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Abstract: The medial temporal lobes (MTL) and frontal cortex have been shown to subserve memory
processes. Neurodegenerative diseases, such as Alzheimer’s disease (AD), disrupt the neuronal net-
works that underlie memory processing. The e4 allele of the apolipoprotein E gene is a genetic risk fac-
tor for AD and is associated with decrements in memory and in olfactory function. The present study
utilized EQS, a structural equation modeling software program, to examine differences in the neuronal
networks between non-demented e4 carriers and e4 noncarriers during a cross-modal olfactory recogni-
tion memory paradigm. Prior to fMRI scanning, participants were presented with 16 odors. During
two scans, participants discriminated between names of odors presented before scanning (targets) or
not presented (foils). The results indicate significant connections between bilateral frontal lobes and
MTL for e4 carriers when they misidentified a foil as a target. When e4 noncarriers correctly identified
a target, there were greater associations between the amygdala, MTL, and right frontal lobe; these asso-
ciations also modeled the brain’s response when e4 noncarriers misidentified a foil as a target. During
memory retrieval, affective cues may facilitate retrieval in e4 noncarriers relative to e4 carriers. Last, no
model was found that best represented the functional network used by e4 carriers when they correctly
identified a target, which may reflect variability of neuronal recruitment within this population. Hum
Brain Mapp 34:530–542, 2013. VC 2011 Wiley Periodicals, Inc.
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INTRODUCTION

Memory impairment is one of the most predominant
cognitive complaints associated with healthy aging. In par-
ticular, deficits in declarative memory have been consis-
tently documented [Allen et al., 2002; Nilsson et al., 1997;
Nyberg et al., 1996]. Declarative memory is comprised of
episodic memory (memory for facts and events that relies
on context) and semantic memory [memory for facts;
Mitchell, 1989; Tulving, 1972]. Brain regions within the
medial temporal lobe (MTL; e.g., the hippocampal and
parahippocampal gyri) and the prefrontal cortex (PFC) are
involved in encoding and retrieval of episodic memories
[Dolan and Fletcher, 1999; Eichenbaum, et al., 2007;
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Lepage et al., 2000; Rugg et al., 2002; Stark and Squire,
2000; Tulving et al., 1994]. Increased activation within the
PFC in older adults is associated with a compensatory
mechanism, such that, increased memory performance is
associated with increased activation in the PFC [Cabeza
et al., 2002; Grady et al., 2005].

Healthy aging is also associated with impairment in sen-
sitivity to odors [Murphy, 1983; Nordin et al., 1995], odor
identification [Doty et al., 1984; Murphy, 1983, 2002] and
olfactory memory, in recall and recognition [Murphy et al.,
1998, 1997; Nordin and Murphy, 1998]. Brain regions
within the MTL have been shown to be structurally and
functionally involved in olfactory processing and olfactory
memory performance. More specifically, anatomical stud-
ies of rodents and primates [Carmichael et al., 1994;
Critchley and Rolls, 1996; Price et al., 1985], patients with
mesial temporal lobe excision [Zatorre and Jones-Gotman,
1991], and human neuroimaging experiments [Cerf-Ducas-
tel and Murphy, 2001, 2003, 2006, 2009; Dade et al., 1998;
Kettenmann et al., 1997; Li et al., 2010; Royet et al., 1999;
Savic et al., 2000; Wang et al., 2005; Zald and Pardo, 2000]
have all shown consistent involvement of the entorhinal
cortex, piriform cortex, amygdala, hippocampus, and orbi-
tofrontal cortex in olfactory processing.

Neurodegenerative processes, such as Alzheimer’s dis-
ease (AD), also show similar, but more profound, decre-
ments in memory and olfactory processing. Specifically,
previous studies have demonstrated significant reductions
in memory [Bondi et al., 2003; Salmon et al., 1989], olfac-
tory identification [Serby, 1986; Wilson et al., 2009], odor
sensitivity [Murphy et al., 1990], and olfactory memory
[Murphy et al., 2002; Niccoli-Waller et al., 1999; Nordin
and Murphy, 1998] in AD relative to healthy aging. In
addition, a number of recent studies have documented
reduced brain activation in response to olfactory stimuli in
AD, within the primary olfactory cortex (piriform cortex)
and higher order olfactory/cognitive processing regions
(hippocampus, insula), [Li et al., 2010; Wang et al., 2010].

