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Abstract

Background: Cellular respiration is the process by which cells obtain energy from glucose and is a very important biological
process in living cell. As cells do cellular respiration, they need a pathway to store and transport electrons, the electron
transport chain. The function of the electron transport chain is to produce a trans-membrane proton electrochemical
gradient as a result of oxidation–reduction reactions. In these oxidation–reduction reactions in electron transport chains,
metal ions play very important role as electron donor and acceptor. For example, Fe ions are in complex I and complex II,
and Cu ions are in complex IV. Therefore, to identify metal-binding sites in electron transporters is an important issue in
helping biologists better understand the workings of the electron transport chain.

Methods: We propose a method based on Position Specific Scoring Matrix (PSSM) profiles and significant amino acid pairs
to identify metal-binding residues in electron transport proteins.

Results: We have selected a non-redundant set of 55 metal-binding electron transport proteins as our dataset. The
proposed method can predict metal-binding sites in electron transport proteins with an average 10-fold cross-validation
accuracy of 93.2% and 93.1% for metal-binding cysteine and histidine, respectively. Compared with the general metal-
binding predictor from A. Passerini et al., the proposed method can improve over 9% of sensitivity, and 14% specificity on
the independent dataset in identifying metal-binding cysteines. The proposed method can also improve almost 76%
sensitivity with same specificity in metal-binding histidine, and MCC is also improved from 0.28 to 0.88.

Conclusions: We have developed a novel approach based on PSSM profiles and significant amino acid pairs for identifying
metal-binding sites from electron transport proteins. The proposed approach achieved a significant improvement with
independent test set of metal-binding electron transport proteins.
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Introduction

Cellular respiration is the process by which cells obtain energy

from glucose. During respiration, cells break down simple food

molecules, such as sugar, and release the energy they contain [1].

The point of cellular respiration is to harvest electrons from

organic compounds such as glucose and use that energy to make a

molecule called ATP (adenosine triphosphate). ATP in turn is used

to provide energy for most cellular reactions.

As cells do cellular respiration, they need a pathway to store and

transport electrons, the electron transport chain. The function of

the electron transport chain is to produce a trans-membrane

proton electrochemical gradient as a result of oxidation-reduction

reactions. If protons flow back through the membrane, ATP

synthase converts this mechanical into chemical energy by

producing ATP, which is provided energy in many cellular

processes. The architecture of the electron transport chain with

complex I–IV is given in Figure 1.

As Figure 1 shows, at the mitochondrial inner membrane,

electrons from NADH and succinate pass through the electron

transport chain to oxygen (Complex I(NADH dehydrogenase) and

Complex II(succinate dehydrogenase)). Electrons pass from

complex I to a carrier (coenzyme Q) embedded by itself in the

membrane. From coenzyme Q electrons are passed to a Complex

III (cytochrome b, c1 complex). Note that the path of electrons is

from Complex I to Coenzyme Q to Complex III. Complex II, the

succinate dehydrogenase complex, is a separate starting point, and

is not a part of the NADH pathway. From Complex III the

pathway is to cytochrome c then to a Complex IV (cytochrome

oxidase complex). In the end, the proton electrochemical gradient

allows ATP synthase to use the flow of H+ to generate ATP.

There are many oxidation-reduction reactions in the electron

transport chain, such as NADH dehydrogenase, coenzyme Q –

cytochrome c reductase, and succinate – coenzyme Q reductase.

In these oxidation-reduction reactions in electron transport chains,

metal ions play very important role as electron donor and
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acceptor. For example, Fe ions are in complex I and complex II,

and Cu ions are in complex IV. Therefore, to identify metal-

binding sites in electron transporters is an important issue in

helping biologists better understand the workings of the electron

transport chain. In this work, we try to develop a method based on

Position Specific Scoring Matrix (PSSM) profiles and significant

amino acid pairs to identify metal-binding residues in electron

transport proteins.

