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Abstract

Introduction: Providing private antiretroviral therapy (ART) care for public sector patients could increase access to ART in
low- and middle-income countries. We compared the costs and outcomes of a private-care and a public-care ART program
in South Africa.

Methods: A novel Markov model was developed from the public-care program. Patients were first tunneled for 6 months in
their baseline CD4 category before being distributed into a dynamic CD4 and viral load model. Patients were allowed to
return to ART care from loss to follow up (LTFU). We then populated this modeling framework with estimates derived from
the private-care program to externally validate the model.

Results: Baseline characteristics were similar in the two programs. Clinic visit utilization was higher and death rates were
lower in the first few years on ART in the public-care program. After 10 years on ART we estimated the following outcomes
in the public-care and private-care programs respectively: viral load ,1000 copies/ml 89% and 84%, CD4 .500 cells/ml 33%
and 37%, LTFU 14% and 14%, and death 27% and 32%. Lifetime undiscounted survival estimates were 14.1 (95%CI 13.2–
14.9) and (95%CI 12.7–14.5) years with costs of 18,734 (95%CI 12,588–14,022) and 13,062 (95%CI 12,077–14,047) USD in the
private-care and public-care programs respectively. When clinic visit utilization in the public-care program was reduced by
two thirds after the initial 6 months on ART, which is similar to their current practice, the costs were comparable between
the programs.

Conclusions: Using a novel Markov model, we determined that the private-care program had similar outcomes but lower
costs than the public-care program, largely due to lower visit frequencies. These findings have important implications for
increasing and sustaining coverage of patients in need of ART care in resource-limited settings.
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Introduction

Expanding capacity to deal with the HIV epidemic is a

formidable task in low- and middle-income countries given the

scale of the epidemic and the limited public health infrastructure.

While much has been achieved to make antiretroviral therapy

(ART) affordable, access to care is still inadequate. According to

the latest UNAIDS report, only 46% of those who were in need

had started ART by the end of 2010 in low- to middle-income

countries [1].

One way to expand access to ART and improve retention

within ART care for public sector patients is to utilize the private

sector. In many low- and middle-income countries a high

proportion of doctors work in the private sector [2]. Contracting

private doctors to initiate ART and follow up public sector

patients in their private rooms according to the public sector

guidelines has been successfully implemented in Botswana [2] and

other developing country settings [3]. However, there are concerns

about the ability and willingness of individual private doctors to

implement the public health approach to ART management, and

about high costs in the for-profit private sector. To date there have

been no published comparisons of clinical and economic outcomes

of the provision of ART care to public patients between the private

sector and public sector.

In addition to the debates about public versus private ART

care, there are also questions about how frequently patients should

be followed up, and by whom. In the earlier years of ART

provision, patients were required to attend facilities for regular

consultations with doctors or nurses [4]. More recently, however,

there has been a move towards less frequent follow-up, and

towards task shifting from doctors to nurses, and from nurses to

counselors [5]. It is however unclear whether this changing
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intensity in follow-up will impact negatively on patient adherence

and outcomes.

We assessed the costs and outcomes of providing ART care for

public patients in the private versus public sector in two South

African ART programs where no co-payment from patients was

required: a grant-funded program providing care for public

patients in private practices and a public-sector program providing

care for public patients in public sector community clinics. We

utilized a newly developed Markov-model, which addresses many

of the limitations of existing models [6].

Methods

Study design
We assessed the costs and outcomes of ART provision in the

private-care and public-care models to provide care to public

sector dependent patients. We took the provider’s perspective and

only included ART-related costs: antiretroviral drugs, CD4+ cell

count (CD4) and viral load (VL) monitoring, toxicity laboratory

monitoring, and public clinic or private general practitioner (GP)

visits. We used Markov modeling to extrapolate primary data in

order to estimate results over 10 years and lifetime for costs, rates

of loss to follow-up and life years. Zero and three percent annual

discount rates were used. The model was developed using data

from the public-care cohort, and validated externally using data

from the private-care cohort. Uncertainty was assessed using

multi-way and probabilistic sensitivity analyses.

