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Abstract

Triple negative breast cancer (TNBC) is a heterogeneous disease at the molecular, pathologic and clinical levels. To stratify
TNBCs, we determined microRNA (miRNA) expression profiles, as well as expression profiles of a cancer-focused mRNA
panel, in tumor, adjacent non-tumor (normal) and lymph node metastatic lesion (mets) tissues, from 173 women with
TNBCs; we linked specific miRNA signatures to patient survival and used miRNA/mRNA anti-correlations to identify clinically
and genetically different TNBC subclasses. We also assessed miRNA signatures as potential regulators of TNBC subclass-
specific gene expression networks defined by expression of canonical signal pathways. Tissue specific miRNAs and mRNAs
were identified for normal vs tumor vs mets comparisons. miRNA signatures correlated with prognosis were identified and
predicted anti-correlated targets within the mRNA profile were defined. Two miRNA signatures (miR-16, 155, 125b, 374a and
miR-16, 125b, 374a, 374b, 421, 655, 497) predictive of overall survival (P = 0.05) and distant-disease free survival (P = 0.009),
respectively, were identified for patients 50 yrs of age or younger. By multivariate analysis the risk signatures were
independent predictors for overall survival and distant-disease free survival. mRNA expression profiling, using the cancer-
focused mRNA panel, resulted in clustering of TNBCs into 4 molecular subclasses with different expression signatures anti-
correlated with the prognostic miRNAs. Our findings suggest that miRNAs play a key role in triple negative breast cancer
through their ability to regulate fundamental pathways such as: cellular growth and proliferation, cellular movement and
migration, Extra Cellular Matrix degradation. The results define miRNA expression signatures that characterize and
contribute to the phenotypic diversity of TNBC and its metastasis.
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Introduction

miRNAs are small (19–25 nucleotides), non-coding RNAs that

reduce the abundance and translational efficiency of mRNAs and

play a major role in regulatory networks, influencing diverse

biological processes [1,2] through effects of individual miRNAs on

translation of multiple mRNAs. Determining roles of individual

miRNAs in cellular regulatory processes poses a major challenge,

with function of the majority of miRNAs currently unknown; even

for relatively well-studied miRNAs, only a handful of targets have

been rigorously characterized and these may differ by tissue type.

Triple-negative breast cancers are defined by a lack of

expression of estrogen receptor (ESR1), progesterone receptor

(PGR1), and ERBB2 receptor. This subgroup accounts for 15% of

all types of breast cancer and is an aggressive form with limited

treatment options.

We have used the nanoString nCounter platform (Seattle, WA,

USA) to profile both miRNA and mRNA expression (nanoString

Cancer Reference panel) using the same RNA sample from each

breast cancer patient. Our analyses confirmed some observations

from previous studies [3,4] and revealed new specific miRNA

signatures as potential biomarkers for distant-disease free (DDFS)

and overall survival (OS). We emphasized the joint analysis of

miRNA and mRNA data, and thoroughly analyzed anti-correla-

tions between miRNA and mRNA expression data.

We also assessed, through target prediction analysis, if the

miRNA signatures can potentially regulate and thus define pivotal

pathways in mRNA defined TNBC subclasses. Moreover we were

able to correlate tissue specific miRNA expression signatures,
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defined by comparisons among normal, tumor and metastatic

tissues, with specific dysregulated mRNAs in the same compar-

isons. The analyses confirm the heterogeneity of TNBC and

provide a basis for further molecular studies to develop miRNA-

based early detection markers and novel therapeutic targets for

triple negative breast cancer.

Results

miRNA expression profiles differentiate among adjacent
normal breast and TNBC tissues

The profiles of 224 samples, 165 primary cancer-derived RNAs

and 59 normal RNAs from patients with a median age of 51 years

were considered. Hierarchical clustering represented in the heat

map in Fig. S1, shows 116 miRNAs differentially expressed in

TNBCs vs normal breast expression profiles, some with known

involvement in breast cancer progression [5]. All fold-changes

associated with these analyses are represented in log2 scale (logFC)

and we show all data with a P-value of ,0.05, considered to

indicate statistical significance.

miR-106b [6] is over-expressed in tumor compared to normal

(logFC 3.6), the Myc-regulated miR-17/92 oncomir cluster that

characterizes TNBC [7] is strongly deregulated (miR-17, logFC

1.23; miR-106a, logFC 1.23; miR-20a, logFC 5.88; miR-20b,

logFC 5.88; miR-19b, logFC 1.86). Members of the miR-8 family

[8] are up-regulated: miR-200a (logFC 0.33), miR-200b (logFC

1.47), miR-200c (logFC 1.22). Two members of the let-7 family:

let-7b (logFC 20.47) and let-7c (logFC 21.92) are down-

regulated, as reported previously [9]. Tumor suppressor miRNAs

down-regulated in tumor profiles are: miR-126 (logFC 20.74),

involved in cell cycle progression and metastasis suppression [10];

miR-145 (logFC 22.83) associated with p53-mediated repression

of Myc and suppression of cell invasion [11]; miR-205 (logFC

22.49), targeting ErbB3 and VEGF-A, and inhibiting tumor

growth and invasion [12]. Other miRNAs, with oncogene activity,

are up-regulated in our profiles: miR-21 (logFC 2.29) plays a

crucial role in tumor cell proliferation, apoptosis, invasion,

consistent with ability to repress tumor suppressors PTEN,

PDCD4, TPM-1 [13] and SPRY2 [14]; miR-155 (logFC 2.68),

29 (logFC 3.13) and 2107 (logFC 2.32) implicated in tumor

aggressiveness and resistance to chemotherapy in vitro and in vivo

[15].

Hierarchical clustering of the subset of 55 matched tumor and

normal tissue RNAs is shown in Fig. S2; 104 miRNAs appear to

be dysregulated. We still observe up-regulation of miR-106b

(logFC 3.29), 17–92 cluster (average cluster deregulation, logFC

3.19), miR-9 (logFC 3.22), miR-21 (logFC 2.54) and miR-27a

(logFC 1.21). In this matched cluster analysis, we found 33

miRNAs that were not appreciably altered in expression in the Fig.

S1 heat map, with greatest fold changes in: miR-193a-3p (logFC

21.4), miR-19a (logFC 1.75) and miR-210 (logFC 1.64) (Table S1

A, B).

