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Abstract
Accurate detection of breast malignancy from histologically normal cells (“field effect”) has
significant clinical implications in a broad base of breast cancer management, such as high-risk
lesion management, personalized risk assessment, breast tumor recurrence, and tumor margin
management. More accurate and clinically applicable tools to detect markers characteristic of
breast cancer “field effect” that are able to guide the clinical management are urgently needed. We
have recently developed a novel optical microscope, spatial-domain low-coherence quantitative
phase microscopy, which extracts the nanoscale structural characteristics of cell nuclei (i.e.,
nuclear nano-morphology markers), using standard histology slides. In this proof-of-concept
study, we present the use of these highly sensitive nuclear nano-morphology markers to identify
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breast malignancy from histologically normal cells. We investigated the nano-morphology
markers from 154 patients with a broad spectrum of breast pathology entities, including normal
breast tissue, non-proliferative benign lesions, proliferative lesions (without and with atypia),
“malignant-adjacent” normal tissue, and invasive carcinoma. Our results show that the nuclear
nano-morphology markers of “malignant-adjacent” normal tissue can detect the presence of
invasive breast carcinoma with high accuracy and do not reflect normal aging. Further, we found
that a progressive change in nuclear nano-morphology markers that parallel breast cancer risk,
suggesting its potential use for risk stratification. These novel nano-morphology markers that
detect breast cancerous changes from nanoscale structural characteristics of histologically normal
cells could potentially benefit the diagnosis, risk assessment, prognosis, prevention, and treatment
of breast cancer.
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Introduction
The “field effect” or “field cancerization”, a term that denotes the presence of cancer-like
signatures in histologically normal tissues surrounding the primary tumor, is a well-
documented process in breast cancer and many other tumor types [1–4]. It has been well
recognized that the identification of signatures characteristic of “field effect” in breast
cancer with a high accuracy plays a significant role in a wide range of breast cancer
management [3, 5]. For example, the presence of cancer-like signatures in histologically
normal tissue could suggest the presence of malignancy missed by tissue biopsy, thus
enhancing the detection of malignancy. It could also serve as a predictor of early stage
carcinogenesis to guide personalized risk assessment to identify truly high-risk patients for
close surveillance or aggressive adjuvant treatment. Further, the cancer-like signatures
indicative of “field effect” in normal tissue can also provide important guidance to predict
the local recurrence following lumpectomy, as the risk of local recurrence remains despite
histologically negative margins.

Substantial evidence supports the biological plausibility of “field effect” in breast
carcinogenesis, such as loss of heterozygosity [6], microsatellite instability [7, 8], gene
mutations [9], epigenetic alterations [10–12], and gene expression aberrations [3, 13, 14],
which have been identified in histologically normal tissue adjacent to the tumor and in
cancer cells themselves. Although all of these markers have shown a statistically significant
correlation between biomarkers and breast neoplasia (i.e., field effect), their performance
characteristics are suboptimal for clinical practice. Further, the implementation of these
molecular markers to routine clinical use has been challenging, in part due to the special
requirement for sample preparation, high cost and time-consuming nature. More accurate,
quick, simple and clinically applicable tools to identify cancer-like signatures from normal
tissue characteristic of breast cancer “field effect” are urgently needed.

The inability of conventional micron-scale morphologic features to detect the “field effect”
is due, in large part, to the limited resolution (~500 nm) of conventional light microscopy.
But profound nanoscale architectural alterations have been reported in histologically normal
epithelial cells undergoing field carcinogenesis [15–17]. The nanoscale structural properties
have shown great promise to detect the field cancerization in many organs including colon,
lung and pancreas [17–20]. However, the identification of nano-structural properties using
routine tissue histology specimens remains a challenge and the nanoscale structural markers
characteristic of mammary field carcinogenesis are as yet unreported.
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We recently developed spatial-domain low-coherence quantitative phase microscopy (SL-
QPM) that can assess subtle, nanoscale structural changes (i.e., nano-morphology markers)
within the cell nuclei on standard histology slides. SL-QPM takes advantage of the ultra-
high sensitivity of light interference effect to achieve nanoscale sensitivity not attainable
with a conventional microscope [21, 22]. In this article, we investigate the SL-QPM-derived
nano-morphology markers from cell nuclei as potential signatures to detect the breast cancer
“field effect”. We investigate the histology slides from 154 patients and analyze the nano-
morphology markers from normal breast tissue, histologically normal tissue adjacent to
breast tumors, and invasive breast carcinoma. To further evaluate the potential of these
nuclear nano-morphology markers for risk stratification, we compare them with a broad
spectrum of breast pathology entities with progressively increased risk for breast cancer.