In recent years, several methods have been proposed for

predicting metal-binding sites (MBS) in proteins based on neural

networks and support vector machines [2–5]. These work are

major from A. Passerini and his co-workers except the work from

Lin [2]. Prof. Passerini has proposed a two-stage machine-learning

approach on their work [4]. The first stage consists of a support

vector machine classifier, and the second stage consists of a

bidirectional recurrent neural network. The authors of the work

[4] have also published their web server as MetalDetector [5],

which is the most popular web server for prediction metal-binding

sites in proteins.

According to a recent comprehensive review 6], to establish a

really useful statistical predictor for a protein system, we need to

consider the following procedures: (i) construct or select a valid

benchmark dataset to train and test the predictor; (ii)formulate the

protein samples with an effective mathematical expression that can

truly reflect their intrinsic correlation with the attribute to be

predicted; (iii) introduce or develop a powerful engine to operate

the prediction; (iv) properly perform cross-validation tests to

objectively evaluate the anticipated accuracy of the predictor; (v)

establish a user-friendly web-server for the predictor that is

accessible to the public.

In this work, we propose a method based on PSSM profiles and

significant amino acid pairs to identify metal-binding residues in

electron transport proteins. We have selected a non-redundant set

of 55 metal-binding electron transport proteins as our dataset. The

proposed method can predict metal-binding sites in electron

transport proteins with an average 10-fold cross-validation

accuracy of 93.2% and 93.1% for metal-binding cysteine and

histidine, respectively. Comparing with the general metal-binding

predictor from A. Passerini et al., the proposed method can

improve over 9% of sensitivity, and 14% specificity on the

independent dataset in identifying metal-binding cysteines. The

proposed method can also improve almost 76% sensitivity with

same specificity in metal-binding histidine, and MCC is also

improved from 0.28 to 0.88. The proposed approach achieved a

significant improvement with independent test set of metal-

binding electron transport proteins.

Materials and Methods

This work focuses on identifying metal-binding sites efficiently

in electron transport proteins. As Figure 2 shows, the analyzing

flowchart includes three sub-processes: data collection, feature set

generation, and model evaluation. Following this model, we have

developed a novel approach based on PSSM profiles and

significant amino acid pairs for identifying metal-binding sites

from electron transport proteins. The details of the proposed

approach are described as follows.

Data collection
First of all, we selected electron transport proteins with metal

binding sites from UniProt database [7]. Then, we removed the

sequences without the evidence at protein level and experimental

metal-binding sites. Next, by using BLAST [8], the sequences with

sequence identity more than 20% were excluded from the dataset.

Since sequences falling below a 20% sequence identity can have

very different structure [9], it is difficult to get a high success rate

when tested by dataset in excluding homologous sequences with

20% sequence identity. Finally, 55 electron transport proteins are

surveyed in this work.

The collected electron transport protein sequences were divided

into two datasets: the training dataset and the independent test

dataset. The training dataset is used for identifying metal binding

sites and evaluating significant amino acid pairs in electron

transport proteins. The training dataset includes 44 electron

transport protein sequences which contain 79 metal-binding

cysteine, 77 metal-binding histidine and 368 non-metal-binding

cysteine and histidine. The independent test dataset, which

includes 11 electron transport proteins which contain 22 metal-

binding cysteine, 21 metal-binding histidine and 103 non-metal-

binding cysteine and histidine, is used to evaluate the performance

of the proposed method. The details of two datasets are listed in

Table 1 and Table 2. Table 3 summarizes the statistics of

structural topology and molecular function on 55 electron

transporters in this work.

Figure 1. The electron transport chain in the inner membrane of mitochondria.
doi:10.1371/journal.pone.0046572.g001
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Figure 2. The flowchart of ETMB-RBF.
doi:10.1371/journal.pone.0046572.g002
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Feature set generation
Position Specific Scoring Matrix Profiles. In the structural

point of view, several amino acid residues can be mutated without

altering the structure of a protein, and it is possible that two

proteins have similar structures with different amino acid

compositions. Hence, the Position Specific Scoring Matrix (PSSM)

profile is adopted, which have been widely used in protein

secondary structure prediction, subcellular localization, classifica-

tion of transporters, prediction of transport targets and other

bioinformatics problems with significant improvement [10–20].

