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Abstract
Nonsteroidal anti-inflammatory drug (NSAID) activated gene-1, NAG-1, is a divergent member of
the transforming growth factor-beta (TGF-β) superfamily that plays a complex but poorly
understood role in several human diseases including cancer. NAG-1 expression is substantially
increased during cancer development and progression especially in gastrointestinal, prostate,
pancreatic, colorectal, breast, melanoma, and glioblastoma brain tumors. Aberrant increases in the
serum levels of secreted NAG-1 correlate with poor prognosis and patient survival rates in some
cancers. In contrast, the expression of NAG-1 is up-regulated by several tumor suppressor
pathways including p53, GSK-3β, and EGR-1. NAG-1 expression is also induced by many drugs
and dietary compounds which are documented to prevent the development and progression of
cancer in mouse models. Studies with transgenic mice expressing human NAG-1 demonstrated
that the expression of NAG-1 inhibits the development of intestinal tumors and prostate tumors in
animal models. Laboratory and clinical evidence suggest that NAG-1, like other TGF-β family
members, may have different or pleiotropic functions in the early and late stages of
carcinogenesis. Upon understanding the molecular mechanism and function of NAG-1 during
carcinogenesis, NAG-1 may serve as a potential biomarker for the diagnosis and prognosis of
cancer and a therapeutic target for the inhibition and treatment of cancer development and
progression.

Keywords
NAG-1; GDF15; Cancer; tumor suppressor

Introduction
The use of aspirin and other cyclooxygenase (COX) inhibitors have been well established
for the prevention and treatment of colorectal cancer. Our research and interest in NAG-1
arose from testing the hypothesis that changes in gene expression induced by COX
inhibitors contributed to the prevention of colorectal cancer. From an indomethacin induced
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library from COX negative cells, we identified NAG-1, the most highly induced gene, by
PCR based subtractive hybridization [1]. NAG-1 was identified by other groups using a
variety of different cloning strategies and has several names, for example, macrophage
inhibitory cytokine-1 (MIC-1) [2], placental transformation growth factor-β (PTGFB) [3],
prostate-derived factor (PDF) [4], growth differentiation factor 15 (GDF15) [5], and
placental bone morphogenetic protein (PLAB) [6]. NAG-1 has received considerable
attention revealing a remarkable multifunctional role in controlling biological events. Not
only does NAG-1 play a role in cancer development and progression, but NAG-1 also
controls stress responses, bone formation, hematopoietic development, and adipose tissue
function, as well as contributing to cardiovascular diseases [7]. The focus of this article is to
discuss the diverse and conflicting roles of NAG-1 in cancer development and progression
and to discuss if COX inhibitor-induced expression of NAG-1 can contribute to the cancer
prevention observed with NSAID usage.

Biochemistry of NAG-1
NAG-1 is a divergent member of the TGF-β superfamily with an amino acid sequence
similar to the bone morphogenic protein (BMP) genes. The human NAG-1 locus has been
mapped to 19p12.1–13.1 [8] and the NAG-1 protein is encoded by two exons. The 309 bp
Exon I contains a 71 bp 5′ untranslated region (UTR) and a 238 bp coding region, and the
647 bp Exon II contains a 3′ UTR. The gene contains a single 1820 bp intron [8]. The
NAG-1 pro-domain consists of 167 amino acids and contains an N-linked glycosylation site
at amino acid position 70 [9]. After dimerization of the full length pro-NAG-1 precursor by
a specific disulfide linkage, the dimeric pro-protein undergoes proteolytic cleavage
catalyzed by furin-like protease at the amino acid target sequence RXXR resulting in the
release of a 112 amino acid C-terminal dimeric mature region. The mature dimer is then
secreted into the extracellular media (Figure 1). Recently, it has been reported that the pro-
domain selectively binds to an extracellular matrix [10]. NAG-1 may have multiple forms
possibly present within the cell: the pro-NAG-1 monomer (~40kD), the pro-NAG-1 dimer
(~80kD), the pro-peptide the N-terminal fragment after cleavage (~28kD) and the mature
dimer (~30kD) (Figure 1). The presence of different forms in the cell, coupled with the
resistance of the dimer to reduction, can often make analysis of the expression by western
blot a challenge to correctly identify the forms expressed.

The mature NAG-1 has 7 cysteine residues with 6 cysteines likely forming a cysteine knot, a
key structural characteristic of members of the TGF-β superfamily. The seventh cysteine
forms a disulfide linkage to a second molecule of NAG-1 forming a homodimer. The
secreted dimer is present in the serum and secreted into the media of cultured cells that
expressing NAG-1. The mature dimer is highly glycosylated and shares very little of its
identity with other TGF-β superfamily proteins. There is some evidence for the presence of
the pro-form of NAG-1 as well as the pro-peptide in the media of cultured cells [10].
Molecular modeling based on the known structure of other TGF-β members suggests that
the three dimensional structure is most like GDF-8 or myostatin, however the NAG-1 crystal
structure has not been reported [11].