Materials and methods
Spatial-domain low-coherence quantitative phase microscopy

Our previous publications have detailed reports about SL-QPM instrument and data analysis
methods [21–25]. In brief, a broadband white light from Xe-arc lamp was collimated by a 4f
imaging system and focused onto the sample by a low-numerical aperture objective. The
reflectance- mode image was collected by a scanning imaging spectrograph (Acton
Research, MA) and a charge-coupled device camera (Andor Technology, CT) that recorded
a three-dimensional spatial-spectral intensity cube I(x, y, k) (k is the 8 free-space
wavenumber), which arises from the interference between the scattered wave propagating
inside the sample and the reference waves. We then mathematically transformed the data
I(x, y, k) to obtain a two-dimensional optical path length difference (OPD) map from the cell
nucleus.

The basic outline of the transformation is as follows: after removing the bias term, we took
the pixel-wise Fourier transform of I(x, y, k) along the k dimension, giving us IF(x, y, z′),
where z′ is the optical path length. We then extract the OPD for a fixed optical path length
of interest, zp, using the equation OPD(x, y) = ∠I(x, y, z′)|z′=zp/(2k), where ∠I(x, y, z′) is
the phase term and the free-space wavenumber k corresponds to λ0 = 550 nm. As a result,
the OPD map OPD(x, y) for the cell nucleus can be obtained.

Standard operating protocol
All research was performed with the approval of the institutional review board at University
of Pittsburgh. We used standard histology specimens from breast tissue biopsies. An
experienced pathologist with expertise in breast pathology (RB) evaluated each slide and
marked cells of interest from the target pathology.

We have established a standard operating procedure for processing histology specimens and
acquiring, and analyzing the SL-QPM data. We extensively evaluated the contribution of
various confounding factors, such as (1) variation in the staining level, (2) variation of tissue
section thickness, (3) number of cells to be analyzed, (4) age of the sample, and (5) inter-
user variability and found that the variation can be minimized to be within the system
sensitivity (see Supplementary Methods for details).

First, all the tissue biopsies were processed according to the following standard clinical
protocol: formalin-fixation, paraffin-embedding, sectioning at 4 micron thickness, paraffin-
removal, hematoxylin and eosin (H&E)-staining, and coverslipping. We then evaluated
factors that may alter the nano-morphology markers, including effect of stain variation
(H&E), tissue section thickness, and number of cell nuclei required for SL-QPM analysis.
We developed a correction model to account for the stain-induced variations in SL-QPM
analysis, described in detail in our earlier publication [24] and in the Supplementary
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Methods. We confirmed that the variation among different microtomes and tissue section
thickness has minimal effect on the SL-QPM analysis, within the system sensitivity (shown
in Supplementary Methods). We also determined the minimum number of cell nuclei
required for SL-QPM analysis: upon calculating the average value of each marker for
different numbers (from 10 to 120) of cell nuclei, we found that a minimal of 40–60 cell
nuclei were required to obtain a reliable statistical average for each SL-QPM marker. We
also examined the histology slides ranging from 2004 to 2010 having identical diagnosis
classification and found that the age of the slide did not significantly affect the SL-QPM-
derived markers (P = 0.5, data not shown). Further, the SL-QPM data acquisition and
analysis performed by two users produced the same SL-QPM marker values for the same set
of specimens (P = 0.8).

Statistical analysis
We extracted the nano-morphology markers from the quantitative analysis of the OPD map
from each cell nucleus, using two simple statistical parameters: average nuclear OPD over
the two-dimensional OPD map OPDc (x, y) of the entire cell 〈OPD〉, which correlates with
nuclear density, and intra-nuclear standard deviation of OPD σOPD, which describes the
structural heterogeneity within the cell nucleus. To obtain the characteristic value for an
individual patient, we obtained the mean value of 〈OPD〉 and σOPD by taking the average
value of 40–60 cell nuclei from each patient, denoted as “(〈OPD〉)p” and “(σOPD)p”,
respectively.