Several miRNAs have been shown to be involved in breast

metastasis induction and progression, through processes such as

epithelial-mesenchymal transition (EMT), extracellular matrix

modification (ECM) and mesenchymal-epithelial transition

(MET) [16]. In our study, RNAs of 54 TNBC-associated regional

lymph node metastases (mets) were compared to the 59 normal

RNAs, with metastatic miRNA profiles clustering distinctly

separately from the normal profiles. The heat map in Fig. S3

shows 103 miRNAs (Table S2) deregulated in the normal vs mets

comparison in the entire cohort (median age 51 yrs, range 20–84).

We further investigated the deregulation of miRNAs in the three

different tissue classes.

Summary of dysregulated miRNAs among the tissue
classes

The Venn diagram (Fig. 1) summarizes the number of

differentially expressed miRNAs in the three tissue classes. 13

miRNAs (Fig. 1 B) represent the expression pathways dysregulated

as cells progress from normal to primary TNBC (not significantly

dysregulated in the other comparisons). Among these tumor

specific deregulated miRNAs, members of the miR-8 family and

miR-24 are strongly up-regulated, confirming previous findings

[17]. We considered as a ‘‘metastatic signature’’ a pool of 6

miRNAs differentially modulated in tumor to metastatic and

normal to metastatic transition but not in normal vs tumor (Fig. 1

C, D, E). The down-regulation of miR-424 distinguishes the tumor

vs mets (logFC 20.68) comparison (Fig. 1 C); miR-125a-5p (logFC

20.59), distinguishes the normal vs mets comparison (Fig. 1 D),

with down-regulation in the mets confirming it as a tumor

suppressive miRNA involved in modulation of anchorage depen-

dent cell growth [5]. Up-regulated in both these comparisons are

let-7g (logFC 0.90, 1.01 respectively) and miR-101 (logFC 1.05,

1.03), miR-627 (logFC 21.11, 21.75), miR-579 (logFC 22.62,

24.09) are down-regulated. Table S3 lists the 15 miRNAs

differentially expressed across the three tissue group comparisons,

shown by the intersection of the 3 expression profiles in the central

part of the Venn diagram in Fig. 1A, characterized by several

miRNAs with high logFC in normal vs tumor vs mets comparisons.

miR-542-3p (logFC 21.06, 22.65, 23.73, respectively, in

normal.tumor.mets) is highly down-regulated through the three

tissue classes; this is also in accordance with the anti-correlated

trend, shown below in the mRNA profile (logFC 1.9, 1.7, 0.2), for

its validated target BIRC5 [18], an established anti-apoptotic gene.

miR-125b (logFC 22.02, 20.73, 22.76) is down-regulated

through the three tissue classes and mostly anti-correlated with

its validated target, CDKN2A, which is up-regulated in our mRNA

profile (logFC 2.6, 1.5, 21.1).

Examples of up-regulated miRNAs through the three tissue

classes are: miR-128 (logFC 1.51, 1.15, 2.66) targeting WEE1 [19],

an important cell-cycle checkpoint regulator in breast cancer

which in our profile shows an anti-correlated trend (logFC 21.6,

20.9, 0.7), similarly for miR-26b (logFC 2.27, 1.4, 3.66) and its

validated target TGFBR2 (logFC 22.3, 21.7, 0.6).

miRNA expression signatures associated with survival
We investigated associations between miRNA expression levels

and survival, for the entire TNBC cohort, as well as for the .50

years of age patients (50+, mostly post-menopausal) and the 50

years and under patients (502, mostly premenopausal, but

including some patients who had hysterectomies). Here, we

present a detailed analysis of the 502 cohort, while further

investigations for the 50+ subset are ongoing. For the 502

patients, the median follow-up was 79 months (range 9–194 mo),

the median age was 43 (range 20–50 yrs). Censoring occurred at

the date of death from any causes (overall survival, OS), first

evidence of distant recurrence (distant-disease free survival, DDFS)

or at time of the last known follow-up, whichever occurred first. All

expressed miRNAs (n = 133) in tumor samples were considered.

For both OS and DDFS, we used Cox proportional hazards

models and identified sets of miRNAs that are significantly related

to outcomes. We then performed permutation tests in which the

times and censoring indicators were randomly permuted among

samples. Permutation P values for significant miRNAs were

computed based on 10,000 random permutations. Hazard ratios

(HR) were computed for a 2-fold change in the miRNA expression

level. 4 miRNAs were significantly associated with OS, as

determined by univariate and multivariate analysis. Of these, 3

miRs Profile in Triple Negative Breast Cancer
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were up-regulated and 1 down-regulated in the normal vs tumor

comparison (Fig. 2A). ‘Protective’ miRNAs were defined as those

associated with an HR (from univariate Cox regression analysis) of

less than one (HR,1); ‘risk-associated’ miRNAs were defined as

those associated with an HR greater than one (HR.1). Up-

regulation of miR-16 (HR = 0.87, 95% CI = 0.79–0.94), miR-155

(HR = 0.728, 95% CI = 0.57–0.92), or miR-374a (HR = 0.85,

95% CI = 0.72–0.99) correlated with better prognosis (protective);

down-regulation of miR-125b (HR = 1.355, 95% CI = 1.03–1.79)

correlated with a worse prognosis (risk-associated) (Fig. 2B). All

tumors were classified into high- or low-risk groups according to

their risk-score (see Materials and Methods). The Kaplan-Meier

OS graph, according to the combined 4 miR signature in Fig. 2C,

shows divergent OS curves (P = 0.05). The median OS for the high

vs low risk miR signature was 69 vs 83 mo, HR 2.18 95%

CI = 0.97–4.84 P = 0.05, indicating association between expression

of the signature miRNAs and OS.

For DDFS the median follow-up was 75 months (range 6–

194 mo.). 7 miRNAs were significantly associated with DDFS, as

determined by univariate and multivariate analysis. These 7

miRNAs were significantly differentially expressed in the normal vs

tumor comparison, 4 up-regulated and 3 down-regulated in

Fig. 2D. In Fig. 2E we show 3 ‘‘risk-associated’’ (miR-125b, 655,

421) and 4 ‘‘protective’’ miRNAs (miR-16, 374a/b, 497). The 7

miRNAs signature illustrated by Kaplan-Meier graph (Fig. 2F)

shows tumors with a high-risk miR signature associated with a

lower median DDFS than tumors with a low-risk miR signature

(51 vs 81 mo) (the HR of high-risk vs low-risk signatures, 3.46, 95%

CI = 1.35–8.85 P,0.01), showing a strong association between

this miR signature and DDFS.

mRNA expression profiles and predicted correlations
with expression of specific miRNAs

The nanoString GX Human mRNA Cancer Reference panel

was used to profile expression in 158 tumors, 40 adjacent normal

tissues and 54 lymph node mets. The profiles discriminated non-

tumor tissue from TN tumors and mets. Hierarchical clustering

represented in the heat maps (Fig. 3) show 124 mRNAs

differentially expressed in TNBC relative to adjacent non-tumor

breast samples (Table S4). The mRNA expression profiling

resulted in clustering of the TNBCs into 4 molecular subgroups

with different gene expression signatures (Fig. 3). For each cluster

of genes we performed functional enrichment assessments of

potentially perturbed pathways using the IPA-Ingenuity software.