The PSSM profiles are obtained by using PSI-BLAST and non-

redundant (NR) protein database.

PSSM profiles can be a useful feature set to represent

evolutionary information in protein sequences [11,21]. Life on

Earth originated and then evolved from a common ancestor

approximately 3.7 billion years ago, sequences are more similar

among species that share a more recent common ancestor, and

can be used to reconstruct evolutionary histories. In this work, we

searched a very large sequences database (NR database) by using

PSI-BLAST to find similar sequences of the target sequence.

Then, we adopted the evolutionary information contained in

PSSM profiles as input to radial basis function networks.

In the identification of metal binding sites on electron transport

proteins, the generated PSSM profiles contained the probability of

occurrence of each type of amino acid residues at each position.

Each element in PSSM profile is scaled by
1

1ze{x
for

normalizing the values between 0 and 1. The window size of 13

residues which the central residue is metal-binding site and 6

residues along both sides of the central residue is used for

encapsulating an amino acid residue. Finally, 13 X 20 elements

are used as PSSM feature set for identifying metal-binding sites.

Features of non-metal-binding sites are generated by using the

same approach as features of metal-binding sites.

In addition, we also generated different feature sets for

comparison. There feature sets are generated by amino acid

types(AA), BLOSUM62 matrix (BLOcks of Amino Acid SUbsti-

tution Matrix) [22], and PAM250 matrix [23]. A matrix of 13 X

20 elements is used to represent each residue in a training dataset,

where 13 denotes the window size and 20 elements from each row

of the type of amino acids, BLOSUM62 matrix and PAM250

matrix.

Significant amino acid pairs. The significant amino acid

pairs (SAAPs) around the metal-binding sites are identified based

on the training dataset. These SAAPs are adopted to construct

learning model for improving performance [24]. In order to make

further investigations of substrate sites specificity, these SAAPs are

identified based on statistical measurement of hypergeometric

distribution. Each amino acid pairs surrounding metal-binding site

is calculated p-value of hypergeometric distribution. The hyper-

geometric distribution is defined as:

p-valuek~

M

x

� �
N-M

n-x

� �

N

n

� � , ð1Þ

where N denotes the number of sequences in the whole dataset, M

denotes the number of sequences in the positive dataset, and (N-

M) denotes the number of sequences in the negative dataset; n, x

and n-x denotes the number of sequences which include the k-th

SAAP in the whole dataset, in the positive dataset,and in the

negative dataset respectively.

The amino acid pair surrounding metal-binding sites is

significant when p-value is less than the significance level. It

indicates that central residue is the metal-binding site with higher

probability if significant amino acid pairs appear. As shown in

Table 4, the most significant amino acid pair on cysteine is (24C,

1P). (24C, 1P), which suggests that the cysteine(C) on position 24

and the proline(P) on position +1 surrounding metal-binding sites

is significant with p-value 2:7|10{4. The illustration of calculat-

ing p-value for identifying significant amino acid pairs was shown

in Figure 3.

After calculating p-value for each amino acid pair surrounding

metal-binding sites, the ranked SAAPs added into the feature set

by using forward feature selection based on 10-fold cross-

validation for improving predictive performance. Finally, 25 and

90 SAAPs are added into feature set of identifying metal binding

cysteine and histidine, respectively. The final model was evaluated

by using the independent dataset of 11 electron transporters.

Table 1. The statistic of experimentally verified metal binding sites on electron transporters.

Cross-Validation Dataset Independent Test Dataset

Number of electron transporters 44 11

Number of metal binding cysteine 79 22

Number of metal binding histidine 77 21

Number of non-metal binding cysteine and histidine 368 103

doi:10.1371/journal.pone.0046572.t001

Table 2. The catalytic of experimentally verified metal binding sites on electron transporters.

