Skip to main content
. 2013 Feb 6;8(2):e55975. doi: 10.1371/journal.pone.0055975

Table 3. ROC analysis and calculus of sensitivity, specificity and predictive values.

Controls (n = 25) Cervical Cancer (n = 44)
Genes AUC Cut-off valuea FPF TNF TPF FNF p-valueb Sensitivity Specificity PPV NPV Youden indexc
CDKN2A 0.996 18 0 25 42 2 <1×10−10 0.95 1 100 92.6 0.95
CCNB2 0.995 58 0 25 43 1 <1×10−10 0.98 1 100 96.2 0.98
MKI67 0.995 79 0 25 43 1 <1×10−10 0.98 1 100 96.2 0.98
PRC1 0.995 80 0 25 43 1 <1×10−10 0.98 1 100 96.2 0.98
CDC2 0.995 85 0 25 42 2 <1×10−10 0.95 1 100 92.6 0.95
SYCP2 0.992 115 0 25 42 2 <1×10−10 0.95 1 100 92.6 0.95
NUSAP1 0.990 48 1 24 43 1 <1×10−10 0.98 0.96 97.7 96.0 0.94
PCNA 0.990 100 0 25 42 2 <1×10−10 0.95 1 100 92.6 0.95
TYMS 0.985 46 0 25 41 3 <1×10−10 0.93 1 100 89.3 0.93
CDC20 0.971 3 3 22 42 2 <1×10−10 0.95 0.88 93.3 91.7 0.83
CDKN3 0.970 83 1 24 41 3 <1×10−10 0.93 0.96 97.6 88.9 0.89
SMC4 0.960 431 1 24 40 4 <1×10−10 0.91 0.96 97.6 85.7 0.87
RFC4 0.905 221 4 21 42 2 <1×10−10 0.95 0.84 91.3 91.3 0.79
RRM2 0.905 103 5 20 41 3 3×10−9 0.93 0.8 89.1 87.0 0.73
TOP2A 0.866 128 5 20 43 1 <1×10−10 0.98 0.8 89.6 95.2 0.78
MCM2 0.846 121 4 21 40 4 2.5×10−9 0.91 0.84 90.9 84.0 0.75
ZWINT 0.827 59 7 18 39 5 1.1×10−6 0.89 0.72 84.8 78.3 0.61
CKS2 0.815 239 5 20 35 9 5×10−6 0.80 0.8 87.5 69.0 0.60
TPF FNF FPF TNF
CFD 0.982 478 24 1 2 42 <1×10−10 0.96 0.95 97.7 92.3 0.91
EDN3 0.968 42 23 2 4 40 <1×10−10 0.92 0.91 95.2 85.2 0.83
WISP2 0.926 151 24 1 10 34 2.1×10−8 0.96 0.77 97.1 70.6 0.73

AUC: area under the curve, FPF: false positive fraction, TNF: true negative fraction, TPF: true positive fraction, FNF: false negative fraction, PPV: Positive predictive value, NPV: Negative predictive value.

a

Optimal cut-off values (ng/ml) were selected according to the ROC analysis.

b

Chi square test.

c

J = sensitivity+specificity − 1.