To find links between the prognostic signature miRNAs, their

putative target genes and interaction pathways, we performed

target prediction analysis and then calculated the Pearson

correlation index, focusing on inversely expressed miRNA:mRNA

pairs. For each miRNA we selected the top anti-correlated genes

(Table 1).

Molecular Subgroup 1 (ORANGE) includes 7 mRNAs, for SPP1,

MMP9, MYBL2, BIRC5, TOP2A, CDC2, CDKN2A genes, that are

over-expressed in tumor compared to normal; these genes are

involved in critical biological functions: CDC2 (logFC 1.2) in

Figure 1. Venn diagram describing miRNA expression patterns in the three classes of breast tissue. Venn diagram (A) representing
differentially expressed miRNAs observed in the comparisons among the three classes (normal, primary tumor, metastatic lesion), up or down facing
arrow indicate the expression level change. Tables show: the 13 miRNAs identified by the comparison between Normal vs Tumor (B); 1 miR
differentially expressed only in Tumor vs Mets (C); 1 miR differentially expressed only in Normal vs Mets (D); 4 miRNAs commonly deregulated in the
Tumor vs Mets and Normal vs Mets comparisons (E).
doi:10.1371/journal.pone.0055910.g001
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Figure 2. Overall Survival miRNA signature and Distant Disease-Free Survival (DDFS) signature. Overall survival (OS) of TNBC patients of
50 yrs and younger patients due to differentially expressed miRNAs in the three classes. (A) Heat map representing miRNA profiles of 75 tumor
samples using average linkage clustering and Spearman Rank method as distance metrics. Bar above the dendrogram identifies 39 high risk samples
shown in orange and 36 low risk cases in yellow. Samples are shown in columns, miRNAs in rows. Heat map represents relative miRNA expression as
indicated in the blue to red key bar at the top. (B) Hazard ratios of protective and risky miRNAs. (C) Overall Survival miRNAs signature. Distant
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regulation of G1 progression, G1/S and G2/M transition [20];

MYBL2 (logFC 2.3) in regulation of S-phase and activation/

repression activities, such as activation of CDC2 protein, cyclinD1,

and insulin-like growth factor-binding proteins, and in DNA

damage response; BIRC5 gene product (logFC 1.9) in apoptosis

inhibition; TOP2A protein (logFC 1.8) in response to anthracy-

cline chemotherapy [21]; MMP9 protein (logFC 1.5) in invasion

and proliferation (up-regulated in tumors and mets) and in DNA

replication, recombination and repair. Within this set of genes the

correlation coefficient strongly links the ‘risk-associated’ miR-125b

and miR-655 with the CDKN2A gene (logFC 2.6), predicted target

of these two miRNAs.

Molecular subgroup 2 (BLUE) includes 43 mRNAs down-regulated

in the tumors. The top gene ontologies for this molecular subgroup

are enriched in NF-kB, PPAR and PTEN signaling pathways. The

cellular growth associated genes have these expression fold

changes: BCL2 (logFC 21.8), EGF (logFC 21.9), ERBB4 (logFC

22.6), ESR1 (logFC 23.4), IL1A (logFC 21.3) and FGFR2 (logFC

20.8), WT1 (logFC 21.1), MYC (logFC 21.4), FGF2 (logFC

22.5); AKT1 (logFC 21.3), CASP10 (logFC 21.4), involved in cell

movement, cell death and cell development. The Pearson

correlation links the ‘protective’ miR-16 to these genes and their

pathways; 10 of its top predicted targets belong to this group

(Table S2). Other ‘protective’ miRNAs, miR-374a/b and ‘risk-

associated’ miR-421 are highly anti-correlated with important

genes of this group, which are also their predicted targets, NTRK2

(logFC 22.9) a regulator of cell proliferation, ATM (logFC 21.3)

involved in recognizing damaged DNA strands, BCL2 and AKT1,

implicated in cell death.

The third molecular subgroup (YELLOW) is represented by 10

deregulated mRNAs. These transcripts are enriched for gene

ontologies involving growth factors (IGF-1 and EGF signaling).

This group is also enriched in expression of growth factor receptor

MET (logFC 21.4), which ensures cell survival, and L1CAM

(logFC 20.7) and IGFBP3 (logFC 21.2), which are involved in cell

movement. ‘Protective’ miR-16 is predicted to target EGFR and

they are negatively correlated, miR-374a/b are anti-correlated

with predicted targets IGFBP3 and MET (Table 1).

The fourth and largest subgroup (PINK) is characterized by the

expression of 64 mRNAs, with NF-kB signaling as the top

canonical pathway. The gene ontologies are enriched in compo-

nents, pathways or functions involved in: cell death, growth and

proliferation, represented by TIMP1 (logFC 20.8), TIMP2 (logFC

21.7), CDKN1A (logFC 21.7), CCND2 (logFC 21.9), MAP3K8

(logFC 21.6); cell movement, represented by CAV1 (logFC 22.8),

a potential growth suppressor in breast cancer. Other top

molecular and cellular functions are: cell migration, represented

by LAMB1 (logFC 21.6) a positive regulator of migration, and

gene expression; cell cycle regulation, represented by JUN (logFC

22.2); transcriptional regulation represented by CEBPA (logFC

21.8) a promoter binding co-factor and positive regulator of

transcription. The Pearson correlation and target predictions link

to this group miR-16, miR-374a/b and miR-421.