TGF-β members bind to form a complex between Type-I and Type-II receptors. Although
seven Type-I and five Type-II receptors have been identified for the TGF-β superfamily, the
specific receptor for NAG-1 remains to be identified. Some studies suggest that the mature
dimer can activate TGF-β response elements [12]. In addition, the activation of other
intracellular signaling pathways, for example, the MAPK and EGFR/ErbB signaling
pathways [13, 14], are reported to be activated by NAG-1. Some evidence suggests that the
active form of NAG-1 is the mature secreted dimer. However with all the different forms
biosynthesized and the potential for interactions between these forms (binding partners), it is
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likely the mature dimer, pro-forms, and pro-peptides of NAG-1 play a central role in
modulating the biological activity of NAG-1.

The murine NAG-1 gene was also identified and characterized [5]. The human NAG-1 and
murine NAG-1 genes both contain two exons, which encode 308 amino acids protein
(human) and 303 amino acid protein (mouse), respectively. However, the tissue distribution
of mouse NAG-1 protein is different from human [15]. The human NAG-1 is expressed in
the prostate, colon, placenta, and poorly or not at all expressed in the liver [3], whereas the
mouse NAG-1 is highly expressed in the liver but not in the prostate, colon and placenta
[15]. In addition, sequence comparison between the human and mouse NAG-1 promoters in
the ~700 bp region revealed only 39% homology [16], possibly explaining the different
expression pattern of NAG-1 at the transcriptional level between human and mouse. Further,
the differences in the N-terminal region of NAG-1 peptide sequences in human and mouse
may contribute to different regulation of expression and even alter the biological activity of
NAG-1. Since the C-terminal region of the NAG-1 peptide sequence is conserved in the
cysteine residues of human and mouse gene, it is assumed that mouse NAG-1 may also form
a dimer. The crystal structures of human or mouse NAG-1 have not been solved although
modeling predicts the structure of human NAG-1 would be similar to the structure of GDF-8
[11]. Further investigations are needed to elucidate whether different expression pattern and
structure between human and mouse NAG-1 may have an impact on its biological functions.

Yamaguchi et al. cloned the canine NAG-1 gene and investigated its expression in canine
tissues [17]. The predicted canine NAG-1 amino acid sequence revealed nine cysteine
residues and an RXXR sequence that was conserved in the human, mouse, and rat,
suggesting that canine NAG-1 protein may have similar biological activity to other species.
The canine NAG-1 is induced by several NSAIDs, with the most robust up-regulation by
piroxicam in osteosarcoma cells [17]. The secreted and pro-forms of NAG-1 were detected
in canine tissues by western blot analysis. Canine cancer models could be a useful tool to
study NAG-1 expression as related to cancer development.

Regulation of expression
Transcriptional regulation of NAG-1 has been extensively investigated by our group.
NAG-1 is up-regulated in human colorectal cancer cells by several NSAIDs [18], as well as
by dietary compounds, including resveratrol [19], genistein [20], diallyl disulfide [21],
conjugated linoleic acid [22], green tea catechins [23], epigallocatechin-3-gallate (EGCG)
[24], indole-3-carbinol [25], capsaicin [26], damnacanthal [27], PPARγ ligands [28, 29],
and 1,1-Bis(3′-indolyl)-1-(p-substituted phenyl) methanes [30]. NAG-1 expression was also
seen in other cancer cells by anti-cancer compounds [31–33]. A very diverse number of
chemicals with a wide range of chemical structures induce the expression of NAG-1,
suggesting multiple mechanisms responsible for the increase in expression. We have
characterized the human NAG-1 promoter, which contains several cis-acting and trans-
acting elements [16]. Sp1 transcription factors regulate the basal transcription of NAG-1
through the GC box located within −133 bp of the NAG-1 promoter, whereas p53 sites play
a pivotal role in dietary compound-induced NAG-1 expression. Two p53 sites are located
within the −133 bp promoter with a third site located in the 5′ UTR [3, 19]. Furthermore,
several COX inhibitors and PPARγ ligands induce NAG-1 expression at the transcriptional
level via EGR-1 transcription factors [34, 35]. Recently, we have identified that the
transcriptional factor C/EBPβ contributes to NAG-1 induction mediated by capsaicin and
damnacanthal [27, 36]. Figure 2 summarizes the transcriptional regulation of NAG-1 by
NSAIDs and dietary compounds through different transcriptional factors. Collectively,
NAG-1 is regulated by multiple mechanisms suggesting that NAG-1 could be a molecular
target for cancer chemoprevention.
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Epigenetic regulation of expression
Whether NAG-1 expression is epigenetically regulated has been studied in glioblastoma cell
lines. We first examined whether histone modification plays a role in NAG-1 expression.
We found that the histone deacetylase inhibitor, trichostatin A (TSA), induces NAG-1
promoter activity and induces NAG-1 expression [37]. Further studies suggested that TSA-
induced NAG-1 expression not only involves the interaction with the transcriptional factors
Sp1 and EGR-1 at transcriptional level, but also the increase of mRNA stability at post-
transcriptional level [37].