The e4 allele of the apolipoprotein E (ApoE) gene is a
genetic risk factor for the development of AD [Corder
et al., 1993; Saunders et al., 1993]. There are three different
isoforms of ApoE, the e2, e3, and e4 allele. Behaviorally,
healthy older adults with the e4 allele (e4 carriers) show
greater cognitive decline (i.e., in episodic memory) relative
to those without the e4 allele [e4 noncarriers; Bartres-Faz
et al., 1999; Bondi et al., 1995; Carmelli et al., 2000; Small
et al., 2004]. Prior to a general decline in cognitive func-
tioning, e4 carriers demonstrate declines in odor identifica-
tion [Calhoun-Haney and Murphy, 2005; Graves, 1999;
Murphy et al., 1998; Olofsson et al., 2010] and olfactory
memory performance [Gilbert and Murphy, 2004].

The e4 allele is associated with neuropathological
changes in AD [Namba et al., 1991; Poirier et al., 1993]; the
MTL is the initial anatomical location of pathological
changes. In particular, prior to detectable cognitive
changes, brain degeneration occurs within the entorhinal
cortex, transentorhinal area, hippocampus, periamygdala,

anterior olfactory nucleus, and olfactory bulbs [Braak and
Braak, 1991, 1996; Christen-Zaech et al., 2003; Dickson,
2001; Esiri and Wilcox, 1984; Juottomem et al., 1998; Price
et al., 1991; Struble and Clark, 1992]. These anatomical
changes within the MTL are important given the projec-
tions from the olfactory inputs (i.e., olfactory bulb) to the
entorhinal cortex and subsequently to the hippocampus
[Insausti et al., 2002] and the functional role of these
regions in olfactory processing and memory function
[Eichenbaum et al., 2007; Rugg et al., 2002; Squire et al.,
2004].

Age-related differences in brain activation have been
reported during encoding and retrieval of episodic mem-
ory. Relative to young adults, older adults have shown
reduced activation in the left prefrontal cortex and MTL
during encoding [Grady et al., 1999]. During retrieval,
older adults show bilateral activation in the prefrontal cor-
tex relative to young adults who show lateralized right
prefrontal activation [Cabeza et al., 2002; Rugg et al.,
1996]. Neuroimaging research examining episodic memory
performance between e4 carriers and noncarriers has pro-
duced mixed results. Previous studies have reported
increased activation in e4 carriers within memory process-
ing regions, relative to e4 noncarriers [Bookheimer et al.,
2000; Han et al., 2007]; whereas, others have reported
reduced activation [Lind et al., 2006]. These variable find-
ings may be a function of disease progression and task
related demands.

Working memory is the ability to store and manipulate
information while performing cognitive tasks. Similar to
working memory paradigms in other sensory modalities
[Owen, 1997], Dade et al. reported involvement of the
bilateral orbitofrontal cortices during an olfactory work-
ing memory task [2001]. Activation within this region has
been shown to decrease with age during a task of work-
ing memory [Mitchell et al., 2006]. We have documented
similar deactivation in working memory regions in
healthy older adults during olfactory recognition memory
[Cerf-Ducastel and Murphy, 2009]. Conversely, brain acti-
vation during auditory verbal working memory in e4 car-
riers was increased relative to e4 noncarriers [Wishart
et al., 2006].