We note that the ESR1 probe is in the nanoString cancer

mRNA panel and very low expression of this mRNA was detected

in 7 TNBCs, as shown in Fig. 3, molecular subgroup 2 (blue); the

ESR1 protein was not expressed in these tumors, as determined by

immunohistochemical analyses, a basis upon which the tumors

were selected for this study.

mRNAs dysregulated in mets
Hierarchical clustering of a subset composed of 40 normal and

50 regional lymph node mets RNAs (Fig. S4) identified 120

mRNAs that were significantly differentially expressed, 112

mRNAs up- and 8 down-regulated in mets. For patients with a

median age of 43 years (range 20–50 yrs) the mRNA profiles are

summarized in the Venn diagrams in Fig. 4 A. In Fig. 4 B we show

the mRNAs deregulated in the normal vs tumor comparison,

although to find possible links between genes and the previously

shown miRNA ‘‘metastatic signature’’ we focused our attention on

the mets comparisons. In Fig. 4 C we report the only significantly

differentially expressed gene, characteristic of the comparison:

tumor vs mets (MMP1, logFC 20.6). 4 genes were notable in

normal vs mets (Fig. 4 D): CXCL9 (logFC 1.7), IL8 (logFC 20.8),

STAT1 (logFC 0.5), CCND1 (logFC 20.7). For CCND1, here

down-regulated, studies showing both positive and negative

associations with prognosis have been reported. CCND1 gene

amplification has been related to poor disease outcome in ER-

positive cancers, but other studies have correlated cyclin D1

protein expression with both better and worse prognosis. It is

known that amplifications of CCND1 and MYC frequently occur

together in breast cancer [22]; accordingly, we observed its down-

regulation coupled with MYC down-regulation (logFC 21.2). In

the normal vs mets comparison, the expression trend for 2 genes

was intriguing: up-regulation of CXCL9 (logFC 1.7) and down-

regulation of IL8 (logFC 20.8). The ability of CXCL9 protein

(migratory monokine-induced by interferon-c) to modulate host

cell infiltration and tumor behavior is known; CXCL9 protein

expression also results in smaller tumors and decreased rate of

tumor metastasis. Recent studies are focusing on the metastatic

process after the ‘‘nesting’’ phase [23,24]; it is believed that once

the tumor has nested in another site, the metastatic markers are

turned off by the tumor microenvironment, in favor of markers

more favorable to tumor proliferation. Similarly, interleukin-8 (IL-

8), discovered as a chemotactic factor for leukocytes, has recently

been shown to contribute to cancer progression through its

functions as a mitogenic, angiogenic, and motogenic factor [25].

Elevated IL-8 levels predict early metastatic spread of breast

cancer, may be negatively correlated with ER-status and expressed

preferentially in invasive cancer cells [26]. The IL8 down-

regulation observed in the normal vs mets comparison may reflect

reprogramming in absence of the need of metastatic cells to

extravasate after reaching the metastatic site in the lymph nodes.

Fig. 4 E shows the mRNAs commonly deregulated in the normal

vs mets and tumor vs mets comparisons (MMP3 logFC 21.2;

COL1A1 logFC 20.8).

Discussion

Stratification of TNBC into subclasses using new markers will

identify new screening methods, prognostic factors, methodologies

and perhaps targets for personalized therapies. Several recent

studies have correlated miRNA expression with outcomes in

TNBC using microarray or other high throughput technologies.

Disease-Free Survival (DDFS) miRNA signature of 50 yrs and younger. (D) Heat map representing miRNA profiles of 75 tumor samples using average
linkage clustering and Spearman Rank method as distance metrics. Bar above the dendrogram identifies 37 high risk samples shown in orange and 38
low risk cases in yellow. Samples are shown in columns, miRNAs in rows. Heat map represent relative miRNA expression as indicated in the key bar at
the top. (E) miRNAs predicting protection from or susceptibility to early recurrence. (F) Kaplan-Meier estimates of DDFS according to the seven-
miRNA signature.
doi:10.1371/journal.pone.0055910.g002
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mRNA expression profiles that sub-classify TNBCs have also been

reported in association with investigations of outcome, new

molecular pathways and possible chemotherapy alternatives

[27,28]. We have carried out a large-scale analysis of miRNA

and cancer-focused mRNA expression in normal, triple negative

tumor and associated metastatic tissues.

We first profiled miRNAs expressed in specific tissue classes for

the entire cohort. Subsequent focus on the 50 and under subset

allowed identification of 2 miRNA signatures, distinguishing

‘protective’ and ‘risky’ prognostic miRNAs; these prognostic

signatures require validation on an independent group of TNBC

patients and this work is in progress. The primary tumor mRNA

expression profiles of the entire cohort clustered into 4 molecular

subgroups. Through miRNA target prediction and use of IPA

software, we determined that the prognostic signature miRNAs

were connected with the 4 molecular subclasses, in which they are

predicted to target many transcripts and participate in control of

their canonical signal pathways.

The miRNA profile
13 miRNAs (Fig. 1A) differentially expressed in the normal vs

tumor comparison, represent a strictly tumor-specific pool for

which IPA ingenuity software identified observed targets and

signal pathways involved; examples are Integrin, protein kinase A,

Thrombin, Phospholipase C, FAK, RhoA, ILK, and CAMP

signaling, proliferation/apoptosis related and thus expressed in the

tumor microenvironment [29].

In tumor vs mets and normal vs mets comparisons, a total of 6

miRNAs were differentially expressed in the mets tissues, miR-

424, miR-125a-5P, miR-627, miR-579, Let-7g, miR-101. Con-

sidering only the known targets of these miRNAs we can track the

pathways involved, integrin, VEGF, ILK, tight junction signaling

and NRF2-mediated oxidative stress response, pathways involved

in the metastasis process, cell survival in the vasculature, and

extravasation from the blood stream. These miRNAs and

associated signal pathways confirm the metastatic origin of the

lymph node mets RNAs. Among the 6 mets-associated miRNAs,

miR-424 is interesting as the only one differentially expressed in

the mets relative to primary tumors. Aberrant miR-424 expression

has been observed in other cancer types as well, an indication of its

potentially pivotal role in the development of metastases [30]. IPA

software correlates miR-424 (together with let-7g) to the NRF2-

mediated oxidative stress response pathway, necessary for survival

of cancer cells in the vasculature during the metastasis process, and

thus this miRNA is expressed in the primary and regional nodal

metastases.

miR-125a, the only miRNA significantly dysregulated only in

the normal vs mets comparison may function as a tumor

suppressor in breast cancer and in breast cancer cell lines, as its

over-expression inhibits proliferation, motility and invasiveness,

cell migration and promotion of apoptosis. The 15 miRNAs

commonly dysregulated across the three tissues classes presented in

the center of the Venn diagram (Fig. 1A) are the most dysregulated

of the entire panel with fold changes .3. Some were known to be

involved in cancer; others such as miR-26b, 548g, and 660 show

large fold changes but associations with TNBC and metastasis

were not previously known.