Aberrant promoter hypermethylation is a common mechanism for silencing tumor
suppressor genes in cancer cells. Previous work shows that the NAG-1 promoter has several
CpG islands [38]. In glioblastoma cell lines, basal NAG-1 expression was increased by the
demethylating agent, 5-aza-2′-deoxycytidine. The NAG-1 promoter was densely methylated
in several glioblastoma cell lines as well as in primary oligodendroglioma tumor samples,
which have low basal expression of NAG-1 [38]. DNA methylation at two specific sites
(−53 and +55 CpG sites) in the NAG-1 promoter was strongly associated with lower NAG-1
expression. The methylation of the NAG-1 promoter at the −53 site blocks EGR-1 binding
and thereby suppresses NAG-1 induction. Pre-incubation with 5-aza-2′-deoxycytidine
increased NAG-1 basal expression, and subsequent incubation with a NAG-1 inducer
increased NAG-1 expression [38]. Thus, methylation of specific promoter sequences may
cause transcriptional silencing of the NAG-1 locus in gliomas and may ultimately contribute
to tumor progression. However, many other tumors and cells are reported to highly express
NAG-1. While the methylation status is unknown in other tumors, this may be due to the
lack of CpG island methylation in NAG-1 overexpresing tumors. Further studies are
necessary to clarify the conflicting data on the expression of NAG-1 in tumors and the
possible link to CpG island methylation.

Determining NAG-1 expression in tissue
NAG-1 expression in normal and transformed tissue has been reported in a number of
publications as reviewed by Mimielle and Batra [7]. However, there is no clear consensus
about the expression levels in tumors compared to normal tissue although most data indicate
higher expression in tumors relative to normal tissues. One consideration is the different
methodologies used to measure NAG-1 expression by different investigators. The specificity
of antibodies used to measure expression in many reports is frequently not clearly stated. For
example, the use of an antibody that detects the monomer form but poorly reacts with the
dimer form could yield conflicting expression data as compared to the use of an antibody
that reacts well with the dimer but poorly with the monomers. Because pro-NAG-1 is
cleaved at the RXXR site, the activity of the cleaving enzyme can influence the level of
NAG-1 inside the cell as the cleaved NAG-1 is rapidly secreted. It is possible that analysis
of the cell lysate would yield higher NAG-1 expression than in cells where cleaving activity
is higher. However, recent studies did not examine the activity of the cleaving enzyme when
analyzing NAG-1 expression. Thus, reports of NAG-1 expression by measurement of
protein expression should be viewed with caution.

Determination of gene copy number can be used to compare the expression of NAG-1
between different cells in culture and to determine the expression level in normal and tumor
tissues. In a recent publication we measured the expression of NAG-1 in glioma cell lines
and in normal and glioblastoma tumor samples [38]. In 11 out of 12 tumor samples the gene
copy number was significantly lower than the gene copy number observed in the normal
tissue and was in general agreement with the expression of the pro-NAG-1 protein
expression in the tissue as measured by Western analysis. For the low grade glioma cell
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lines the gene copy number was 5 to 10 times higher than the gene copy number for the
glioblastoma cell lines. The correlation between the gene copy number and the expression of
the pro-NAG-1 in the cells and concentration of secreted NAG-1 as determined by ELISA
was inconsistent. In some cells most of the NAG-1 was the secreted NAG-1 in the media
while in other cells most of the NAG-1 remained as the pro-NAG-1 inside the cells. Thus,
we propose the measurement of gene copy number is a better estimate of NAG-1 expression
in tissues.

Complex roles of NAG-1 in cancer development and progression
The role NAG-1 plays in the development and progression of cancer is complex and poorly
understood. Some experimental evidence suggests that NAG-1 has tumor suppressor
activity, while other data suggests that it has oncogenic activity. The anti-tumorigenic and
pro-tumorigenic effects of NAG-1 on tumor growth appear to be dependent on the type of
cancer and the stage of the cancer. The following is a summary of the experimental evidence
supporting the anti- and pro-tumorigenic activities of NAG-1.