Cross-Validation Dataset Independent Test Dataset

Cysteine Histidine Cysteine Histidine

Number of iron binding sites 72 63 18 15

Number of copper binding sites 7 14 4 6

doi:10.1371/journal.pone.0046572.t002
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Table 3. Details of electron transporters in the present study.

UniProt ID
Sequence
length Protein name

Num. of TM
segment Source Molecular Function

Q5SJ79 562 Cytochrome c oxidase subunit 1 13 Thermus thermophilus electron carrier activity;cytochrome-c oxidase
activity;

P98002 558 Cytochrome c oxidase subunit
1-beta

12 Paracoccus denitrificans electron carrier activity;cytochrome-c oxidase
activity;

P0A405 755 PsaA 11 Thermosynechococcus
elongatus

chlorophyll binding;

P51131 687 Cytochrome b/c1 10 Bradyrhizobium japonicum electron carrier activity;oxidoreductase activity;

Q02761 445 Cytochrome b 8 Rhodobacter sphaeroides Electron carrier activity;Oxidoreductase
activity;

P32791 686 Ferric-chelate reductase 1 7 Saccharomyces cerevisiae electron carrier activity;flavin adenine
dinucleotide binding;

P0ABJ9 522 Cytochrome bd-I oxidase subunit I 7 Escherichia coli electron carrier activity;oxidoreductase activity;

P06010 324 Reaction center protein M chain 5 Rhodopseudomonas viridis electron transporter;

P0C0Y8 282 Reaction center protein L chain 5 Rhodobacter sphaeroides electron transporter;

P0A444 360 Photosystem Q(B) protein 1 5 Thermosynechococcus
elongatus

electron transporter;oxidoreductase activity;

P11695 311 Reaction center protein L chain 5 Chloroflexus aurantiacus electron transporter;bacteriochlorophyll
binding;

P17413 256 Fumarate reductase cytochrome b
subunit

5 Wolinella succinogenes oxidoreductase activity;

P11350 225 Cytochrome B-NR 5 Escherichia coli electron carrier activity;nitrate reductase
activity;

P00165 215 Cytochrome b6 4 Spinacia oleracea electron transporter;oxidoreductase activity;

P0AEK7 217 FDH-N subunit gamma 4 Escherichia coli electron carrier activity;formate
dehydrogenase (NAD+) activity;

A5GZW8 159 CybS 3 Sus scrofa ubiquinone binding;

D0VWV4 169 CYBL 3 Sus scrofa electron carrier activity;succinate
dehydrogenase activity;

P69054 129 Cytochrome b-556 3 Escherichia coli electron carrier activity;succinate
dehydrogenase activity;
ubiquinone binding;

P0AC44 115 Succinate dehydrogenase hydrophobic
membrane anchor subunit

3 Escherichia coli electron carrier activity;succinate
dehydrogenase activity;

P08306 298 Cytochrome c oxidase subunit 2 2 Paracoccus denitrificans electron carrier activity;cytochrome-c oxidase
activity;

P68530 227 Cytochrome c oxidase subunit 2 2 Bos taurus electron carrier activity;cytochrome-c oxidase
activity;

P00167 134 Cytochrome b5 1 Human Aldo-keto reductase (NADP)
activity;Cytochrome-c oxidase activity;

P95522 338 Apocytochrome f 1 Phormidium laminosum electron carrier activity;

P00125 325 Cytochrome b-c1 complex subunit 4 1 Bos taurus electron carrier activity;

Q02760 285 Cytochrome c1 1 Rhodobacter sphaeroides electron carrier activity;

P04166 146 Cytochrome b5 type B 1 Rattus norvegicus electron transporter;enzyme activator activity;

Q8DIP0 84 Cytochrome b559 subunit alpha 1 Thermosynechococcus
elongatus

heme binding;

P95673 46 Light-harvesting protein B-800/850
beta 1 chain

1 Rhodospirillum
molischianum

electron transporter;

Q8DIN9 45 Cytochrome b559 subunit beta 1 Thermosynechococcus
elongatus

heme binding;

P07143 309 Cytochrome b-c1 complex subunit 4 1 Saccharomyces cerevisiae electron transporter;