Using univariate and multivariate Cox analysis we investigated

the correlation of differentially expressed miRNAs in TNBC

samples with OS and DDFS, in a subset of cases (a somewhat

homogeneous cohort of patients aged 20–50 yrs) and observed 4

miRNA and 7 miRNA signatures prognostic for OS and DDFS,

respectively, with ‘protective’ miR-16, 374a and ‘risk-associated’

125b included in both signatures. In invasive breast cancers,

association between down-regulation of miR-125b and poor

survival has been reported [31], and miR-125b over-expression

can confer resistance of breast cancer cells to paclitaxel [32]. From

analysis of the mRNA profile, we also predict that the important

tumor suppressor CDKN2A is a target of miR-125b and miR-374a

has been related to survival in lung cancer [33]; in Table S4 we

report several anti-correlated, predicted targets that could explain

its ‘protective’ action: ATM, GADD45A, CCND1 have key DNA

damage response roles; Ets2, Met, Fos are fundamental proteins in

cancer signaling so their down-regulation by over-expression of

miR-374a is supportive of its ‘protective’ capacity. miR-16 can act

as a tumor suppressor through pathways involving BCL2 and

CCND1, validated targets (here also anti-correlated). Other

potential targets of this miR are MYB, JUN, CCND2, WEE1, all

anti-correlated in our profile, and their down-regulation would be

consistent with the better survival for patients over-expressing

miR-16. The last miRNA predicting OS is miR-155 defined as

‘protective’. So far nothing has been reported concerning a

protective role for miR-155; its up-regulation has been reported in

several types of solid tumor, correlating with poor prognosis and

promoting cancer growth and cell survival [34,35,36]. However, it

has been reported that the location of tumor cells over-expressing

miR-155 is a critical factor: in mammary fat pads miR-155

prevents tumor dissemination, reduces aggressiveness by prevent-

ing epithelial-to-mesenchymal transition (EMT), suppressing the

expression of the transcription factor TCF4. McInnes et al. [37]

recently described a forward loop that shows how miR-155 may

target the SATB1 oncogene. SATB1 is not only a direct target of

FOXP3 repression, but FOXP3 also induces miR-155 over-

expression, which specifically targets the 39-UTR of SATB1 to

further down-regulate its expression. Clearly mechanistic biolog-

ical studies are needed to confirm expression of this miRNA as

protective in TNBCs.

Seven miRNAs were prognostic for DDFS. miR-497, a down-

regulated member of the miR-16 family, has a ‘protective’

function. It was reported to be down-regulated in breast cancer,

partially due to DNA methylation [38], is known to directly target

BCL2 and modulate drug resistance. As for the ‘risk-associated’

miR-655, little has been reported other than that its down-

regulation is strictly anti-correlated with expression of its predicted

target CDKN2A. miR-374b, defined as ‘protective,’ and miR-421

‘risk-associated’, form an ‘‘miRNA cluster’’ (miR-374b/421).

Contrasting findings have been observed in different cancer

models. miR-374b can suppress MYC expression by targeting its

39-UTR, miR-421 can suppress ATM expression [39] but this is

the first report associating this cluster with survival. Identification

of outcome-associated miRNA signatures suggests that patients

with TNBCs with the high-risk miRNA signature might benefit

from aggressive adjuvant therapy.

Figure 3. Comparison of mRNA expression profiles of normal vs tumor RNAs. The heat maps represent hierarchical clustering of
differentially expressed genes in normal and tumor-derived RNAs. mRNA profiles are clustered in 4 different subgroups (orange, blue, yellow, pink)
defined by the mRNA expression patterns. Overlapping Gene Ontology terms for top canonical pathways represented by the differentially expressed
genes in each subgroup, as determined by IPA-ingenuity software, are shown on the right for each of the normal/tumor comparison-defined
subgroups.
doi:10.1371/journal.pone.0055910.g003
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The Cancer-focused mRNA profile
The small amount of RNA available necessitated assessment of

mRNA expression of a limited set of genes represented by the

nanoString Cancer Reference panel, a limitation in this molecular

profiling study. Nevertheless, we observed dysregulated expression

profiles among these 230 mRNAs in TNBC. The 124 mRNAs

that were significantly deregulated clustered into 4 color-coded

molecular subgroups representing the most specifically perturbed

pathways in TNBC.

Gene expression clusters and IPA Ingenuity analysis gave an

overview of critical pathways involved in this TN cohort. As

expected in a tumor cohort (orange subgroup), processes such as

cell cycle, DNA damage check point, anti-apoptosis, ECM

degradation, cell growth and proliferation are turned on; more

surprising was the down-regulation of known cancer-associated

pathways detected in the other three subgroups. The oncogenes

MET, MYC, BCL2 (yellow and blue subgroups) were down-

regulated in normal vs tumor. We observed that the miRNAs

directly targeting these oncogenes were over-expressed in those

TNBC subgroups: miR-340 (logFC 1.82) targets MET; miR-21

(logFC 2.29) and miR-98 (logFC 0.63) targets MYC; miR-15a

(logFC 2.24), miR-15b (logFC 1.07), miR-16 (logFC 5.35),

miR181a (logFC 1.58), miR-21 are all up-regulated and target

BCL2. Contributing explanations for these surprising findings may

be the dysregulated expression of several transcription factors,

negative regulators of the oncogenes. WT1 down-regulation

directly down-modulates MYC and BCL2 expression; similarly,

Table 1. Correlation of miRNAs and inversely expressed
genes.

miRNA
Expression

Gene
Expression microRNA:mRNA

miRNA logFC
Gene
Symbol logFC

Expression
Correlation

hsa-miR-16 5.73 CCND1 20.48 20.13

MYB 21.54 20.14

FGFR2 21.31 20.16

FGF2 22.27 20.34

NTRK2 23.38 20.35

CDK6 20.70 20.32

FLT3 21.31 20.25

RET 21.47 20.39

WEE1 21.53 20.47

WT1 20.95 20.38

BCL2 21.88 20.36

EGFR 21.99 20.37

CCND2 22.00 20.31

PIM1 21.34 20.31

ETV1 21.75 20.48

KDR 21.66 20.37

TGFBR3 23.63 20.41

JUN 22.09 20.37

FGFR1 22.34 20.43

IGF1 23.34 20.45

hsa-miR-125 22.03 CDKN2A 0.75 20.18

hsa-miR-374a 2.83 CCND1 20.48 20.15

AKT1 21.28 20.36

ATM 21.17 20.36

BCL2 21.88 20.22

CDK6 20.70 20.27

FGFR2 21.31 20.10

IL1A 21.43 20.34

NTRK2 23.38 20.21

TGFA 20.85 20.21

ETS2 21.95 20.27

FAS 21.27 20.26

FOS 23.22 20.24

GAS1 22.07 20.18

MAP3K8 21.45 20.21

IGFBP3 21.08 20.15

MET 21.54 20.14

hsa-miR-374b 1.92 CCND1 20.48 20.16

AKT1 21.28 20.43

ATM 21.17 20.37

BCL2 21.88 20.30

CDK6 20.70 20.27

FGFR2 21.31 20.16

IL1A 21.43 20.35

NTRK2 23.38 20.32

TGFA 20.85 20.21

Table 1. Cont.