With regard to semantic processes, it has been consis-
tently documented that the left lateral prefrontal cortex
(BA 47 and BA 45) is involved in semantic memory [for
review see Martin and Chao, 2001]. Furthermore, it has
been suggested these regions facilitate the maintenance
and retrieval of semantic information [Nyberg, 2002].
Interestingly, in healthy young adults, reading words with
strong olfactory associations is associated with brain acti-
vation in the piriform cortex and amygdala [Gonzales
et al., 2006]. Results within our laboratory have shown
age-related effects within olfactory brain regions during an
olfactory recognition memory paradigm that are more ro-
bust than age effects in brain regions involved in memory
processes, suggesting age effects are more pronounced in
olfactory regions [Cerf-Ducastel and Murphy, 2009].
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The aforementioned studies have provided invaluable in-
formation regarding neural substrates of olfactory and
memory processing. For many of these studies, the exami-
nation of spatial and temporal characteristics of the BOLD
(blood oxygenated level dependent) response in neuronal
populations was analyzed using univariate statistics [Ban-
dettini et al., 1993; Friston et al., 1995]. This type of data
analytic approach (subtraction paradigm) assumes that dif-
ferent and separate brain regions are engaged during differ-
ent cognitive processes, that is, the brain regions are
statistically considered functionally independent [Horwitz,
1995]. However, anatomical interconnections underlie brain
function and therefore, disconnections between associated
regions result in functional deficits [Levy et al., 2004; for a
review see Buckley, 2005]. For example, the production of
specific functions (i.e., recognition memory) is a result of
the involvement of several cortical areas (i.e., hippocampus,
frontal cortex, and parahippocampus) and a disruption
between their anatomical connections results in impairment
[amnesia; for a review see Eichenbaum et al., 2007; Yoneli-
nas et al., 2005]. Functional connectivity is a multivariate
data analytic technique that assumes functional networks
underlie specific cognitive processes [covariance paradigm;
Horwitz, 1995] and provides increased sensitivity by exam-
ining the interregional relationships within the brain
[Friston et al., 1994; Horwitz et al., 1998; McIntosh and
Gonzalez-Lima, 1994]. Anatomical interconnections underlie
brain function and therefore, disconnections between ana-
tomically associated regions result in functional deficits
[Levy et al., 2004; for a review see Buckley, 2005].

In normal aging, brain activation in anterior hippocam-
pus during episodic memory was associated with activa-
tion in the dorsolateral prefrontal cortex, which is in
contrast to young adults who demonstrated significant
associations between the anterior hippocampus and ven-
tral prefrontal regions [Grady et al., 2003]. These findings
suggest that healthy older adults recruit different neural
networks during memory processing. In e4 carriers with
mild memory impairment, Bartrés-Faz et al. [2008] found
significant associations between the hippocampus and
other cortical (anterior cingulate) and subcortical (caudate)
regions. Interestingly, differences in functional connectivity
are observed in young adult e4 allele carriers, suggesting
changes in neural networks engaged in memory process-
ing are present early in the lifespan of individuals geneti-
cally at risk for AD [Dennis et al., 2010].

The aim of the present experiment was to utilize multi-
variate analysis to generate and test a model of functional
connectivity to elucidate differences in the cortical sub-
strates of olfactory recognition memory processing
between nondemented e4 carriers and e4 noncarriers.
Based on aforementioned experiments, the following
regions were included in the functional models of olfac-
tory recognition memory: anterior hippocampus, parahip-
pocampus, amygdala, piriform cortex, and orbitofrontal
cortex. It is hypothesized that the best fitting models of
functional connectivity subserving olfactory recognition

memory will differ for e4 carriers and e4 noncarriers. Spe-
cifically, individuals who are e4 carriers will demonstrate
greater recruitment of the frontal cortex and the relation-
ships within MTL structures will be less robust relative to
e4 noncarriers, despite equivalent task performance.

METHODS

Thirty-nine nondemented healthy older adults, ranging in
age from 64 to 88 years (M ¼ 72.56, SD ¼ 7.07), participated
in the study after giving informed consent. Subjects received
monetary compensation. The Institutional Review Boards
both at San Diego State University and the University of Cal-
ifornia, San Diego approved the research. Each participant
was genotyped for the ApoE e4 allele. Individuals with at
least one e4 allele were classified as e4 carriers and individu-
als without the e4 allele were classified as e4 noncarriers. In
the e4 noncarrier group there were 2 individuals with e2/e3
and 19 individuals with e3/e3. In the e4 carrier group there
were 2 individuals with e2/e4, 12 individuals with e3/e4,
and 4 individuals with e4/e4. Each subject completed an
fMRI scan conducted on a 3T GE whole body scanner and
three psychophysical/neuropsychological sessions.