Study setting
ART care for patients in both programs followed the 2003

South African national guidelines, which were based on the 2003

World Health Organization guidelines for resource-limited settings

[7]. Patients were eligible for ART when they met the following

criteria: either a CD4 below 200 cells/mL or a WHO stage 4 illness

(other than extra-pulmonary tuberculosis) irrespective of the CD4

count. The first line ART regimen consisted of two nucleoside

reverse transcriptase inhibitors (NRTI), zidovudine (ZDV) or

stavudine (D4T) with lamivudine (3TC), with a non-nucleoside

reverse transcriptase inhibitor (NNRTI), nevirapine (NVP) or

efavirenz (EFV). Viral load and CD4 counts were monitored

6 monthly. Patients with confirmed virologic failure (two consec-

utive viral loads . = 5000 copies/ml) in spite of enhanced

adherence promotion, were switched to a second line regimen of

two NRTIs, ZDV and didanosine (DDI), in combination with a

boosted protease inhibitor, lopinavir/ritonavir (LPV/r). Safety

monitoring was limited to serum alanine aminotransferase (ALT),

complete blood count, and lipogram for patients on NVP, ZDV,

and LPV/r respectively.

Cohort Description
The public-care cohort was the Khayelitsha HIV treatment

program, which is a public sector program operating in an urban

area in Cape Town, South Africa. The program is jointly funded

by the state and a donor, Medecins Sans Frontieres. ART care was

provided at three primary care clinics. ART was initiated by

doctors but routine follow up was largely done by nurses. The

clinics operated on a queue system and therefore patients would

spend between 1–4 hours at the clinic. Counselors and peer-

educators played an important role in educating and encouraging

patients while they waited to see clinical staff. Most patients

returned to the clinic every month to collect medicines, attend

group or individual counseling sessions, and/or for clinical

assessments. We included data from the inception of the program

on 15 January 2000 until 25 Jan 2008.

The private-care cohort was the BroadReach Healthcare

program, a donor-funded (President’s Emergency Plan for AIDS

Relief (PEPFAR)) managed-care ART program. Patients were

recruited into the program at several urban and rural public sector

clinics in the Mpumulanga, Eastern Cape and Kwazulu-Natal

provinces in South Africa. ART care was provided by local

contracted general practitioners (GPs) in their private practices on

an appointment basis and visit frequency was pre-specified. The

private doctors had to successfully complete internet-based

training on the national ART guidelines before they could enroll

patients. Telephonic counseling support for the patients and

clinical guidance for the doctors was provided by Aid for AIDS, a

private sector disease management program. Patients collected

their medication from the doctors’ rooms monthly, but clinical

consultations were performed less frequently. We included data

from the inception of the program on 1 May 2005 until 31 July

2010. New patient enrollment was stopped in March 2008.

In both cohorts severely ill or complicated patients were referred

to secondary level public sector hospitals for further management

and then re-integrated back into the program once their condition

had stabilized. Data were entered prospectively into databases.

Deaths were ascertained by several mechanisms: (1) clinic staff or

private practice practitioners who learnt of a death from family

members or friends, would either complete a specific form and fax

it to a central office or capture it on a computer-based system

onsite; (2) staff and program administrators identified patients who

had missed several appointments and contacted a family member

or treatment supporter of the patient to determine whether the

patient was deceased and if so the date of death; and (3) the

patient’s South African identity number, where available, was used

to cross-reference the South African national death register to

establish whether a death was recorded.

We included adult patients (19 years and older) who started first

line ART within the programs and had a baseline CD4 count

below 200 cells/mL. The study intervals differed somewhat for

each cohort, although the median year of starting ART was 2005

in both cohorts. A patient’s follow-up period was truncated on the

date they either: transferred out of the program, died, on the study

end date, or on the last date seen if they were not seen within six

months of the end of the study period and their identity number

was not available (and we were therefore unable to ascertain

whether they had died).

Healthcare utilisation and cost data
GP or clinic utilisation was determined from the electronic

database records for both cohorts. The cost in South Africa Rands

(ZAR) for a public-sector clinic visit was determined from a

previously published estimate [4]. In that study, the unit clinic visit

costs included time allocations for nurses, doctors, and counselors,

and this has changed in more recent times due to increased task

shifting. Together with improved economies of scale and learning

by doing, cost would have fallen substantially had it not been for

substantial increases in doctor’s salaries over the same period. We

therefore decided to only use the consumer price index table [8] to

inflate costs to April 2010 levels. Private GP visit costs were

determined from contracted rates in April 2010.

Drug utilisation was divided into first line (2NRTIs and

NNRTI) and second line (2NRTIs and PI) therapy, and the

average utilisation of each drug was determined within each line of

therapy. Because estimates of ARV drug utilization were not

available within our dataset, we conservatively assumed that all

patients had received their ARVs each month and therefore

allocated full monthly ARV drug costs within the ART model.