miRNA
Expression

Gene
Expression microRNA:mRNA

miRNA logFC
Gene
Symbol logFC

Expression
Correlation

ETS2 21.95 20.42

FAS 21.27 20.36

FOS 23.22 20.40

GAS1 22.07 20.32

MAP3K8 21.45 20.29

IGFBP3 21.08 20.31

MET 21.54 20.25

hsa-miR-421 3.36 ATM 21.17 20.14

CASP10 21.34 20.26

CDK6 20.70 20.21

TP53 20.79 20.23

ETS1 20.99 20.25

FOSL2 21.20 20.27

IGF1 23.34 20.45

LCK 20.49 20.16

PDGFRA 22.41 20.48

PDGFRB 22.12 20.45

SERPINE1 21.14 20.24

TIMP2 21.83 20.40

hsa-miR-655 21.56 CDKN2A 0.75 20.07

The degree of anti-correlation among the mRNA–miR pairs is calculated by
Pearson correlation. The predicted targeted-anti-correlated genes are shown.
doi:10.1371/journal.pone.0055910.t001
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Rb-1 regulates MYC, Ets1 down-regulates MET and CEBPA

[40].

Analysis of the mRNA-defined molecular subgroups, together

with the OS and DDFS prognostic miRNAs, exploiting the

Pearson correlation coefficient, allowed definition of correlations

of most of the prognostic miRNAs (excepting miR-155 and 497)

with their predicted gene targets lending strong support to the

results. Though these miRNAs are reportedly involved in breast

cancer, none has previously been associated with OS or DDFS.

Only two, miR-125b and -16, have been shown to contribute to

drug resistance in breast cancer; further investigation of the

signature miRNAs is ongoing.

In comparisons of mRNA expression patterns in the three tissue

classes, the metastatic tissue group gave interesting results. Up-

regulation of STAT1 in mets agrees with findings of several

previous studies: its over-expression can confer a more malignant

and therapy-resistant phenotype; STAT1 over-expressing TNBCs

are more aggressive; increased STAT1 protein abundance might

also enhance the invasiveness of breast cancer cells [41]. Also

CCND1 expression, reportedly down-regulated in breast cancer,

was confirmed in our profile, through the down-regulation of

MYC, reported to be coupled with CCND1 expression [42].

Interestingly, our novel findings concerning expression levels of

CXCL9, IL8, MMP1, MMP3 and COL1A1 (Fig. 4B) are the

converse of previously reported results: CXCL9 protein can

modulate host cell infiltration and tumor behavior. The up-

regulation of CXCL9 and down-regulation of IL8 observed in our

study are indirectly confirmed in our profile by considering

expression levels of their upstream regulators. Expression of

CXCL9 and IL8 are regulated by Cyclooxygenase-2 (COX-2)

protein, which is expressed at extremely low levels in this set of

mets (data not shown). COX-2 inhibition increases release of

CXCL9 and CXCL10 proteins from breast cancer cells [43] and

induces IL-8 down-regulation. MMP1 and MMP3 genes are

usually found to be up-regulated in mets. Here these genes are

down-regulated, with the same trend observed for the MMP

upstream regulators. Down-regulation of the transcription factor

Ets-1 directly down-regulates expression of MMP1, with ETS1

expression usually up-regulated together with MMP1 and MMP9;

WT1 expression, an ETS1 regulator, is down in our normal vs mets

comparison as is ETS1 (data not shown). Increased expression of

MYB found in the tumor vs mets comparison (logFC 1.2) may also

contribute to MMP1 down-regulation; Myb protein is known to

up-regulate cathepsin D and MMP9 and down-regulate MMP1

[44]. Collagen 1A1 (COL1A1) protein, the major component of

Extracellular Matrix (ECM), is included in the gene signature of

breast metastasis [45] and is usually up-regulated in mets. In our

mets profile COL1A1 is down-regulated together with S100A4 and

MYB, two of its regulators. Altogether these findings, up-regulation

of CXCL9 and down-regulation of IL8, MMPs and COL1A1 in the

mets cohort, suggest that over-expression of these proteins, while

needed for ‘‘extra-vasation’’ and perhaps for ‘‘nesting’’ of the

cancer cells after intravasation, may be down-regulated after the

tumor has become established in another site, in favor of genes

and gene products promoting tumor proliferation.

In conclusion, in TNBC, integrated miRNA-mRNA profiling

can distinguish the different breast tissue ‘‘stages’’: tumor adjacent,

tumor and lymph node metastasis. miRNA signatures can be

prognostic markers for OS and DDFS, suggesting that therapies

tailored to these markers may contribute to improved survival.

mRNA profiling also emphasized the heterogeneity of TNBC,

as exemplified by the varying signal pathways driving tumors and

metastasis of the mRNA-defined subgroups.

Figure 4. Venn diagram and associated table describing mRNA expression profile patterns in the three classes. Venn diagram (A)
representing differentially expressed mRNAs observed in the comparison among the three classes (normal, primary tumor, metastatic lesion) for
patients of 50 yrs and younger, up or down facing arrow indicate the expression level change. Tables show: the 7 mRNAs identified by the
comparison between Normal vs Tumor (B); 1 mRNA differentially expressed only in Tumor vs Mets (C); 4 mRNAs differentially expressed in Normal vs
Mets (D); 2 mRNAs commonly deregulated in the comparisons Tumor vs Mets and Normal vs Mets (E).
doi:10.1371/journal.pone.0055910.g004
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Materials and Methods

The TNBC tissues
An IRB-approved OSU protocol for this research linked clinical

features, treatment and outcome data of breast cancer patients in

the OSU National Comprehensive Cancer Network breast cancer

database/tumor registry with archrival breast cancer pathology

specimens stored in the OSU Tissue Archive Service using the

Information Warehouse at OSUMC to serve as ‘‘honest broker’’

and provided de-identified clinic-pathological information. From

1995–2005, a cohort of 365 consecutive triple negative localized

breast cancer patients were identified. After pathology review for

tumors with sufficient sample for study, the only selection criterion,

173 paraffin blocks for TNBCs were identified for preparation of a

tissue microarray and cores for RNA preparation, with the

characteristics shown in the demographics summary in Table 2.