Inhibition of tumor formation
a. The overexpression of NAG-1 in cancer cells HCT116 [1], MCF-7 [39], PC-3 [40],

and glioblastoma [41] inhibits the growth of tumors in nude mice in xenograft
models. Furthermore, the expression of NAG-1 induces apoptosis in several cancer
cells in vitro [42]. Many drugs and chemicals including COX inhibitors with
documented cancer prevention activity induce the expression of NAG-1 in a
number of different cells in vitro [42]. Investigations to determine the mechanisms
for this increased expression reveal that known tumor suppressors may regulate
expression of NAG-1. Activation of the tumor suppressor genes p53 [3], EGR-1
[35], GSK-3β and C/EBPβ [36] are required to increase NAG-1 expression as
mentioned above. This is indirect evidence supporting the notion of NAG-1 acting
as a tumor inhibitor.

b. However, evidence supporting inhibition of cancer formation by NAG-1 comes
from experiments with a transgenic mouse expressing hNAG-1 ubiquitously. After
treating mice with the intestinal carcinogen AOM, a reduced number of foci were
observed in the hNAG-Tg mice as compared to wild type mice [43]. Furthermore,
NAG-1 Tg mice bred to the Apcmin mice also had a lower number of observed
polyps. Collectively, both chemically and genetically induced intestinal cancer is
lower in the NAG-1 Tg mice. In addition, the NAG-1 Tg mice were also reported
to be resistant to urethane induced lung tumors [44]. More recently, an inhibition of
prostate tumorigenesis was observed in the transgenic adenocarcinoma of the
mouse prostate (TRAMP) model of prostate cancer after crossing the TRAMP
mouse with NAG-1 transgenic mouse [45]. These findings indicate that NAG-1
may act as a tumor suppressor in the early stages of tumor development.

c. The Apcmin mouse was also bred to a mNAG-1 knockout mouse to yield a Apcmin

mouse not expressing mNAG-1 [46]. The deletion of the NAG-1 gene did not alter
the spontaneous development of intestinal polyps observed in the Apcmin mouse.
However, inhibition of polyp formation was only observed in the wild type Apcmin

expressing mNAG-1 after treatment of these mice with the COX inhibitor sulindac
suggesting that tumor inhibition by sulindac was dependent on the expression of
mNAG-1 [46]. This finding also supports the hypothesis for NAG-1 potentially
acting to inhibit tumor growth at the early stages of cancer.
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Pro-tumorigenic activity
a. The expression of NAG-1 has been reported to be highly regulated in tumors of

human cancer samples [7]. Furthermore, the serum concentration of NAG-1 in
human cancer patients is high, with the serum levels associated with declining
patient survival. Measurement of the secreted form of NAG-1 has been proposed as
a marker for cancer progression and risk assessment [7].

b. In several mouse xenograft studies, human NAG-1 is reported to enhance tumor
growth. For example, Boyle et al. showed inhibition of NAG-1 expression by
shRNA inhibits melanoma growth in xenografts [47]. Orthotopically implanted
PC-3 cells engineered to express NAG-1 developed more metastases than PC3
vector cells [48]. Furthermore, overexpression of NAG-1 in these cells enhanced
migration and invasion of PC-3 cells [48]. Another study with LNCaP androgen-
independent variants indicated that NAG-1 acts to promote cancer development
[49]. Recently, the expression of NAG-1 in the TRAMP model was reported to
inhibit prostate tumor growth but the expression of NAG-1 increased metastases to
distant organs [45]. These findings suggest NAG-1 may act to promote cancer
growth and progression.

c. The addition of recombinant NAG-1 or the forced expression of NAG-1 can
stimulate cell proliferation. NAG-1 is reported to stimulate the growth of several
gastric cell lines mediated by the activation of the ERK1/2 pathway [50]. Also,
NAG-1 was reported to activate the AKT and ERK1/2 pathways in human breast
and gastric cells by the transactivation of ErbB2/ HER2 oncogene [14]. These
studies suggest that NAG-1 may act as a positive regulator of cell growth in HER-2
over-expressing tumors.

Collectively, both the anti-tumorigenic and pro-tumorigenic activity of NAG-1 is supported
by experimental evidence. The intuitive response after considering the high serum levels
observed in cancer patients is to conclude that the highly expressed protein may be a driving
in tumor growth. However, an explanation may be that tumor cells resistant to NAG-1
expression during the events of progression. These resistant cells proliferate in the
developing tumor, and because NAG-1 expression increases with stress, higher secreted
NAG-1 is observed in the serum. Therefore, serum NAG-1 levels may be a reflection of
tumor size and stage, indicating patient prognosis and survival.

NAG-1 and colorectal cancer
Colorectal cancer is the third most common cancer and leading cause of cancer death in the
United States. The role of NAG-1 in colorectal cancer tumorigenesis is by far unclear. It has
been reported that NAG-1 levels are increased in the serum of colorectal cancer patients
[51]. The serum level of NAG-1 correlates with the development of adenomatous polyps
and was proposed as a prognostic marker for disease progression and recurrence [51].
However, patients who had used NSAIDs also had a higher serum level of NAG-1
associated with protection from the recurrence of colon adenoma [52]. Most in vitro studies
related to NAG-1 function in colorectal cancer suggest a tumor suppressor role of NAG-1.
For example, many anti-cancer compounds increased NAG-1 expression in colorectal cancer
cells [53–55] and tumor suppressor proteins control the NAG-1 expression [56]. Recent data
suggests that NAG-1 is a downstream target of ER stress, mediating ER-stress-induced
apoptosis [57].