A Model Comparing Private and Public ART Programs
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ARV drug costs were set at the public sector tender prices for April

2010.

There was some under-reporting of CD4 and VL monitoring,

and ARV laboratory toxicity monitoring was not recorded in both

programs. We conservatively assumed all patients underwent

laboratory monitoring as per the South African public-sector

guidelines. The guidelines recommended six monthly CD4 and

VL monitoring. Laboratory toxicity monitoring, which occurred

predominant in the first six months on ART, was limited to ZDV,

NVP, and LPV/r. We scaled the specific toxicity monitoring

utilisation associated with a specific ARV drug in accordance with

its relative proportion within the two regimen lines. All laboratory

costs were set at the public sector tender prices for April 2010. All

costs were converted from ZAR to United States Dollars (USD) in

April 2010 (7.34 ZAR per USD).

The Markov model framework, development and
uncertainty analysis

WHO stage, current CD4, and current VL were identified as

key determinants of lifetime costs and outcomes [9]. Many patients

categorized as ‘‘LTFU’’ in studies return to ART care and

therefore are not truly LTFU [10]. This is important as: (a) ART-

related resources are not consumed while a patient is LTFU, (b)

the CD4 count falls rapidly to pre-ART levels in patients who

interrupt ART [11], (c) additional resources are consumed in

patients restarting ART [9], (d) treatment interruptions increase

resistance to first line regimens [9][9][9][9][9](9)(9)(8), and (e)

treatment interruptions increase deaths [9] and attenuate CD4

recovery [12].

We based the structure of the Markov model on these

determinants of costs and outcomes as well as on our own analysis

of the public-care program – the larger of the two cohorts. We

implemented this Markov model in Treeage 2009 [13] and

populated it with parameter estimates derived in Stata 11 [14]

using survival models for time-to-event analyses and generalized

linear models for clinic/GP utilisation. We evaluated the model fit

and adjusted the model design where appropriate. Then, using the

data from the private-care program, we derived new parameter

estimates and evaluated the ability of the model to predict

outcomes and costs. This procedure allowed us to assess the

external validity of the model [4,15]. The model was run for two

durations: 10 years and until all members of each cohort were

dead (i.e. lifetime duration). Finally, we conducted probabilistic

sensitivity analysis to assess uncertainty. This entailed specifying

distributions on utilization and outcome parameters, where

possible and propagating uncertainty through the model by way

of first and second order Monte Carlo simulations. The models

were run using a 1 month cycle length [16,17].

The Markov Model
The overall Markov model was divided into two parts: an ART

model and a LTFU model (see figure 1). All patients started in the

ART model, and remained there until they either died or became

LTFU. Healthcare utilisation and mortality has been shown to be

significantly higher in the first 6 months on ART [4,6]. Therefore

the ART model was divided into two phases: 0–6 months on

starting or restarting ART and .6 months on ART. We defined

LTFU as defaulting ART for more than 6 months. Patients

entering the LTFU model remained there until they either died or

restarted ART. We used parametric survival analysis with an

exponential distribution to determine the transition probabilities to

outcomes (death, LTFU, CD4 category change, and VL category

change), and generalized regression models to determine utilisa-

tion (GP and clinic visits) within the Markov states. Covariates

included time on ART, on-ART CD4 category, on-ART VL

category, and year of starting ART (normalizing findings to 2005).

We assumed that non-HIV related deaths of a typical individual

(34 years) were included in the recorded deaths. We modeled the

increasing relative contribution of non-HIV related deaths over

time using the mortality curves for South Africa (less the typical

mortality for a 34 year old adult) before the onset of South Africa’s

HIV epidemic (prior to 1990).

In the first 6 months after starting or restarting ART, patients

were split according to their pre-ART CD4 count category (0–49

or 50–199 cells/mL), and remained within this CD4 category for

6 months. At the end of 6 months, the remaining patients (i.e. not

LTFU or dead) were distributed into the Markov states of the

.6 months on ART model using a competing risks regression

model with the pre-ART CD4 category as the only covariate. The

.6 months on ART phase was defined by fifteen Markov states.

These included: five on-ART CD4 categories (0–49, 5–199, 200–

349, 350–499, and $500 cells/mL) and three on-ART VL

categories (,1,000; 1,000–99,999; and $100,000 copies/mL).

Within each Markov cycle, we limited transitions between these

Markov states to either a CD4 or VL category change but not

both, as this reduced model complexity.