For 50 of the primary tumors there were also fixed matched lymph

node metastatic lesions and for another 4 patients there were only

lymph node lesions.

RNA preparation
RNA was isolated from formalin-fixed paraffin-embedded tissue

of 165 tumor, 59 tumor-associated, adjacent normal and 54

associated lymph node mets tissues, using the Recover ALL kit

(Ambion). Due to small amounts of RNA available from the 251

formalin-fixed paraffin-embedded cores, we have used the nano-

String nCounter human miRNA expression profiling v1 panel and

mRNA cancer panel, which allows profiling from 100 ng of RNA

per sample [46]. Data were processed using several normalization

strategies, including quantile normalization and normalization to a

set of invariant miRNAs [47].

nanoString nCounter profile analysis
RNAs were processed with the nanoString nCounter system

(nanoString, Seattle, Washington, USA) in the Nucleic Acid

Shared Resource of The Ohio State University. The miRNA

panel detects 664 endogenous miRNAs (with 654 probes), 82

putative viral miRNAs, and five housekeeping transcripts.

For analysis of mRNA expression, the nanoString GX Human

mRNA Cancer Reference panel, that includes tags specific for 230

cancer-related mRNAs (http://www.nanostring.com/products/

gene_expression_panels.php), was used.

GO analysis of miRNA targets
The ‘Core Analysis’ function included in the Ingenuity

Pathways Analysis (IPA) software (http://www.ingenuity.com/)

Table 2. Demographic features of 173 TNBC cases.

Characteristic All (173) .50 yr (87) ,50 yr (86)

Race Caucasian 153 82 71

African American 16 4 12

Other 4 1 3

Menopause status Pre-menopausal 64 3 61

Post-menopausal 103 81 22

Unknown 6 3 3

Grade I 2 0 2

II 15 10 5

III 148 76 72

IV 2 0 2

Unknown 6 1 5

Basal Yes 78 42 36

No 95 45 50

Lymph node metastases Positive 102 72 30

Negative 62 12 50

Unknown 9 3 6

Age at diagnosis , = 40 34

41–50 52

. = 51 87

Death Yes 59 30 29

No 114 57 57

*Recurrence No 126 67 59

Yes 47 20 27

*Type of 1st recurrence In situ 1 0 1

Local/Regional 3 1 2

Distant 35 15 20

Type unknown 8 4 4

*Does not include the cases that were never disease-free, those unknown if ever disease-free and those with missing recurrence information. The demographic features
of the original 365 TNBCs were nearly identical to those shown above for the 173 TNBCs analyzed.
doi:10.1371/journal.pone.0055910.t002
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was used to interpret data in the context of biological processes,

pathways and networks. After analysis, generated networks are

ordered by scores defining significance. Significance of biofunc-

tions and canonical pathways were tested by the Fisher Exact test.

TargetScan (http://www.targetscan.org) was used to identify

possible interactions between the deregulated miRNAs and

mRNA.

Data analysis, statistical methods, and figures
Raw expression data were log-transformed and normalized by

the quantile method after application of a manufacturer-supplied

correction factor for several miRNAs. Data were filtered to

exclude relatively invariant features (IQR = 0.5) and features

below the detection threshold (defined for each sample by a cutoff

corresponding to twice standard deviation of negative control

probes plus the means) in at least half of the samples. Using R/

Bioconductor and the filtered dataset, linear models for micro-

array data analysis were employed with a contrast matrix for the

following comparisons: normal vs tumor, normal vs mets, tumor vs

mets. P values were used to rank miRNAs of interest, and

correction for multiple comparisons was done by the Benjamini-

Hocheberg method. Correlations were determined using the

Pearson correlation coefficient (r). The mean time to first relapse

was compared between groups using the rank sum test. Analysis of

OS and DDFS, was performed by the Kaplan-Meier method, and

comparisons of outcomes among subgroups were performed by

using the long-rank test. Two-tailed tests were used for univariate

comparisons. For univariate and multivariate analysis of prognos-

tic factors (using tumor grade and age as covariates), a Cox

proportional hazard regression model was used. Data processing

and analysis were conducted using BRB-ArrayTools [48], the

MultiExperiment Viewer [49], and R/BioConductor packages

[50].

To investigate the differences among the gene expression

profiles detected by the nanoString GX Human mRNA Cancer

Reference Kit, we performed hierarchical clustering using the 124

dysregulated genes (P-value,0.05) in the entire Normal versus

Tumor samples dataset. Two-dimensional average-linkage hierar-

chical clustering of a Spearman rank correlation similarity matrix

of the primary tumors and normal samples was performed. All

gene expression analyses were performed using R software (version

2.13.0). As expected, we identified two distinct patient clusters

(Normal and Tumor samples) and four distinct gene clusters

designated by different colors (Figure 3). In order to identify these

clusters, we set a correlation threshold value between 21 and 1

where any genes paired with correlations greater than that

threshold can be considered a cluster, and any genes or clusters

with correlations less than that threshold are not. This method is

known as ‘‘cutting the tree’’. Functional classification of each gene

cluster was identified by the IPA software (version 8.8). Gene

symbols were used as input for the search of biological functions

and molecular networks associated with the members of the

cluster. Figures and tables were prepared using, Adobe Photoshop

and Illustrator.

All fold-changes associated with these analyses are represented

in log2 scale (logFC) and we show only data with a P-value of

,0.05, considered to indicate statistical significance.

The miRNA and mRNA expression data have been submitted

to the Gene Expression Omnibus (GEO) with accession number

GSE 41970.

Validations
To validate the study findings, three approaches were used: first

we validated the deregulated miRNAs ‘‘in silico’’ using the database

published by Farazi et al 2011 [GEO: GSE28884]. From the

analysis of this database, based on an Illumina Genome Analyzer

IIx deep sequencing platform, we were able to confirm the

expression pattern of the 69% of our miRNAs cohort represented

among the sequences. Furthermore, we have begun a study of a

second TNBC RNA cohort, from 48 FFPE tissues. This second

cohort was also profiled by the nanoString nCounter method and

the miRNA profiles were analyzed following the criteria for the

previous cohort and confirmed the deregulation of 79% of the

miRNAs observed to be dysregulated in the current study

(unpublished data).