The statistical comparison between two patient groups was obtained using Wilcoxon’s rank-
sum test at 95 % confidence interval, and two-sided P values were used for all analyses. A P
value of 0.05 or less is considered as statistical significance. We developed a multivariate
logistic regression prediction model using two variables (〈OPD〉)p and (σOPD)p. The cross-
validated receiver operating characteristic (ROC) curves were calculated using the logistic
regression model and leave-one-out cross-validation [26]. Specifically, we utilized logistic
regression to calculate the probability of cancer by combining the two optical markers
(〈OPD〉)p and (σOPD)p. Logistic regression is a statistical approach that constructs the
probability of a positive diagnosis (i.e., cancer) using the equation:

, where I is the constructed index, p is the
probability of a positive diagnosis (i.e., cancer), and β0, β1, and β2 are the coefficients
determined by the logistic regression model fit provided by SAS version 9.0 (SAS Institute).
To avoid optimistically biased estimates, we used leave-one-out cross-validation on a
logistic regression model. In each logistic regression model fit, we left one observation (i.e.,
one patient) out and utilize all other observations to obtain the regression coefficients. These
coefficients and the two optical markers (with the left-out observation) were then used to
calculate the probability of cancer, according to the above equation. This process was
repeated for all of the observations to produce a set of predicted probabilities. Then at
various probability threshold settings (from 0 to 1), we calculated the fraction of true
positives out of the positives (TPR = true positive rate) and the fraction of false positives out
of the negatives (FPR = false positive rate). The ROC curve was created by plotting TPR vs.
FPR. The discriminant power of the model was assessed by computing the area under the
ROC curve.

Results
Categorization of human specimens

We analyzed cells on the glass slides of histology specimens from a total of 154 patients
classified in 6 categories according to criteria in the literature [27, 28] (shown in Table 1),
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ranked according to the progressively increasing risk for breast cancer [28]: (1) normal
patients from reduction mammoplasty; (2) patients with non-proliferative benign breast
lesions; (3) patients with proliferative breast lesions without atypia; (4) patients with
proliferative breast lesions with atypia; (5) patients with invasive carcinoma, in which
histologically normal-appearing cells located within 1 cm from malignant tumor, referred to
as “malignant-adjacent” normal were analyzed; and (6) patients with invasive carcinoma in
which malignant cells were analyzed.

OPD map from the cell nuclei
Figure 1 shows representative pseudo-color OPD maps from cell nuclei for each of the 6
categories. The color and spatial distribution in these OPD maps reveal a progressive change
from Categories 1 to 6, which correlates with the status of the patient’s most advanced
pathological diagnosis. The OPD maps from normal and benign categories (Categories 1–2)
showed similar pattern and then modest difference from those of proliferative lesions
(Categories 3–4). Most importantly, the OPD maps from “malignant-adjacent” normal cells
(Category 5), although histologically normal-appearing, exhibited a great similarity to those
of malignant cells (Category 6), indicative of cancer-like signatures in these “malignant-
adjacent” normal cells.

Nuclear nano-morphology markers of histologically normal cells detects the presence of
malignancy

To investigate whether the signatures reflected in these OPD maps from “malignant-
adjacent” normal cells can detect the “field effect” in breast cancer, we extracted two nano-
morphology markers, average nuclear OPD 〈OPD〉 and standard deviation of OPD σOPD
from the OPD map of each cell nucleus, and their mean value of 40–60 cell nuclei is used as
the characteristic marker for each patient, denoted as “(〈OPD〉)p” and “(σOPD)p”,
respectively. We compared the nano-morphology markers from patients with these
“malignant-adjacent” normal cells to healthy patients (reduction mammoplasty, Category 1)
and invasive cancer patients with malignant cells (Category 6). As shown by box-and-
whisker plots in Fig. 2, although normal cells from healthy patients (Category 1) and normal
cells from Category 5—“malignant-adjacent” normal were marked as “normal” by the
expert breast pathologist, their nano-morphology markers ((〈OPD〉)p and (σOPD)p) exhibit
distinct and highly statistically significant changes (P = 0.0003 for (〈OPD〉)p and P = 5.2E–7
for (σOPD)p). The difference between normal (Category 1) and malignant (Category 6)
categories were even more pronounced (P = 3.6E–6 for (〈OPD〉)p and P = 2.4E–11 for
(σOPD)p). The statistical analysis confirmed that the nano-morphology markers from
“malignant-adjacent” normal cells are indeed distinct from normal tissue from healthy
patients, with a great similarity to malignant cells. This result suggests that the nano-
morphology markers detect the “field effect” in breast carcinogenesis. We also confirmed
that this result was not due to the artifact of staining (See Supplementary Methods for
details).