P0AAJ3 294 FDH-N subunit beta 1 Escherichia coli electron carrier activity;formate
dehydrogenase (NAD+) activity;

P20114 243 Cytochrome c1, heme protein 1 Euglena gracilis electron carrier activity;

P08980 230 Rieske iron-sulfur protein 1 Spinacia oleracea electron transporter;plastoquinol-plastocyanin
reductase activity;ubiquinol-cytochrome-c
reductase activity;

ETMB-RBF
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The topmost 25 of SAAPs with p-value surrounding metal-

binding cysteine and histidine are listed respectively in Table 4.

Model evaluation
Design of the Radial Basis Function Networks. We have

employed the QuickRBF package [25] to construct RBFN

classifiers in this work. Also, the fixed bandwidth of 5 for each

kernel function is employed in the network. In addition, we used

all training data as centers. Then, the RBFN classifier identifies

metal-binding sites based on the output function value. The details

about network structure and design have been explained in our

earlier article [26].

Classification based on radial basis function (RBF) networks has

several applications in bioinformatics. It has been widely used to

predict the cleavage sites in proteins [27], inter-residue contacts

[28], protein disorder [29], the discrimination of b-barrel proteins

[13], the classification of transporters [14,16],the identification of

O-linked glycosylation sites [24] , and the identification of

ubiquitin conjugation sites [30].

The general mathematical form of the output nodes in an

RBFN is as follows:

gj(x)~
Xk

i~1

wjiw( x{mik k; si); ð2Þ

gj(x) is the function corresponding to the j-th output node and is a

linear combination of k radial basis functions w(mi) with center mi

and bandwidth si; Also, wji denotes the weight associated with the

correlation between the j-th output node.

Assessment of predictive ability. The prediction perfor-

mance was examined by 10-fold cross validation test, in which the

training data were randomly divided into ten subsets of

approximately equal size. The data were trained with nine subsets

and the remaining set was used to test the performance of the

method. This process was repeated 10 times so that every subset

had been used as the test data once.

Sensitivity, specificity, accuracy, and MCC (Matthew’s correla-

tion coefficient) were used to measure the prediction performance.

TP, FP, TN, FN are true positives, false positives, true negatives,

and false negatives, respectively.

Table 3. Cont.

UniProt ID
Sequence
length Protein name

Num. of TM
segment Source Molecular Function

P49728 206 Rieske iron-sulfur protein 1 Chlamydomonas reinhardtii plastoquinol-plastocyanin reductase
activity;ubiquinol-cytochrome-c reductase
activity;

P0CY48 191 Rieske iron-sulfur protein 1 Rhodobacter capsulatus ubiquinol-cytochrome-c reductase activity;

P83794 179 Rieske iron-sulfur protein 1 Mastigocladus laminosus electron transporter;plastoquinol-plastocyanin
reductase activity;ubiquinol-cytochrome-c
reductase activity;

Q5SJ80 168 Cytochrome c oxidase subunit 2 1 Thermus thermophilus cytochrome-c oxidase activity;

P26789 53 Light-harvesting protein
B-800/850 alpha chain

1 Rhodopseudomonas
acidophila

electron transporter;bacteriochlorophyll
binding;

P0C0Y1 49 Light-harvesting protein
B-875 beta chain

1 Rhodobacter sphaeroides electron transporter;bacteriochlorophyll
binding;

P0A411 81 Photosystem I iron-sulfur center Unknown Anabaena variabilis electron carrier activity;

Q7SIB8 102 Plastocyanin Unknown Dryopteris crassirhizoma electron carrier activity;

P00289 168 Plastocyanin, chloroplastic Unknown Spinacia oleracea electron carrier activity;

Q9YHT2 290 Iron-sulfur subunit of complex II Unknown Gallus gallus electron carrier activity;succinate
dehydrogenase activity;

P0A386 163 Cytochrome c-550 Unknown Thermosynechococcus
elongatus

electron carrier activity;

