-
logic diseases; indeed, we speculate that combination
treatment may more effectively enhance neurotrophic
and neuroprotective mechanisms. Future studies are
required to confirm this hypothesis and to identify
common targets to discover new treatment opportuni-
ties. Furthermore, despite their long history of safe
clinical use, both lithium and VPA have adverse
effects, especially at high doses. However, future
clinical investigations that combine treatment with
VPA and lithium could thus use lower doses of both
drugs, which would reduce undesirable adverse effects
and still achieve enhanced therapeutic actions.
In view of the many recent findings summarized

above, we expect that future studies will shed consider-
able new light on how to more effectively target the
mechanisms contributing to neurologic and neurode-
generative pathologies. New avenues of research into
mechanisms mediated by miRNAs, for instance, are
expected to reveal another layer of regulatory control
and identify network nodes capable of modulating
multiple signaling cascades. Validating miRNAs in-
volved in fundamental disease processes (neuroinflam-
mation, BBB integrity, and apoptosis) may also lead to
the development of novel and more efficacious treat-
ments capable of regulating multiple signaling net-
works. Finally, we predict that identifying the
mechanisms regulated by lithium and VPA will steer
genetic studies to identify susceptibility and protective
genes for both neurologic and neurodegenerative
diseases in which miRNA-mediated mechanisms may
provide one of the unifying links among patient
treatment response, therapeutic targets, and genetics.
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