The anti-tumorigenic activity of NAG-1 in colon cancer was more evident in in vivo studies
using NAG-1 transgenic mice. To examine if NAG-1 expression provides resistance to
colorectal carcinogens or genetic colorectal cancer models, we developed transgenic mice

Wang et al. Page 6

Biochem Pharmacol. Author manuscript; available in PMC 2014 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(NAG-1 Tg, C67/BL6 background) expressing human NAG-1. NAG-1 Tg mice and control
siblings were treated with azoxymethane (AOM) and aberrant crypt foci (ACF) were
counted. An approximate 50% reduction in ACF was observed after AOM treatment in
NAG-1 Tg mice, indicating that NAG-1 expression suppresses AOM-induced tumorigenesis
[43]. NAG-1 Tg mice were also crossed with ApcMin mice, to generate mice expressing
NAG-1 on the ApcMin background, and polyp formation was measured in their intestines.
40% inhibition of polyp formation in the intestine, compared to control littermates was
found. These results indicate that NAG-1 is a potential tumor suppressor gene in
carcinogenic- and genetic-induced colorectal cancer animal models. Our understanding of
the molecular pathways and mechanism responsible for the apparent paradoxical action of
NAG-1 in colorectal cancer has been examined. Many in vitro studies show the expression
of NAG-1 induces apoptosis in colorectal tumors. Often colorectal tumors contain non-
cancerous cells, including immune cells and vascular cells that are important in
inflammation. Chronic colitis is associated with an increased risk of developing colorectal
cancer, and the susceptibility to cancer increases when the tissue is chronically inflamed
[58]. The link between inflammation and colorectal cancer is strong with interplay between
the inflammatory cells to the development and progression of cancer is critical. NAG-1 is
reported to inhibit inflammatory cytokines from Lipopolysaccharide (LPS) treated
macrophages, suggesting NAG-1 may exert an anti-tumorigenic effect by lowering
inflammation [2]. In preliminary experiments we found the serum levels of inflammatory
cytokines after treatment with LPS were lower in the NAG-1 Tg mice as compared to wild
type littermates, suggesting NAG-1 Tg mice have a lower inflammatory response. However,
in contrast to the previous report [2], we could not confirm the inhibition of LPS-induced
cytokine formation by NAG-1 in macrophages, suggesting other more complex mechanisms
are involved..

NAG-1 and lung cancer
Lung cancer is the leading cause of cancer-related death in men and women in US and
pulmonary adenocarcinoma (PAC) is the most common type of lung cancer. Unlike
colorectal cancer, NAG-1’s role in lung cancer has not been studied well. Newman et al.
reported for the first time that NAG-1 is increased in the presence of retinoids [32].
Subsequently, other researchers reported that NAG-1 plays an important role in retinoid-
induced anti-tumorigenesis [59], isochaihulactone-triggered apoptotic pathway [60], and
sodium salicylate-induced apoptosis [61] in lung cancer cells. These results suggest that
NAG-1 exhibits anti-tumorigenic activity in lung cancer, as assessed by in vitro assays. In
vivo assays were performed and confirmed NAG-1’s anti-tumorigenic properties in lung
cancer. Urethane (ethylic ester of carbamic acid) is a carcinogen which specifically
promotes the development of lung tumors from alveolar type II pneumocytes in rodents
[62]. Among the many animal models available for the analysis of human lung
adenocarcinoma, urethane-induced lung tumorigenesis in mice is thought to be one of the
most useful because of its faithful reproducibility, histological similarity, and time-
dependent progression from hyperplasia through adenoma and eventually to
adenocarcinoma [63]. Our group has developed the over-expressing NAG-1 Tg mice on the
FVB background as FVB strains, compared to other strains of mice, are very sensitive to
urethane. Lung tumors were induced by urethane injection and lung tissues were
histologically examined. Control mice exhibited many lung tumors in their lungs. However,
NAG-1 Tg mice had fewer lung tumors, suggesting that NAG-1 can act as a tumor
suppressor in this model [44]. Interestingly, NAG-1 Tg mice had a lower frequency of
inflammatory cells in the lung tissue as assessed by lysozyme expression. The reduced
inflammation and tumor burden in the lung of NAG-1 Tg mice may be mediated by the
down-regulation of the p38 MAPK signaling pathway. We also found higher activation of
caspase 3/7 in the NAG-1 Tg mice in lung tissue [44]. Consistent with these findings, Yu et
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al. suggested that NAG-1 is a molecular target for isochaihulactone-induced anti-
tumorigenesis in lung cancer, as assessed by in vitro and in vivo assays [64]. These data
suggest that NAG-1 plays an important role in inflammation and lung tumorigenesis in vivo.