P09152 1247 Nitrate reductase A subunit alpha Unknown Escherichia coli electron carrier activity;oxidoreductase activity;

Q56223 783 NADH-quinone oxidoreductase
subunit 3

Unknown Thermus thermophilus electron carrier activity;NADH dehydrogenase
(ubiquinone) activity;

P11349 512 Respiratory nitrate reductase
1 beta chain

Unknown Escherichia coli electron carrier activity;nitrate reductase
activity;

P07173 356 Cytochrome c558/c559 Unknown Rhodopseudomonas viridis electron carrier activity;

P13272 274 Cytochrome b-c1 complex subunit 5 Unknown Bos taurus ubiquinol-cytochrome-c reductase activity;

P07014 238 Succinate dehydrogenase iron-sulfur
subunit

Unknown Escherichia coli electron carrier activity;succinate
dehydrogenase activity;

P27197 235 Auracyanin-B Unknown Chloroflexus aurantiacus electron carrier activity;

Q8RMH6 162 Auracyanin-A Unknown Chloroflexus aurantiacus electron carrier activity;

P18068 145 Plastocyanin, chloroplastic Unknown Chlamydomonas reinhardtii electron carrier activity;

P82603 129 Cytochrome c-550 Unknown Spirulina maxima electron carrier activity;

Q56247 111 Cytochrome c-551 Unknown Bacillus PS3 electron carrier activity;

doi:10.1371/journal.pone.0046572.t003
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Sensitivity ~
TP

TPzFN
ð3Þ

Specificity ~
TN

TNzFP
ð4Þ

Accuracy ~
TPzTN

TPzFPzTNzFN
ð5Þ

MCC~
TP|TN-FP|FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TPzFP)(TPzFN)(TNzFP)(TNzFN)
p ð6Þ

Results and Discussion

Predictive performance of metal-binding sites
identification in electron transport proteins with different
feature sets

We developed a variety of methods for metal-binding sites

identification in electron transport proteins. The results obtained

from the AA, BLOSUM62, PAM250, PSSM, and the combina-

tion of PSSM and SAAPs are presented in Table 5. The results

showed that PSSM with SAAPs properties was successful in

identifying metal-binding sites with an average 10-fold cross-

validation accuracy of 93.2% and 93.1% for metal-binding

cysteine and histidine, respectively. Our analysis showed that

PSSM profiles and SAAPs properties had marginally improved the

accuracy of identification, compared with the other feature sets.

Combining the significant amino acid pairs with the sequence of

amino acids increases the predictive accuracy specificity for metal-

binding sites identification from 90.1% to 93.2% with metal-

Figure 3. The illustration of calculating p-value for identifying significant amino acid pairs.
doi:10.1371/journal.pone.0046572.g003

Table 4. The significant amino acid pairs that surround the
metal binding cysteine and histidine on electron transporters.