Nuclear nano-morphology markers parallel breast cancer risk
As the histologic appearance of benign lesions is strongly associated with the risk of breast
cancer, we further evaluate these nuclear nano-morphology markers among the broad
spectrum of breast pathology entities (Categories 1–6) with progressively increased cancer
risk. Figure 3 shows the box-and-whisker plots of the nuclear nano-morphology markers of
(〈OPD〉)p and (σOPD)p for all 6 categories. The statistical mean of both (〈OPD〉)p and
(σOPD)p reveals a progressive change that parallels breast cancer risk. As shown in Fig. 3a,
in Categories 1–3 (normal, non-proliferative benign, and proliferative lesions without
atypia), the statistical mean values of (〈OPD〉)p show a progressive increase, but without
statistical significance (ANOVA, P > 0.05). However, the value of (〈OPD〉)p from Category

Bista et al. Page 5

Breast Cancer Res Treat. Author manuscript; available in PMC 2013 February 07.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



4 (proliferative lesions with atypia) is significantly increased compared to those from
Categories 1 to 3 (P = 0.001). This is in agreement with the clinical findings that no
significantly increased risk (relative risk of 1–1.88, reported in Ref. [28]) are found in
normal, non-proliferative benign and proliferative lesions without atypia, but the cancer risk
significantly increases in proliferative lesions with atypia (relative risk of 4.24, reported in
Ref. [28]). Further, the values of this marker from all of non-cancerous lesions (Categories
1–4) are significantly lower than those of “malignant-adjacent” normal category (Category
5) and malignant category (Category 6). In particular, for patients with proliferative lesions
with atypia (Category 4), the value of (〈OPD〉)p is significantly lower than that of
“malignant-adjacent” normal cells (Category 5) (P = 0.03), but significantly higher than
those of proliferative lesions without atypia (Category 3) (P = 0.02). Given that proliferative
lesions with atypia are often considered as high-risk lesions, this marker characteristic of
breast cancer “field effect” shows the potential to detect patients who truly have malignant
lesions in this high-risk group (proliferative lesions with atypia).

On the other hand, the intra-nuclear heterogeneity marker of (σOPD)p (Fig. 3b) distinguishes
normal patients with reduction mammoplasty (Category 1) from patients with non-
proliferative benign (Category 2) and proliferative lesions (Categories 3 and 4) with
statistical significance (P = 0.0002), suggesting that (σOPD)p also is sensitive to abnormal
changes in the breast tissue, even for low-risk benign conditions. The values of (σOPD)p do
not show any statistical difference among non-proliferative benign and proliferative lesions
(Categories 2–4), but they are significantly higher than those from “malignant-adjacent”
normal (Category 5) (P = 0.001) and malignant categories (Category 6). Importantly, the
(σOPD)p in proliferative lesions with atypia (Category 4) distinguishes well from
“malignant-adjacent” normal cells (Category 5) with statistical significance (P = 0.005).
This result indicates that these two nano-morphology markers provide complementary
information that can be used as potential characteristic markers for the detection of breast
cancer “field effect” and risk-stratification.