NAG-1 and Pancreatic cancer
Pancreatic cancer is a major cause of cancer-related deaths in developed countries and has
the highest mortality rate among major cancers. Pancreatic cancers may cause only vague
symptoms before being detected and chemotherapeutic regimens for this disease have
provided very limited improvements in tumor regression and overall survival rates after
diagnosis [65]. Although the precise pathogenesis of pancreatic cancer remains unclear,
common mutations in several cell proliferation-related genes have been described: mutation
of K-ras, p16, p53, and Smad4 genes have been identified in sporadic pancreatic tumors
[66]. Since conventional therapeutic approaches do not decrease mortality of this deadly
cancer, we have paid more attention to alternative research including identification of
molecular target approaches to increase survival rate.

NAG-1 is induced by several anti-cancer compounds such as PPARγ ligands in pancreatic
cancer cells [67, 68]. NAG-1 expression plays an important role in synthetic triterpenoids
derived from glycyrrhetinic acid-induced anti-tumorigenesis in pancreatic cancer cells [69].
Consistently, many other compounds also increase NAG-1 expression in pancreatic cancer
cells including NSAIDs (NS-398 and tolfenamic acid) [70]. The mechanisms by which these
compounds increase NAG-1 expression include activation of KLF4, EGR-1, and GSK-3β
pathways. For example, MCC-555 increases the tumor suppressor KLF4, which binds to the
NAG-1 promoter, thereby initiating NAG-1 transcription [68]. In conclusion, NAG-1 could
play an important role in pancreatic tumorigenesis. The induction of NAG-1 by various
compounds in pancreatic cancer cells suggests NAG-1 can be an attractive target for
pancreatic cancer chemoprevention.

NAG-1 and prostate cancer
Prostate cancer is the most commonly diagnosed cancer and the second leading cause of
cancer-related deaths in men in the United States. Despite the clinical importance of prostate
cancer, the molecular mechanisms underlying the development and progression of this
disease remain unknown. Many efforts have been made to establish the role of NAG-1 in
prostate cancer development and progression. However, reports in the literature are
contradictory and thus make the role of NAG-1 in prostate carcinogenesis elusive. In
general, significant data from in vitro and in vivo laboratory studies have shown that NAG-1
exhibits anti-proliferative, pro-apoptotic, and thus anti-tumorigenic activities, but clinical
data suggest that NAG-1 maybe pro-tumorigenic [42]. NAG-1 has been shown to induce
growth arrest in DU145 human prostate carcinoma cells [12] and induce apoptosis involving
caspase-3 activation in DU145 cells but with no effects on proliferation [71]. Forced
expression of NAG-1 in PC-3 prostate carcinoma cells inhibited proliferation and the growth
of these cells in a xenograft tumor model [40]. Chiu et al. found that NAG-1 induction by
isochaihulactone is responsible for isochaihulactone-induced cell death in LNCaP prostate
cancer cells [31]. Wynne and Djakiew found that NSAID inhibition of prostate cancer cell
migration is mediated by NAG-1 induction through the p38 MAPK pathway in PC-3 cells
[72]. More recently, TRAMP mice were crossed with NAG-1 overexpressing mice to
examine the effects of NAG-1 on tumor development and progression. The study showed
that overexpression of NAG-1 in TRAMP mice significantly reduced tumor size and
lowered tumor grades compared to the TRAMP control mice. However, the
NAG-1overexpressing TRAMP mice developed more distant organ metastases suggesting a
complex role of NAG-1 in prostate tumorigenesis in the TRAMP model [45].
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Although most laboratory studies suggest an anti-tumorigenic role of NAG-1 in prostate
carcinogenesis, a few studies showed that NAG-1 may promote prostate tumorigenesis.
Overexpression of NAG-1 in prostate cancer PC-3 cells has been shown to increase
migration and invasion of these cells [48]. The authors also found that NAG-1 expression
increases metastases to distant organs in PC-3 orthotopic prostate model in the nude mouse
[48]. Chen et al. found that NAG-1 promotes cell proliferation of LNCaP cells through ERK
activation [73]. Thus, NAG-1 seems to also work as a pro-tumorigenic protein. While
laboratory studies in general suggest an anti- tumorigenic activity of NAG-1that induces
growth arrest or apoptosis, clinical studies demonstrate that NAG-1 expression is up-
regulated in human prostate cancers which may also correlate with tumor grade and
progression [42]. Studies examined the association between plasma levels of NAG-1 and
status of prostate tumor progression. The plasma levels of the secreted mature protein are
greatly elevated in patients from several studies [51, 74]. In particular, the plasma level of
NAG-1 has been positively associated with prostate cancer metastasis [48, 74-76].
Therefore, measurement of the secreted NAG-1 in the blood has then been proposed as a
diagnostic marker for prostate cancer [77] and a measure of prostate cancer progression [74,
78]. However, a possibility exists that higher NAG-1 concentrations in the blood are a
reflection of tumor size and not an indicator that NAG-1 is acting to enhance tumor growth.

