Table 3. ROC analysis and calculus of sensitivity, specificity and predictive values.
Controls (n = 25) | Cervical Cancer (n = 44) | |||||||||||
Genes | AUC | Cut-off valuea | FPF | TNF | TPF | FNF | p-valueb | Sensitivity | Specificity | PPV | NPV | Youden indexc |
CDKN2A | 0.996 | 18 | 0 | 25 | 42 | 2 | <1×10−10 | 0.95 | 1 | 100 | 92.6 | 0.95 |
CCNB2 | 0.995 | 58 | 0 | 25 | 43 | 1 | <1×10−10 | 0.98 | 1 | 100 | 96.2 | 0.98 |
MKI67 | 0.995 | 79 | 0 | 25 | 43 | 1 | <1×10−10 | 0.98 | 1 | 100 | 96.2 | 0.98 |
PRC1 | 0.995 | 80 | 0 | 25 | 43 | 1 | <1×10−10 | 0.98 | 1 | 100 | 96.2 | 0.98 |
CDC2 | 0.995 | 85 | 0 | 25 | 42 | 2 | <1×10−10 | 0.95 | 1 | 100 | 92.6 | 0.95 |
SYCP2 | 0.992 | 115 | 0 | 25 | 42 | 2 | <1×10−10 | 0.95 | 1 | 100 | 92.6 | 0.95 |
NUSAP1 | 0.990 | 48 | 1 | 24 | 43 | 1 | <1×10−10 | 0.98 | 0.96 | 97.7 | 96.0 | 0.94 |
PCNA | 0.990 | 100 | 0 | 25 | 42 | 2 | <1×10−10 | 0.95 | 1 | 100 | 92.6 | 0.95 |
TYMS | 0.985 | 46 | 0 | 25 | 41 | 3 | <1×10−10 | 0.93 | 1 | 100 | 89.3 | 0.93 |
CDC20 | 0.971 | 3 | 3 | 22 | 42 | 2 | <1×10−10 | 0.95 | 0.88 | 93.3 | 91.7 | 0.83 |
CDKN3 | 0.970 | 83 | 1 | 24 | 41 | 3 | <1×10−10 | 0.93 | 0.96 | 97.6 | 88.9 | 0.89 |
SMC4 | 0.960 | 431 | 1 | 24 | 40 | 4 | <1×10−10 | 0.91 | 0.96 | 97.6 | 85.7 | 0.87 |
RFC4 | 0.905 | 221 | 4 | 21 | 42 | 2 | <1×10−10 | 0.95 | 0.84 | 91.3 | 91.3 | 0.79 |
RRM2 | 0.905 | 103 | 5 | 20 | 41 | 3 | 3×10−9 | 0.93 | 0.8 | 89.1 | 87.0 | 0.73 |
TOP2A | 0.866 | 128 | 5 | 20 | 43 | 1 | <1×10−10 | 0.98 | 0.8 | 89.6 | 95.2 | 0.78 |
MCM2 | 0.846 | 121 | 4 | 21 | 40 | 4 | 2.5×10−9 | 0.91 | 0.84 | 90.9 | 84.0 | 0.75 |
ZWINT | 0.827 | 59 | 7 | 18 | 39 | 5 | 1.1×10−6 | 0.89 | 0.72 | 84.8 | 78.3 | 0.61 |
CKS2 | 0.815 | 239 | 5 | 20 | 35 | 9 | 5×10−6 | 0.80 | 0.8 | 87.5 | 69.0 | 0.60 |
TPF | FNF | FPF | TNF | |||||||||
CFD | 0.982 | 478 | 24 | 1 | 2 | 42 | <1×10−10 | 0.96 | 0.95 | 97.7 | 92.3 | 0.91 |
EDN3 | 0.968 | 42 | 23 | 2 | 4 | 40 | <1×10−10 | 0.92 | 0.91 | 95.2 | 85.2 | 0.83 |
WISP2 | 0.926 | 151 | 24 | 1 | 10 | 34 | 2.1×10−8 | 0.96 | 0.77 | 97.1 | 70.6 | 0.73 |
AUC: area under the curve, FPF: false positive fraction, TNF: true negative fraction, TPF: true positive fraction, FNF: false negative fraction, PPV: Positive predictive value, NPV: Negative predictive value.
Optimal cut-off values (ng/ml) were selected according to the ROC analysis.
Chi square test.
J = sensitivity+specificity − 1.