Nuclear areas
As the nuclear size is often used as one of the major criteria in conventional pathology, we
evaluated whether the quantitative analysis of nuclear size can also detect the “field effect”
of breast cancer or development of breast tumorigenesis. We calculated the average nuclear
area as a parameter to measure the nuclear size and their mean value of 40–60 cell nuclei
was used as the characteristic marker for each patient. As shown in Fig. 4, we found that the
average nuclear size does not show any statistical significance between normal patients from
reduction mammoplasty (Category 1) and patients with “malignant-adjacent” normal cells
(Category 5). These “malignant-adjacent” normal cells also do not show any statistically
significant difference, when compared to benign and proliferative lesions. Not surprisingly,
the only significant change is seen between malignant cells (Category 6) and those cells
from reduction mammoplasty, benign, proliferative lesions and “malignant-adjacent” normal
cells (Categories 1–5) (P < 1E–9), in agreement with conventional pathology. This result
confirms that breast cancer “field effect” is not detectable by quantitative evaluation of H&E
slides by conventional light microscopy. The nuclear nano-morphology markers are the
nanoscale structural information that is otherwise unattainable using conventional
microscopy.

Nuclear nano-morphology markers do not reflect age-related changes
Because age can be an important confounding factor [29, 30], we wanted to ensure that our
observed changes in nuclear nano-morphology markers reflected breast carcinogenesis
rather than age difference. We compared (〈OPD〉)p and (σOPD)p for specimens divided into
two age groups: 39–49 and 50–60 years (see tables in Fig. 5 for age break-down by
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Category). We combined data from Categories 1–4 into a non-cancerous group. As shown in
Fig. 5, the nuclear nano-morphology markers of the non-cancerous group differ significantly
from both “malignant-adjacent” normal (Category 5) and malignant categories (Category 6)
(P < 0.05), with the similar progressive changes as shown in Figs. 2 and 3.

Nuclear nano-morphology markers are not sensitive to tumor subtype
We also looked for potential differences in nuclear nano-morphology markers based on the
common breast tumor subtypes: estrogen receptor (ER), progesterone receptor (PR), and
human epidermal growth factor receptor 2 (HER2). We used Spearman’s rank correlation
method to analyze the correlation of (〈OPD〉)p and (σOPD)p from Categories 5 and 6
(“malignant-adjacent” normal and malignant) to the expression status of ER, PR, and HER2
(positive vs. negative). We found no correlation between these nuclear nano-morphology
markers and ER, PR, and HER2 status (P > 0.1).

Performance characteristics
Our results showed statistically significant correlation between the nuclear nano-
morphology markers and breast cancer “field effect”. To evaluate the performance
characteristics of using nuclear nano-morphology markers to detect breast cancer “field
effect” for potential clinical use, we calculated ROC curves. To avoid optimistically biased
estimates, we used leave-one-out cross-validation on a logistic regression model using
variables (〈OPD〉)p and (σOPD)p. The discriminant power of the model was assessed by
calculating the area under the ROC curve (AUROC). As shown in Fig. 6, the nano-
morphology markers from “malignant-adjacent” normal cells (Category 5) are well
distinguished from those from normal patients (Category 1) with a high level of
discriminatory accuracy of 0.93, as measured by AUROC. Further, these nano-morphology
markers from the “malignant-adjacent” normal cells (Category 5) can also be distinguished
from a broad spectrum of non-cancerous lesions, including those from non-proliferative
benign, proliferative lesions without and with atypia (Categories 1–4), with a discriminatory
accuracy of 0.87. These results support the ability of these nano-morphology markers to
detect the “field effect” of breast cancer with a high level of accuracy, which may have a
potential clinical use in early detection of malignancy and risk stratification.

Discussion
Exploitation of the mammary field cancerization to improve cancer diagnosis, risk
stratification, prevention and treatment is a well-recognized clinical goal [3–5]. As we
previously discussed, the current tools lack sufficient performance characteristics and the
applicability for routine clinical use. Thus, the finding of an accurate and clinically
applicable marker for breast cancer “field effect” would be of major clinical importance.