Other efforts have been made to determine the role of NAG-1 polymorphism during prostate
carcinogenesis. Three nonsynonymous single nucleotide polymorphisms (nsSNPs) exist in
the gene that causes amino acid changes in the coding region. A common C to G (Exon
2+2423) substitution (histidine to aspartic acid) at codon 202 of the precursor protein is
commonly called H6D because the amino change is at position 6 of the mature NAG-1
protein (rs1058587) [79]. A large study of 1340 prostate cancer cases and 765 controls in
Sweden suggested the G allele (the H6D/NAG-1) is associated with decreased risk of
developing prostate cancer [80]. A second large study involving 819 cases and 731 controls
in Australia had similar findings, although these findings were not statistically significant
[81]. However, results from this study also suggest a higher mortality rate from prostate
cancer for patients carrying the G allele relative to men with the CC genotype. Similarly, a
case control study (506 controls and 506 cases) in the United States found that the G allele is
marginally associated with a lower prostate cancer incidence, although this was statistically
insignificant [82]. Recently, our laboratory examined the tumor inhibitory effects of H6D/
NAG-1 on DU145 xenografts in nude mice. We found that mice with tumors expressing the
H6D/NAG-1 have significantly smaller tumor weights and slower growth compared to the
control mice, [11] suggesting a potential anti-tumorigenic role of H6D/NAG-1 during
prostate cancer development. A few studies also examined the association of other NAG-1
SNPs with prostate cancer risk and mortality. However, these data in general did not support
an association like H6D/NAG-1. Collectively, NAG-1 polymorphisms, especially the H6D/
NAG-1, may play an important role in human prostate cancer carcinogenesis. However, the
function of NAG-1 in prostate cancer remains controversial and its signaling pathways
remain poorly understood. NAG-1 may play an anti-tumorigenic role at the early stages of
carcinogenesis, but a pro-tumorigenic one during cancer progression. The exact mechanism
of this apparent dichotomy of NAG-1 during prostate carcinogenesis is not clear at present
and needs to be elucidated in future studies.

NAG-1 and gastric cancer
Unlike the extensive studies of NAG-1 in prostate and colorectal cancers, studies in gastric
cancer are limited. However, similar to findings from prostate cancer studies, the role of
NAG-1 in gastric cancer carcinogenesis is also controversial. Few clinical studies found that
NAG-1 expression is up-regulated in the serum of gastric cancer patients and its expression
is strongly associated with cancer metastasis, suggesting an oncogenic role for NAG-1
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during gastric cancer progression [83]. Interestingly, in vitro studies using stably transfected
cells suggest that the overexpression of NAG-1 induces the invasiveness of gastric cancer
SNU-216 cells through the upregulation of urolinase-type plasminogen activator system and
the ERK1/2 MAPK kinase pathway [50]. Kim et al. also showed that the overexpression of
NAG-1 induces the transactivation of ErbB2 in gastric cancer SNU-216 cells and activates
ERK1/2 and AKT signaling cascades [14]. In contrast, NAG-1 induction upon NSAID
treatment has been reported to induce apoptosis in gastric cancer cells [84, 85], suggesting a
tumor suppressor role for NAG-1 in gastric cancer development. In addition, administering
celecoxib to gastric cancer patients significantly induced NAG-1 expression in tumor
samples and inhibited gastric adenocarcinoma growth compared to the control patients [86].
Huang et al. also found that treating gastric cancer patients with celecoxib significantly
induced NAG-1 expression in tumor samples which may be responsible for celecoxib
induced apoptosis and the reduction of microvessel density in the tumor samples of
treatment groups compared to the control patients [87]. These findings raise the question of
whether NAG-1 induction plays a role in NSAID-induced inhibition of cancer development
which will be addressed below.

Role of NAG-1 in the prevention of cancer by NSAIDs
NSAIDs are the most widely used drugs for treatment of inflammatory diseases and long-
term use of NSAIDs prevents the development of several types of cancer [88, 89]. Both
COX-dependent and COX-independent mechanisms have been proposed for the
chemopreventive and anti-tumorigenic activities of NSAIDs. NAG-1 expression is up-
regulated by several NSAIDs in a COX-independent manner in human cancer cells. As
mentioned above, NAG-1 was first identified by our laboratory from indomethacin-treated
COX-deficient human colorectal cancer HCT116 cells [1]. Celecoxib has been shown to
induce apoptosis in COX-2-deficient human gastric cancer cells via activation of NAG-1
expression and inhibition of AKT/GSK3β [85]. Sulindac sulfide significantly induced
NAG-1 expression in gastric cancer SNU601 cells that are devoid of COX-2 expression,
increased apoptosis and decreased cell viability in this cell line [84]. In addition, neither
COX expression nor the level of PGE2 and/or arachidonic acid affects NSAID-induced
NAG-1 expression [18]. These studies suggest a COX-independent mechanism for the anti-
tumorigenic effects of NSAIDs which may mediated by increased NAG-1 expression. Other
than the induction of NAG-1 by NSAIDs in cell culture models, a number of studies
reported NAG-1 expression was induced in animal models. Feeding C57/BL6 mice sulindac
induced mNAG-1 expression in liver and colon tissues [90, 91]. Indomethacin treatment has
been shown to induce the expression of NAG-1 mRNA in human sinonasal cancer cell
AMC-HN5 xenograft tumors in mice in a dose-dependent manner [92]. The volume of the
xenograft tumors in indomethacin-treated nude mice was reduced compared to that in
control mice. In another study, celecoxib treatment increased NAG-1 expression in a dose-
dependent manner in COX-2 knockout mice and wild type littermates (COX-2+/+) [93].
NAG-1 induction upon NSAID treatment in animal models suggests that NAG-1 may be
important for the anti-tumorigenic activity of NSAIDs in humans.