We distributed patients entering the LTFU model into the two

pre-ART CD4 categories (0–49 and 50–199 cells/mL) with the

relative proportions being derived from the observed data. Given

the limited LTFU data within our cohorts, we used the transition

probability from the higher to the lower pre-ART CD4 category

on a previously published natural history HIV model [4], and

adapted the transition probabilities from these CD4 categories to

death to match the observed trends in deaths within our cohorts.

We used a regression model to determine the transition probability

of restarting ART for patients LTFU, with time since first starting

ART as the covariate.

The transition probability from first line to second line ART

was determined separately within the two phases of the ART

model and the covariates for the regression model included pre-

ART CD4 category, on-ART VL category, on-ART CD4

category, and time since starting ART. Within the second line

ART model all transition probabilities were the same as the first

line ART model, but the ARV drug utilisation and therefore costs

differed. Patients within the LTFU model were assigned no ART-

related utilisation and therefore no costs.

Uncertainty analysis
We assessed the uncertainty in the data and model design using

probabilistic sensitivity analysis (first and second-order Monte

Carlo simulations). First-order simulations were used to capture

the variability in the simulated population and tracked the varying

paths taken by patients moving through the model in order.

Second-order simulations were used to capture the variability in

the parameter estimates by randomly sampling from the

triangular-shaped distribution for the parameter, which approx-

imated the 95% confidence interval. We ran 1,000 second-order

and 10,000 first-order simulations to determine the 95%

uncertainty intervals around the lifetime costs and outcomes. We

assessed uncertainty related to extrapolation of the data and the

generalizability of the model in three ways: (1) we externally

validated the model derived from public-care cohort using the

private-care cohort dataset, (2) we extrapolated our estimates over

10 year and life-time durations and compared the results, and (3)

we compared our outcomes and cost estimates with other

published studies. Finally, we assessed the uncertainty related to

analytical methods by comparing the findings with 0% and 3%

annual discounting of costs and outcomes.

A Model Comparing Private and Public ART Programs
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Scenario analysis
Clinic visit utilisation within the public-care program was

intensive due to a policy decision by the program managers that all

patients should be seen by a nurse or doctor every one to two

months. In more recent years, the clinic visit utilisation has been

substantially reduced to accommodate the growing number of

patients. We therefore explored the impact of reduced clinic visit

utilisation within the public-care program on the overall results.

Ethics statement
The study was approved by the Research Ethics Committee,

University of Cape Town. All patients signed consent for their

information to be entered into the central databases and analysed.

Anonymity was ensured using generated identifiers and all

personal data were deleted from the datasets.

Results

Cohorts
The characteristics and overall outcomes of the study cohorts

are described in Table 1. We included 6372 and 963 patients from

the public-care and private-care programs respectively. Median

follow-up time on ART was shorter in the public-care cohort. No

patients were transferred out to other facilities from the private-

care program. The model fit diagnostics for both the private-care

and public-care programs are shown in figures S1 and S2

respectively. These include current CD4, current VL, line of

therapy and status (current, LTFU or dead).

Health care utilization and unit costs in Markov states
Over the study period, 212,175 clinic visits in the public-care

cohort and 10,477 GP visits in the private-care cohort were

recorded. The contracted rate for a GP visit was 31.04 USD and

the estimated cost of 24.53 USD for a clinic visit was derived by

inflating the cost estimate from a previous publication [4]. The

average monthly GP/clinic utilisation (with 95% confidence

intervals) and the cost estimates are shown in table S1. Within

both cohorts, utilisation was highest in patients restarting ART

and, to a lesser extent, during the 0–6 months after starting ART,

compared with the .6 months on ART phase. In this latter phase,

monthly visit utilisation was lower in both cohorts. Importantly,

the public-care cohort had approximately 2 to 4 times higher visit

utilisation within the .6 months on ART phase compared with

the private-care cohort.

The South African public sector guidelines were used for

laboratory utilisation – the costs and utilisation are shown in

table S2. CD4 and VL were taken 6 monthly, whilst other

laboratory utilisation related to toxicity monitoring depended on

the specific antiretroviral drugs and was higher in the first

6 months on ART.

Figure 1. Markov model diagram.
doi:10.1371/journal.pone.0053570.g001
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The utilisation of individual drugs within the first and second

line ART regimens, the ART-related costs, and the hazard

coefficients and transition probabilities for the model describing

the transition between first and second line ART are shown in

table S3 and figure S3. We assumed 100% utilisation of both ARV

drugs and laboratory tests while within the ART model. The

public-care cohort had higher zidovudine but lower efavirenz

utilisation in the first line ART regimen. The public-care cohort

had higher didanosine utilisation in the second line ART regimen.