The application of the newly developed microscopy system, SL-QPM, to analyze standard
histology specimens, has a great potential due to its simplicity and its superior sensitivity to
nanoscale structural changes from cell nuclei. In this proof-of-concept study, we show, for
the first time, that the SL-QPM-derived nano-morphology markers from cell nuclei can
detect the presence of breast malignancy in histologically normal-appearing cells adjacent to
the tumor (“field effect”), with a discriminatory accuracy of 0.93. Such superior
performance to detect breast cancer “field effect” shows a great potential for routine clinical
use. Furthermore, the nuclear nano-morphology markers sequentially progress in parallel
with breast cancer risk, from normal breast epithelial tissue, to non-proliferative benign
lesions, to proliferative lesions without atypia, to proliferative lesions with atypia, to
“malignant-adjacent” normal tissue, and finally to malignant tumor. Thus, the progressive
changes we observed in nuclear nano-morphology markers reflect early events during the

Bista et al. Page 7

Breast Cancer Res Treat. Author manuscript; available in PMC 2013 February 07.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



neoplastic transformation of breast epithelial cells and support their relevance to breast
carcinogenesis [27, 28, 31], suggesting their potential use for breast cancer risk
stratification.

The genetic and epigenetic alterations of field carcinogenesis can lead to significant
nanoscale structural consequences [15]. As numerous molecular changes associated with
breast carcinogenesis have been reported in the “malignant-adjacent” histologically normal
tissue, they could alter cellular processes during neoplastic transformation such as cell
growth, repair, apoptosis, and cell cycle regulation and result in the observed changes in our
nuclear nano-morphology markers. We noted that the significantly higher average nuclear
OPD (〈OPD〉) has been associated with the subtle nanoscale increase in the nuclear density
[32]. On the other hand, the alterations in the intra-nuclear standard deviation of OPD
(σOPD) quantify the structural heterogeneity within the cell nucleus and may also be one of
the earliest changes during breast carcinogenesis. Similar nano-structural changes have also
been reported to detect the early stage carcinogenesis as a consequence of genetic alterations
[16] and to be evidence of “field effect” in colon, lung, and pancreatic cancers [17, 18, 25].

Since SL-QPM can be directly applied to standard histology specimens and detect the breast
cancer “field effect” with a high accuracy, it has a potential to be rapidly integrated into
clinical practice. For example, as the absence of malignant cells often preclude the diagnosis
of cancer, the histologically normal cells analyzed using SL-QPM that show cancer-like
“field effect” signatures may suggest either an adjacent malignancy missed by core needle
biopsy or that these “normal” cells have a higher cancer risk. However, we would like to
emphasize that we do not intend to use this technique as a quantitative version of
conventional pathology to distinguish the different pathological entities of breast lesions.
Instead, we aim to utilize the ultra-high sensitivity of these SL-QPM-derived nano-
morphology markers to detect breast field cancerization for clinical use to guide various
aspects of breast cancer management.

Although our data are compelling, this is a proof-of-concept study and a number of
limitations in this study need to be acknowledged. First, our sample size is modest. It is
encouraging that even with this modest sample size, our technique can still detect the breast
cancer “field effect” with a high level of statistical significance and an excellent accuracy.
To mitigate the possibility of overfitting, we only used two most significant nano-
morphology markers in the prediction model and performed leave-one-out cross-validation
to avoid biased estimates in their performance characteristics. Second, this proof-of-concept
investigation focuses on evaluating the potential of SL-QPM-derived nuclear nano-
morphology markers to detect breast cancer “field effect”, and its intended clinical use in the
context of a specific clinical scenario has not been demonstrated. The clinical utility of this
technique needs to be further validated with a larger patient population. Ultimately, a large
multicenter study will need to be performed for a specific clinical implication to guide
diagnosis, risk assessment, prognosis, prevention and treatment.