Metal binding cysteine Metal binding histidine

SAAP p-value SAAP p-value

(24C,1P) 2.70E-04 (24C,21C) 2.40E-06

(4C,5P) 2.70E-04 (23C,2S) 6.00E-04

(26C,4C) 6.90E-04 (23V,4V) 6.00E-04

(23C,3C) 1.80E-03 (21C,1G) 7.20E-04

(23C,4C) 1.80E-03 (1G,2S) 7.20E-04

(3C,6C) 1.80E-03 (23A, 21C) 7.20E-04

(26C, 23C) 1.80E-03 (21C,4Y) 2.70E-03

(26L,3C) 1.80E-03 (21L,2F) 2.70E-03

(1I,6C) 4.50E-03 (1S,3D) 2.70E-03

(2G,6C) 4.50E-03 (22A, 21C) 2.70E-03

(22I,3C) 4.50E-03 (22I,2F) 2.70E-03

(24G,4C) 4.50E-03 (22L,3M) 2.70E-03

(25I, 23C) 4.50E-03 (22P, 21C) 2.70E-03

(26C, 24G) 4.50E-03 (22V,1S) 2.70E-03

(26C, 25I) 4.50E-03 (23D, 22V) 2.70E-03

(26C,5P) 4.50E-03 (25F, 23C) 2.70E-03

(1I,3C) 8.60E-03 (25V, 21C) 2.70E-03

(23C, 22I) 8.60E-03 (25V, 23A) 2.70E-03

(1P,3G) 1.10E-02 (26E, 24C) 2.70E-03

(25I,4C) 1.10E-02 (22L, 21I) 2.80E-03

(26G, 24Y) 1.10E-02 (23L,5I) 2.80E-03

(21G,3C) 1.90E-02 (24C, 23A) 2.80E-03

(23C,1H) 1.90E-02 (25F,4G) 2.80E-03

(3C,4H) 1.90E-02 (25F,5M) 2.80E-03

(24G, 23C) 1.90E-02 (4G,5I) 7.60E-03

doi:10.1371/journal.pone.0046572.t004
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binding cysteine, and from 91.0% to 93.1% with metal-binding

histidine. In addition, the sensitivity, precision specificity, and

MCC are also improved. Consequently, according to the

evaluation of 10-fold cross validation, the identified significant

amino acid pairs can increase the predictive performance.

In statistical prediction, the following three cross-validation

methods are often used to examine a prediction: independent

dataset test, subsampling test, and jackknife test [6]. However, of

the three test methods, the jackknife test is deemed the least

arbitrary that can always yield a unique result for a given

benchmark dataset. However, to reduce the computational time,

we adopted the 10-fold cross validation and independent testing

dataset test in this study.

Comparison the performance with other method with
independent test set

The independent test dataset, which includes 11 electron

transport proteins which contain 22 metal-binding cysteine, 21

metal-binding histidine and 103 non-metal-binding cysteine and

histidine, is used to evaluate the performance of the proposed

method. As Table 6 shows, comparing with the general metal-

binding predictor from A. Passerini et al., the proposed method

can improve over 9% of sensitivity, and 14% specificity on the

independent dataset in identifying metal-binding cysteines. The

proposed method can also improve almost 76% sensitivity with

same specificity in metal-binding histidine, and MCC is also

improved from 0.28 to 0.88. This results shows that our method

Table 5. The ten-fold cross-validation performance of metal binding sites on Cross-Validation dataset.

ETMB-RBF with
different features

True
Positive

False
Positive

True
Negative

False
Negative Sensitivity Precision Specificity Accuracy MCC

Metal binding cysteine

AA 60 22 90 19 75.9% 73.2% 80.4% 78.5% 0.56

BLOSUM62 65 12 100 14 82.3% 84.4% 89.3% 86.4% 0.72

PAM250 58 9 103 21 73.4% 86.8% 92.0% 84.3% 0.67

PSSM 76 16 96 3 96.2% 82.6% 85.7% 90.1% 0.81

PSSM+SAAPs 78 12 100 1 98.7% 86.7% 89.3% 93.2% 0.87

Metal binding histidine

AA 37 30 226 40 48.1% 55.2% 88.3% 79.0% 0.38

BLOSUM62 43 21 235 34 55.8% 67.2% 91.8% 83.5% 0.51

PAM250 39 37 219 38 50.6% 51.3% 85.5% 77.5% 0.36

PSSM 60 13 243 17 77.9% 82.2% 94.9% 91.0% 0.74

PSSM+SAAPs 62 8 248 15 80.5% 88.6% 96.9% 93.1% 0.80

doi:10.1371/journal.pone.0046572.t005

Table 6. Comparison performance with other methods.