The transition probability of moving to second line ART was

lowest in the 0–6 months after starting ART and highest in the 0–

6 months after restarting ART. In the .6 month on ART phase,

the transition probability of moving to second line ART decreased

with lower VL and higher CD4 categories respectively, increased

with time on ART and plateaued at about 3 years. The transition

probabilities to second line ART were generally lower in the

private-care cohort. The estimated distribution of time between

first and second line ART was 61% and 39% in the public-care

cohort versus 66% and 34% in the private-care cohort.

Effectiveness
The transition probabilities for the CD4 and VL models on

ART are shown in table S4. The baseline CD4 category

distribution for patients starting ART was similar in both cohorts:

30% in the 0–49 cells/mL category and 70% in the 50–199 cells/

mL category. A lower baseline CD4 category was associated with a

lower CD4 category distribution after 6 months on ART, but

lower baseline CD4 category did not impact on the VL

distribution. Public-care patients were more likely than private-

care patients to have VL ,1000 copies/ml (92% versus 87%) and

CD4 counts $200 cells/mL (64% versus 42%) after the first

6 months on ART. This trend was similar for patients restarting

ART, but the outcomes were worse: 61% and 43% had VL,1000

copies/ml, and 49% and 63% had CD4 counts ,200 cells/mL for

patients in the public-care and private-care cohorts respectively.

The transition probabilities and hazard coefficients for deaths

on ART are shown in table 2. The transition probability to death

was highest in the first 3 months on ART and in patients with a

low pre-ART CD4 category. The transition probability to death

was lowest for the first 6 months after restarting ART. For patients

in the .6 months on ART phase, the transition probability to

death decreased with lower VL category, higher CD4 category,

and time on ART (using a Gompertz time function). The median

of the Gompertz time function was 20 months in both cohorts, but

the scaling constant was higher in the private-care cohort (1.19

versus 1.04). Thus there were more early deaths in the private-care

cohort.

The hazard coefficients and transition probabilities related to

the LTFU model are shown in table 3. The transition probability

from ART to LTFU was lowest in the first 6 months after starting

ART and highest in the first 6 months after restarting ART.

Thereafter, the transition probability from ART to LTFU

increased with higher VL category, lower CD4 category, and

time on ART. We modeled the effect of time on ART by adapting

the Gompertz function so that it plateaued. The median of the

adapted Gompertz function was longer (12 months versus 8) and

the scaling constant has higher (1.5 versus 0.5) in the public-care

compared with the private-care cohort. We distributed patients

entering the LTFU model as follows based on our analysis of the

data: 30% to the 0–49 cells/mL and 70% to the 50–199 cells/mL

CD4 categories. The transition probability from LTFU to

restarting ART was higher in the private-care cohort (26% versus

13%) and independent of LTFU CD4 category.

The highest death rates were observed within the first year on

ART for both cohorts, especially in the private-care cohort: 8%

and 15% had died by 12 months and 32% and 39% had died by

120 months in the public-care and private-care cohorts respec-

tively. The distribution of VL categories stabilized by 3 years to

90% and 85% of patients having a VL ,1000 copies/ml within

public and private-care cohorts respectively. The distribution of

CD4 categories was more dynamic over time and the private -care

cohort fared better with 50% versus 40% of patients having a CD4

$500 cells/mL by 10 years. The percentage of patients who were

alive and still on ART stabilized at approximately 80% for both

cohorts, although the private-care cohort achieved this earlier due

to generally higher transition probabilities to and from LTFU.

Ten-year and lifetime costs, outcomes, probabilistic
sensitivity and scenario analysis

We ran Monte Carlo simulations for 10 years and until

everyone had died to generate lifetime costs and outcomes

together with their 95% confidence intervals, as shown in table 4.

The conclusions we derived from the 10 year and lifetime

estimates (with and without discounting) were congruent: the

private-care program was approximately as effective, but was less

costly than the public-care program. These reduced costs were

predominantly driven by the lower level of utilisation in the

private-care program. Given that the outcomes between the two

programs were not significantly different, this finding suggests that

reduced visit utilization has the potential to be cost saving

(reducing costs without impacting on patient outcomes).

When we reduced the frequency of clinic visits in the

.6 months on ART phase by two-thirds in the public-care

program (in line with the changes introduced in late 2011 by the

Table 1. Cohort characteristics.