Lastly, in a subset of samples (randomly chosen based on

availability of RNAs) we were able to validate the expression levels

of a subset of miRNAs (7 differentially expressed miRNAs

reported in Fig. 1 plus 2 miRNAs used as normalizers) by

TaqManH qRT-PCR assay. Box plots representing this qRT-PCR

based validation are shown in Figure S5. Absence of undetermined

values in the Real-Time raw data (not shown) also indicates low

levels of RNA degradation in this subset of samples.

qRT-PCR
cDNA was reverse transcribed from 10 ng of total RNA of each

sample using specific miRNA primers from the TaqManH
MicroRNA Assays and reagents from the TaqManH MicroRNA

reverse Transcription Kit, Life Technologies (Grand Island, NY).

Subsequently, in the PCR step, PCR products are amplified from

cDNA samples using the TaqManH MicroRNA Assays together

with the TaqManH Universal PCR Master Mix. All the assays

were performed in triplicate according to the manufacturer’s

instructions.

Supporting Information

Figure S1 Hierarchical clustering of miRNA expression patterns

of tumor and normal samples. Heat map representing miRNA

profiles of 165 tumor and 59 normal samples using average linkage

clustering and Spearman Rank method as distance metrics. Bar

above the dendrogram identifies the samples, normal shown in

light blue and tumors in yellow. Samples are shown in columns,

miRNAs in rows. Heat map from blue to red represent relative

miRNA expression as indicated in the key bar at the top.

(PDF)

Figure S2 Clustering of miRNA expression patterns of paired

tumor and normal samples. Heat map representing miRNA

profiles of 55 tumor and 55 paired normal samples using average

linkage clustering and Spearman Rank method as distance

metrics. A bar above the dendrogram identifies the samples,

tumors shown in yellow and normal light blue. Samples are shown

in columns, miRNAs in rows.

(PDF)

Figure S3 Clustering of miRNA expression patterns of normal

and metastatic RNAs. Heat map representing miRNA profiles of

54 metastatic and 59 normal samples using average linkage

clustering and Spearman Rank method as distance metrics.

Samples are shown in columns, miRNAs in rows. A bar above the

dendrogram identifies the samples, metastases in purple and

normal in light blue.

(PDF)

Figure S4 Comparison of mRNA expression profiles of normal

vs metastasis-derived RNAs. The heat map representing expres-

sion patterns of 120 mRNAs in 40 normal and 50 metastasis-

derived RNAs, using average linkage clustering and Spearman

Rank methods as distance metrics. A bar above the dendrogram
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identifies the samples, Metastatic RNAs shown in purple and

normal in light blue.

(PDF)

Figure S5 qRT-PCR validation. Box plots represent expression

of 7 deregulated miRNAs in a representative subset of samples of

the three tissue groups, assayed by TaqManH qRT-PCR. Results

are represented as 2‘2DCt relative expression to RNU6B. Error

bars 6 s.d., *P,0.05, by two-tailed Student’s t test.

(PDF)

Table S1 20 deregulated miRNAs in matched Normal vs Tumor

samples (A) and unmatched (B).

(XLSX)

Table S2 103 deregulated miRNAs in the comparison Normal

vs Mets in the entire cohort.

(XLSX)

Table S3 15 miRNAs differentially expressed across the three

tissue group comparisons.

(XLSX)

Table S4 Dysregulated mRNAs in Normal vs Tumor compar-

ison in the entire cohort.

(XLSX)
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33. Võsa U, Vooder T, Kolde R, Fischer K, Välk K, et al. (2011) Identification of

miR-374a as a prognostic marker for survival in patients with early-stage
nonsmall cell lung cancer. Genes Chromosomes Cancer 50: 812–822.

34. Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, et al. (2005) MicroRNA

gene expression deregulation in human breast cancer. Cancer Res 65: 7065–

7070.

35. Blenkiron C, Goldstein LD, Thorne NP, Spiteri I, Chin SF, et al. (2007)
MicroRNA expression profiling of human breast cancer identifies new markers

of tumor subtype. Genome Biol 8: R214.

36. Kong W, He L, Coppola M, Guo J, Esposito NN, et al. (2010) MicroRNA-155

regulates cell survival, growth, and chemosensitivity by targeting FOXO3a in
breast cancer. J Biol Chem 285: 17869–17879.

37. McInnes N, Sadlon TJ, Brown CY, Pederson S, Beyer M, et al. (2012) FOXP3
and FOXP3-regulated microRNAs suppress SATB1 in breast cancer cells.

Oncogene 31: 1045–1054.

38. Li D, Zhao Y, Liu C, Chen X, Qi Y, Jiang Y, et al. (2011) Analysis of MiR-195

and MiR-497 expression, regulation and role in breast cancer. Clin Cancer Res
17: 1722–1730.

39. Hu H, Du L, Nagabayashi G, Seeger RC, Gatti RA (2010) ATM is down-
regulated by N-Myc-regulated microRNA-421. Proc Natl Acad Sci USA 107:

1506–1511.

40. Paz-Priel I, Cai DH, Wang D, Kowalski J, Blackford A, et al. (2005) CCAAT/

enhancer binding protein alpha (C/EBPalpha) and C/EBPalpha myeloid

miRs Profile in Triple Negative Breast Cancer

PLOS ONE | www.plosone.org 12 February 2013 | Volume 8 | Issue 2 | e55910



oncoproteins induce bcl-2 via interaction of their basic regions with nuclear

factor-kappaB p50. Mol Cancer Res 3: 585–596.
41. Greenwood C, Metodieva G, Al-Janabi K, Lausen B, Alldridge L, et al. (2011)

Stat1 and CD74 overexpression is co-dependent and linked to increased invasion

and lymph node metastasis in triple-negative breast cancer. J Proteomics 75:
3031–3040.

42. Nass SJ, Dickson RB (1997) Defining a role for c-Myc in breast tumorigenesis.
Breast Cancer Res Treat 44: 1–22.

43. Snoussi K, Mahfoudh W, Bouaouina N, Fekih M, Khairi H, et al. (2010)

Combined effects of IL-8 and CXCR2 gene polymorphisms on breast cancer
susceptibility and aggressiveness. BMC Cancer 10: 283.
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