Metal binding cysteine

Method
True
Positive

False
Positive

True
Negative

False
Negative Sensitivity Precision Specificity Accuracy MCC

Cross-Validation Dataset

Metal Detector 78 26 86 1 98.7% 75.0% 76.8% 85.9% 0.75

ETMB-RBF 78 12 100 1 98.7% 86.7% 89.3% 93.2% 0.87

Independent Test Dataset

Metal Detector 20 8 21 2 90.9% 71.4% 72.4% 80.4% 0.63

ETMB-RBF 22 4 25 0 100% 84.6% 86.2% 92.3% 0.85

Metal binding histidine

Method
True
Positive

False
Positive

True
Negative

False
Negative Sensitivity Precision Specificity Accuracy MCC

Cross-Validation Dataset

Metal Detector 12 3 253 65 15.6% 80.0% 98.8% 79.6% 0.29

ETMB-RBF 62 8 248 15 80.5% 88.6% 96.9% 93.1% 0.80

Independent Test Dataset

Metal Detector 2 0 74 19 9.5% 100% 100% 80.0% 0.28

ETMB-RBF 18 1 73 3 85.7% 94.7% 98.6% 95.8% 0.88

doi:10.1371/journal.pone.0046572.t006

ETMB-RBF

PLOS ONE | www.plosone.org 8 February 2013 | Volume 8 | Issue 2 | e46572



could be effectively used for indentifying metal-binding sites in

electron transport proteins.

The statistical analysis of amino acid compositions in
electron transporters and general proteins

We have analyzed metal-binding cysteine and cysteine residues

on electron transporters and general proteins. Using the sequences

of electron transporters in Table 3, we generated the sequence

logos of metal-binding cysteine and cysteine residues in electron

transporters with flanking amino acids (26 , +6) by WebLogo

[31,32]. Also, we generated the sequence logos of metal-binding

cysteine and cysteine residues in general proteins with the dataset

in A. Passerini’s work [4]. These four sequence logos are listed in

Figure 4.

We also statistically analyzed the amino acid compositions with

standard T-test of metal-binding cysteine and cysteine residues in

electron transporters and general proteins. As Figure 5 shows,

seven residues, Q, Y, K, M, I, D and G, surrounding metal-

binding cysteine have significant difference between electron

transporters and general proteins. Also, 8 residues, H, K, D, E, V,

Q, F, and R, surrounding metal-binding histidine have significant

difference between electron transporters and general proteins.

According the statistical analysis, the distribution of amino acids

surrounding metal-binding residues are different between electron

transport proteins and general proteins. This may be the reason

why our proposed method performs better than the general metal-

binding predictor.

Conclusions

Cellular respiration is the process by which cells obtain energy

from glucose, and is a very important biological process in living

cell. As cells do cellular respiration, they need a pathway to store

and transport electrons, the electron transport chain. The function

of the electron transport chain is to produce a trans-membrane

proton electrochemical gradient as a result of oxidation-reduction

reactions. In these oxidation-reduction reactions in electron

transport chains, metal ions play very important role as electron

donor and acceptor. Therefore, to identify metal-binding sites in

electron transporters is an important issue in helping biologists

better understand the workings of the electron transport chain.

In this work, we proposed a method based on PSSM profiles

and significant amino acid pairs to identify metal-binding residues

in electron transport proteins. We have selected a non-redundant

set of 55 metal-binding electron transport proteins as our dataset.

The proposed method can predict metal-binding sites in electron

transport proteins with an average 10-fold cross-validation

accuracy of 93.2% and 93.1% for metal-binding cysteine and

histidine, respectively. Comparing with the general metal-binding

predictor from A. Passerini et al., the proposed method can

improve over 9% of sensitivity, and 14% specificity on the

independent dataset in identifying metal-binding cysteines. The

proposed method can also improve almost 76% sensitivity with

same specificity in metal-binding histidine, and MCC is also

improved from 0.28 to 0.88. Our proposed approach achieved a

significant improvement with independent test set of metal-

binding electron transport proteins. The result shows that our

method could be effectively used for indentifying metal-binding

sites in electron transport proteins to help biologists better

understand the workings of the electron transport chain.

Since user-friendly and publicly accessible web-servers represent

the future direction for developing practically more useful models,

simulated methods, or predictors, we will make efforts in our

future work to provide a web-server for the method presented in

this paper.

Figure 4. The sequence frequency logos of metal-binding cysteine and histidine in electron transporters and general proteins.
doi:10.1371/journal.pone.0046572.g004
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