In conclusion, we report that nuclear nano-morphology markers, derived from a new optical
microscopy system (SL-QPM), show great promise to detect breast cancer “field effect”
with a high accuracy. These nuclear nano-morphology markers are based on the detection of
nanoscale structural characteristics from the “field effect” of breast carcinogenesis, which
otherwise cannot be appreciated using light microscopy or digital image analysis. As this
simple optical microscopy system analyzes standard histology slides, it can be readily
integrated with conventional pathologic techniques. The utilization of this highly sensitive,
simple and clinically applicable tool to detect breast cancer “field effect” has potential
clinical utilities in bringing a “personalized” approach for cancer diagnosis, prevention and
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treatment. We are continuing to evaluate the various clinical utilities of this technique and to
examine other nano-structural properties that may further improve performance.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Representative conventional images of breast biopsies and structure-derived OPD map from
a single cell nucleus. a Wide field histology images, b high-magnification histology images
of breast tissue biopsies, and c corresponding OPD maps of the cell nuclei (marked in
circles) from (I) normal cells from a healthy patient (Category 1); (II) cells labeled as
fibrocystic changes from a non-proliferative benign patient (Category 2); (III) cells labeled
as ductal epithelial hyperplasia from a patient with concurrent apocrine metaplasia and
cystic changes (Category 3); (IV) cells labeled as atypical lobular hyperplasia (Category 4);
(V) cells labeled by the expert breast pathologist as “normal” from a patient with invasive
breast carcinoma (Category 5, “malignant-adjacent” normal); and (VI) cells labeled as
“malignant” from a patient with invasive breast carcinoma (Category 6). Scale bar in the
image indicates 10 μm. The color bar represents the OPD value from the cell nucleus
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Fig. 2.
Box-and-whisker plots showing the nuclear nano-morphology markers for healthy patients
with normal cells (Category 1), invasive cancer patients with “malignant-adjacent” normal
cells (Category 5), and invasive cancer patients with malignant cells (Category 6): a average
nuclear OPD ((〈OPD〉)p), b intra-nuclear standard deviation ((σOPD)p). For each patient, we
used the mean value of 〈OPD〉 and σOPD by averaging ~40–60 cell nuclei
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Fig. 3.
Box-and-whisker plots showing the changes in nuclear nano-morphology markers from all 6
categories with a broad range of breast pathology entities: a average nuclear OPD
((〈OPD〉)p) and b intra-nuclear standard deviation of OPD ((σOPD)p). For each patient, we
used the mean value of 〈OPD〉 and σOPD by averaging ~40–60 cell nuclei. If P value is 0.1
or larger, “NS” is used

Bista et al. Page 13

Breast Cancer Res Treat. Author manuscript; available in PMC 2013 February 07.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 4.
Box-and-whisker plots showing the average nuclear area from the 6 categories of breast
pathology entities. The average nuclear area of normal cells and “malignant-adjacent”
normal cells are not statistically significant (P = 0.2). If P value is 0.1 or larger, “NS” is used
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Fig. 5.
Statistical analysis of nuclear nano-morphology markers in age-matched patient groups: a
39–49-year-old patients and b 50–60-year-old patients. The non-cancerous group includes
Categories 1–4. The error bar represents standard error

Bista et al. Page 15

Breast Cancer Res Treat. Author manuscript; available in PMC 2013 February 07.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 6.
Performance characteristics of nuclear nano-morphology markers described by cross-
validated ROC curves to distinguish “malignant-adjacent” normal (Category 5) from normal
(Category 1) and non-cancerous lesions (Categories 1–4). The discriminatory accuracy was
assessed by the area under the ROC curve (AUROC)

Bista et al. Page 16

Breast Cancer Res Treat. Author manuscript; available in PMC 2013 February 07.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Bista et al. Page 17

Table 1

Patients categorized from target tissue

Categories Tissue source (patient number, n) Age (year, mean ±
SD) Most advanced pathological diagnosis (patient number, n)

1 Reduction mammoplasty (24) 38.3 ± 10.9 Normal (24)

2 Non-proliferative benign lesions (14) 44.4 ± 15.9 Fibrocystic changes (2)

Fibroadenoma (9)

Apocrine metaplasia (3)

3 Proliferative lesions without atypia (10) 49.5 ± 13.8 Intraductal papilloma (3)

Ductal epithelial hyperplasia (5)

Sclerosing adenosis (2)

4 Proliferative lesions with atypia (15) 53.7 ± 11.9 Atypical ductal hyperplasia (10)

Atypical lobular hyperplasia (5)

5 ‘‘Malignant-adjacent’’ normal (32) 60.1 ± 14.5 Malignant (32)

Stage I (16) ER-positive (26)

Stage II (10) PR-positive (23)

Stage III (2) HER2-positive (3)

No staging data (4)

6 Invasive carcinoma (59) 60.7 ± 12.2 Malignant (59)

Stage I (24) ER-positive (50)

Stage II (15) PR-positive (46)

Stage III (15) HER2-positive (6)

Stage IV (1)

No staging data (4)
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