Characteristic Khayelitsha Broadreach

Numbers 6372 963

Age baseline (years)

Median 33 34,9

IQR (28,7 to 39,3) (30,4 to 41,9)

Sex (%)

Female 67,7 68,3

CD4 count (cells/ml) baseline

Median 99 92

IQR (44 to 161) (44 to 146)

Unknown 435 3

Viral load (log10) baseline

Median 5,1 5,1

IQR (4,6 to 5,6) (4,7 to 5,6)

Unknown 2941 241

Follow-up duration (months)

Median 21,3 54,6

IQR (11,7 to 33,4) (29 to 57,8)

Status at end of study (%)

Current 77,5 72,2

Transferred 6,3 0

LTFU 5,5 7,8

Deceased 10,6 20

doi:10.1371/journal.pone.0053570.t001
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program administrators), the estimated 10-year and lifetime costs

within the public-care program approximated the levels observed

in the private-care program. In other words, the programs were

equivalent in terms of costs and outcomes.

Discussion

We determined that the private-care program had lower costs

and similar outcomes to the public-care program at the time of the

study using a novel Markov model. Key differences between the

programs were less frequent visits and higher rates of returning to

care after loss to follow-up in the private-care program, and lower

early death rates on ART, but more deaths while LTFU in the

public-care program. We estimated that the recent shifts towards

less frequent visits in the public-care ART program would achieve

large cost savings, making the costs of the two programs similar.

These findings suggest that properly managed private-care

programs can ease the burden of ART care in endemic countries

by looking after public sector patients without increasing costs.

Further, reducing clinic visits may be a viable strategy to save costs

while maintaining outcomes in public sector programs.

Our Markov model included several significant improvements

on previously published models [4,18–22]. First, we separated out

the first six months on ART, as outcomes and costs in this period

are driven by baseline CD4 count and program protocols (higher

frequency of clinic visits and toxicity monitoring) [6]. Second, we

developed a novel LTFU model, in which patients transitioned

between ART and LTFU, changed baseline CD4 count within

LTFU, and transitioned to death within LTFU. Third, we

developed Markov models to account for CD4 and VL category

changes within the ART and LTFU models. Fourth, we developed

a more detailed model describing the transition between first line

and second line ART, which is a major cost driver [23]. Fifth, the

model included the impact of time on ART on the transition to

LTFU, death, and second line ART. Finally, we assessed the

external validity of the model by first developing the model using

the public-care program data and then validating it using private-

care program data. The fact that our novel Markov model was

able to describe the data from two very different models of ART

care suggests that its utility may be generalizable.

We are aware of one other study that compared costs and

outcomes after 1 year in public-care and private-care programs for

Table 2. Transition probabilities and hazard coefficients for deaths on antiretroviral therapy.

Variables

Transition probabilities and hazard coefficients (95% CI) per 1
month cycle

Public-care Private-care

First 6 months after starting antiretroviral therapy

Transition probability

3 months CD4 0–49 cells/mL 0,035 (0,029 to 0,044) 0,040 (0,029 to 0,056)

3 months CD4 50–199 cells/mL 0,010 (0,008 to 0,012) 0,017 (0,013 to 0,022)

6 months CD4 0–49 cells/mL 0,011 (0,010 to 0,014) 0,027 (0,021 to 0,036)

6 months CD4 50–199 cells/mL 0,003 (0,003 to 0,004) 0,011 (0,009 to 0,014)

First 6 months after restarting antiretroviral therapy

Transition probability: 0–6 months 0,008 (0,004 to 0,016) 0,004 (0,001 to 0,010)