Many studies have shown that sulindac fed to ApcMin mice inhibits polyp formation.
However, the contribution of NAG-1 expression to the prevention of polyp formation by
sulindac has not been determined. Zimmers et al. crossed ApcMin mice with NAG-1(−/−)
mice, which did not alter polyps formation [46]. In this study, sulindac was effective in
reducing the polyp formation in ApcMin mice that express wild-type NAG-1. However,
sulindac did not reduce polyp formation in NAG-1(−/−) crossed with ApcMin mouse [46].
This finding suggests that NAG-1 is critical for anti-tumorigenic activity of sulindac in the
ApcMin mouse model.
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Knocking down NAG-1 in cell culture models was also used to elucidate the role of NAG-1
in NSAID-induced inhibition of cancer cell growth. In one study, sulindac sulfide induced
NAG-1 expression in ovarian cancer SKOV3 cells and significantly suppressed cell growth
[94]. Transfecting SKOV3 cells with the NAG-1 small interfering RNA (siRNA) construct
restored SKOV3 cell viability, suggesting sulindac sulfide-induced NAG-1 expression is
responsible for this sulindac sulfide-induced cell growth arrest [46]. By treating human
prostate cancer PC-3 cells with NAG-1 siRNA, Wynne and Djakiew demonstrated that
NAG-1 plays an important role in NSAID-induced inhibition of PC-3 cell migration [72].
Indomethacin induced apoptosis and NAG-1 expression in human sinonasal carcinoma
AMC-HN5 cells, in which the indomethacin-induced apoptosis was suppressed by
transfecting the cells with NAG-1 siRNA [95]. Collectively, these reports suggest that a
major part of NAG-1’s function is to provide for NSAID-induced inhibition of
tumorigenesis both in vivo and in vitro. Recently, results from one clinical study found that
NSAID users have higher serum NAG-1 level which was related to preventing adenoma
recurrence in cancer patients [52]. In two other studies, NAG-1 expression was significantly
induced in tumors upon celecoxib treatment in gastric cancer patients. They observed
increased apoptosis and microvessel density reduction [87] and that NAG-1 induction might
be responsible for the inhibition of gastric adenocarcinoma growth [86]. However, further
studies are needed to confirm this finding in clinical studies. In conclusion, the prevention of
tumor growth by NSAIDs is very complex, targeting both COX-prostaglandin pathway and
NSAIDs-induced gene expression as illustrated by increased expression of NAG-1.

Prospective and future directions
Considerable advancement has been made in understanding the biological actions of NAG-1
and the roles this unique member of the TGF-β family plays in physiological processes and
in the development and progression of cancer. Despite these advances, the mechanisms
responsible have not been elucidated. One underlying problem that impedes progress is a
complete understanding of the biological activity of the multiple forms of this protein that
are present in and secreted from the cell. Studies with the purified secreted protein have
often yielded conflicting data and results that could not be confirmed in a second laboratory.
Determining the biological activity of the different NAG-1 forms needs to be done in future
studies. Also, it may be necessary to determine if the secreted dimer requires a binding
partner for its activity. This has been observed with other members of the TGF-β family.
Future studies are also needed to identify the NAG-1 receptor(s). Some evidence suggests
the receptor may be related to the TGF-β receptor, which is a complex of type I and type II
receptors. Other future studies will need to determine the downstream signaling pathways
once NAG-1 binds to its receptor. Better understanding the nature of the receptor(s) and the
downstream signaling pathways may provide the insight to the how the protein can inhibit
cancer at the early stages, yet promote cancer progression in the later stages of cancer.
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Figure 1. Dimeric formation of mature NAG-1 and different forms of NAG-1 in cells
The pro-NAG-1 was cleaved at RXXR site and then secreted out the cells as a dimer.
NAG-1 pro-peptide is also secreted out of cells.
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Figure 2. Transcriptional regulation of NAG-1 by NSAIDs and dietary compounds
NAG-1 promoter contains several cis-acting and trans-acting elements. Both Sp1 and
EGR-1 transcription factors have been identified to regulate the basal transcription of
NAG-1. Two p53 sites that located within the -133 bp promoter play a pivotal role in dietary
compound-induced NAG-1 expression.
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