.6 months on antiretroviral therapy

Hazard coefficient due to CD4 and VL

CD4 0–49 cells/mL VL ,1,000 copies/ml 25,01 25,03

CD4 0–49 cells/mL VL 1,000–100,000 copies/ml 24,71 24,69

CD4 0–49 cells/mL VL .100,000 copies/ml 23,83 24,13

CD4 50–199 cells/mL VL ,1,000 copies/ml 26,00 26,5

CD4 50–199 cells/mL VL 1,000–100,000 copies/ml 25,69 26,16

CD4 50–199 cells/mL VL ,1000 copies/ml 24,82 25,6

CD4 200–349 cells/mL VL .100,000 copies/ml 27,25 27,48

CD4 200–349 cells/mL VL 1,000–100,000 copies/ml 26,94 27,14

CD4 200–349 cells/mL VL ,1000 copies/ml 26,07 26,58

CD4 350–499 cells/mL VL .100,000 copies/ml 27,63 28,53

CD4 350–499 cells/mL VL 1,000–100,000 copies/ml 27,32 28,19

CD4 350–499 cells/mL VL .100,000 copies/ml 26,45 27,63

CD4 $500 cells/mL VL ,1,000 copies/ml 27,76 28,16

CD4 $500 cells/mL VL 1,000–100,000 copies/ml 27,46 27,82

CD4 $500 cells/mL VL .100,000 copies/ml 26,58 27,26

Hazard coefficients for Gompertz function

alpha 0,93 (0,52 to 1,34) 1,73 (1,17 to 2,28)

beta – half-life (months) 20 20

doi:10.1371/journal.pone.0053570.t002
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Table 3. Transition probabilities and hazard coefficients related to loss to follow-up.

Variables Transition probabilities and hazard coefficients (95%) per 1 month cycle

Public-care Private-care

Transitions within ART model

Transition probability to LTFU within 0–6 months on ART

On starting ART 0,0085 (0,0080 to 0,0091) 0,0006 (0,0006 to 0,0006)

On restarting ART 0,0270 (0,0205 to 0,0356) 0,0251 (0,0251 to 0,0251)

Hazard coefficient to LTFU within .6 months on ART

CD4 0–49 cells/mL VL ,1,000 copies/ml 24,7 25,13

CD4 0–49 cells/mL VL 1,000–100,000 copies/ml 23,79 24,16

CD4 0–49 cells/mL VL .100,000 copies/ml 24,00 24,37

CD4 50–199 cells/mL VL ,1,000 copies/ml 25,31 25,44

CD4 50–199 cells/mL VL 1,000–100,000 copies/ml 24,4 24,47

CD4 50–199 cells/mL VL ,1000 copies/ml 24,61 24,68

CD4 200–349 cells/mL VL .100,000 copies/ml 25,73 24,52

CD4 200–349 cells/mL VL 1,000–100,000 copies/ml 24,82 23,56

CD4 200–349 cells/mL VL ,1000 copies/ml 25,03 23,76

CD4 350–499 cells/mL VL .100,000 copies/ml 25,73 24,52

CD4 350–499 cells/mL VL 1,000–100,000 copies/ml 24,82 23,56

CD4 350–499 cells/mL VL .100,000 copies/ml 25,03 23,76

CD4 $500 cells/mL VL ,1,000 copies/ml 25,73 24,52

CD4 $500 cells/mL VL 1,000–100,000 copies/ml 24,82 23,56

CD4 $500 cells/mL VL .100,000 copies/ml 25,03 23,76

Hazard coefficients for Gompertz function

alpha 1,5 0,5

beta – half-life (months) 12 8

Initial distribution within LTFU model

CD4 0–49 cells/mL 0,278 (0,255 to 0,302) 0,243 (0,217 to 0,269)

CD4 50–199 cells/mL 0,722 (0,745 to 0,698) 0,757 (0,783 to 0,731)

Transitions within LTFU model

Transition probability between CD4 category

CD4 50–199 to CD4 0–49 cells/mL 0,005 (0,005 to 0,005) 0,006 (0,006 to 0,006)

Transition probability back to ART

CD4 0–199 cells/mL 0,134 (0,128 to 0,141) 0,146 (0,139 to 0,154)

Transition probability to death

CD4 0–49 cells/mL 0,006 (0,005 to 0,008) 0,006 (0,005 to 0,008)

CD4 50–199 cells/mL 0,001 (0,001 to 0,017) 0,001 (0,001 to 0,017)

doi:10.1371/journal.pone.0053570.t003

Table 4. 10 year and lifetime estimates of cost and outcomes of the private-care and public-care programs.

Treatment option 10 year estimates Lifetime estimates

Costs (95% CI) in USD Life years gained (95% CI) Costs (95% CI) in USD Life years gained (95% CI)

Undiscounted

Public-care 8,825 (8,614 to 9,036) 7.6 (7.4 to 7.8) 18,734 (17,385 to 20,083) 14.1 (13.2 to 15.0)

Private-care 6,187 (5,997 to 6,377) 7.2 (7.0 to 7.4) 13,062 (12,077 to 14,047) 14.0 (13.1 to 14.8)

Discounted

Public-care 7,688 (7,513 to 7,863) 6.7 (6.5 to 6.8) 13,305 (12,588 to 14,022) 10.4 (9.9 to 10.9)

Private-care 5,407 (5,250 to 5,564) 6.3 (6.2 to 6.5) 9,273 (8,704 to 9,842) 10.0 (9.4 to 10.5)

doi:10.1371/journal.pone.0053570.t004
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public sector patients [24]. Their private-care program had

significantly lower costs due to fewer GP visits and poorer patient

retention than their public care program. The costs of providing

ART care were similar, although patient retention was better in

our programs. Lifetime analyses using Markov models populated

with data from resource-limited settings predicted varying survival

on ART (6 to 13 years) and varying discounted total costs (3,000

to 9,500 USD from the provider’s perspective) [16,18,21–

23,25,26]. Many of these models were developed using short

term follow up data. Furthermore, retention within ART

programs and cost of providing ART care in resource-limited

settings varies dramatically [27,28]. We estimated that average

survival on ART was longer than most resource-limited setting

model estimates.

The patients included in this analysis were public-sector patients

receiving ART care in accordance with WHO public sector ART

program guidelines. Therefore the results from this analysis have

important policy implications that are relevant to other resource-

limited settings. The rapid expansion of access to ART in

resource-limited settings is both needed [29] and challenging [30].

Our findings suggest that managed private-care for public sector

patients could be used to increase access to ART, provided that

the private practices follow national protocols and that loss to

follow-up is managed – key components of the private-care

program in our study. A similar model was implemented in

Botswana to expand access to ART in areas where limited public-

sector resources were available, by utilising doctors working in

private practice to look after public sector patients [2]. Their

findings suggested that ART care coverage was extended by 10%

and public-sector programs were strengthened by the interaction

[2]. We found that reduced utilisation of clinic visits, especially

after the initial six months of care, would considerable lower costs

of public-care programs. Finally, our model predicted that LTFU

contributed significantly to deaths, utilisation of ART-related

resources (on restarting ART), and attenuated CD4 recovery. This

suggests that focusing on reducing LTFU could be a cost-saving

strategy.

There were several limitations to our study. First, the findings in

our study are based on a model that extrapolated the trends we

observed over the first 3–5 years on ART predominantly. Second,

we limited costs in this study to direct ART care costs, while the

other components of care represent a significant portion of total

costs [31]. Data on these other cost components were not

available. Third, we did not account for the impact of adherence

on the total cost of ART drugs, nor the changing composition of

specific drugs within the therapy lines over time [31,32]. Fourth,

given the limited data on actual laboratory utilisation, especially

for toxicity monitoring, we set the laboratory utilisation to those

recommended in national guidelines. Fifth, it is likely that the

patients within the public-care program had better access to HIV

clinic services than typical public-sector patients in South Africa,

and this would have increased costs, and possibly enhanced patient

retention and improved outcomes [33]. Sixth, the relative

proportions of individual drugs within the lines of therapy differed

between cohorts: the average ART costs were marginally lower in the

private-care program and the different regimens may have impacted the

outcomes. Seventh, given the different models of ART care and

different settings in which the programs were based, these

programs were not completely comparable and therefore the

overall conclusions in terms of costs and outcomes cannot be

regarded as definitive. Finally, our public sector clinic visit cost was

based on secondary data, which may not capture recent

programmatic changes in ART provision (including task shifting)

and economies of scale and scope. However, it is difficult to predict

the extent to which this unit cost may under or overestimate costs.

In moving towards universal access to ART, South Africa intends

to offer ARVs from all primary care facilities, which will have

implications for the efficiency of service provision and the resulting

unit cost. Economies or diseconomies of scale can equally arise in

small new facilities during start-up and in older large facilities with

high patient volumes.

While analyses of provider costs and patient outcomes are

crucial in guiding resource allocation for HIV care, it is equally

important to consider barriers to patient access, particularly within

the context of lifelong care [34]. Evidence suggests that the key

barriers to ongoing ART care include the cost of transport to

facilities as well as the opportunity cost associated with long

waiting times in facilities [34,35]. Less frequent visits would

mitigate these access barriers. One advantage of private care is

that waiting times are usually shorter.

Conclusions
In conclusion, we have developed a novel Markov model that

has the potential to improve the accuracy of estimations of future

costs and outcomes of long-term ART care. We have used this

model to evaluate two ART programs, and have shown that

managed private-care ART programs have the potential to

complement the public sector platform in resource poor settings,

thereby enhancing and sustaining coverage of patients in need.

Our findings suggest that cost savings could be achieved through

reducing clinic utilization without compromising patient out-

comes.
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