Psychophysical and Neurocognitive Assessment

The first session consisted of chemosensory assessment
for ageusia and anosmia with taste threshold and odor
threshold tests [Cain et al., 1983; as modified in Murphy
et al., 1990] and odor identification [Murphy et al., 2002].
Potential participants with odor thresholds below 3 or
odor identification below 3 were excluded to ensure
adequate olfactory function. Exclusionary criteria also con-
sisted of a history of head trauma, upper respiratory infec-
tion or allergies within the prior 2 weeks [Harris et al.,
2006]. Last, the dementia rating scale [Mattis, 1988] was
administered to ensure that groups were matched on neu-
rocognitive functioning and to exclude those whose scores
entered the clinically impaired range.

Scanning Procedure and Parameters

Prior to scanning, participants were presented with 16 fa-
miliar odors corresponding to List A of the California odor
learning test [COLT; Murphy et al., 1997]. The odors have
been previously shown to be familiar, easily identifiable,
and isointense [Murphy et al., 1997]. The presentation of
odors was randomized and the odors were presented
sequentially; participants were asked to close their eyes and
concentrate on the odor. During the scan, participants were
presented with labels of odors and their task was to decide
if the label was an odor that was presented to them prior to
the scan (target) or if it was not presented [foil; Cerf-Ducas-
tel and Murphy, 2006, 2009]. Approximately 10 min elapsed
between the presentation of the olfactory stimuli and the
recognition memory task performed in the scanner.
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Each participant completed two functional runs (6 min
each) and a structural run. The functional runs began and
ended with a 36-s baseline period that consisted of a fixa-
tion cross in the center of the screen. Following the initial
baseline, were eight 36-s periods where the names of
odors presented before scanning (targets) or not pre-
sented (foils) were displayed. Target periods included the
presentation of seven targets and two foils; Foil periods
consisted of seven foils and two targets. Participants dis-
criminated between targets and foils using a button box;
pressing 1 if they recognized the odor as having been
presented before the scan and 2 if not. This paradigm
was derived from Stark and Squire [2000a,b]. A program
written in Matlab was used to present, collect and calcu-
late performance based on the response of the partici-
pant. In the present experiments, responses were
classified as the following: hits [H, participant correctly
identified a target as being previously presented (old)]
and false positives (FP, participant incorrectly identified a
foil as being old).

Imaging was conducted on a 3T general electric (GE)
excite ‘‘shortbore’’ scanner. Functional images were col-
lected first using a standard gradient echo EPI pulse
sequence to acquire T2*-weighted functional images [30
axial slices, Field of view (FOV) ¼ 25 cm, resolution 4 � 4
� 4 mm3, repetition time (TR) ¼ 4 s echo time (TE) ¼ 30
ms, flip angle ¼ 90�], followed by a structural image,
acquired using a high-resolution T1-weighted whole-brain
FSPGR sequence (FOV ¼ 25 cm, resolution 1 � 1 � 1.3
mm3, TR ¼ 16 s, TE ¼ 4.4 ms, flip angle ¼ 18�). See Cerf-
Ducastel and Murphy [2009] for further detail regarding
the methods employed.

fMRI Data Processing

Functional data were processed and analyzed using
AFNI (analysis of functional neuroimage) software [Cox,
1996]. Preprocessing consisted of: motion correction, tem-
poral and spatial smoothing, automasking, and data nor-
malization. Individual data were normalized by
transforming the imaging data to standardized coordinates
to fit the Talairach coordinate system [Talairach and Tour-
noux, 1993].

While the data were collected as a block design, they
were analyzed in an event-related fashion. This allowed us
to model brain activation that corresponded to individual
performances (rather than assuming the targets and foils
were correctly identified during their presentation). At the
individual level, deconvolution was applied to the first
and second runs, separately, which estimated the impulse
response function (IRF) based on the participants individu-
alized performance. More specifically, two 1D files were
created for each participant that corresponded to perform-
ance on the task (i.e., hits and false positives), this file was
then convolved with the data to identify areas involved
during memory processing.

The average fit coefficients, an index that represents
how well the paradigm covaries with the brain activation,
corresponding to the regions included in the connectivity
model were extracted from the Talairach and Tournoux
database implemented in AFNI [Cox, 1996] and inputted
into EQS [Bentler and Wu, 1995], a structural equation
modeling program. This method has been previously
employed to examine functional connectivity networks
[Stricker et al., 2006].

Model Specification

Two empirically based target models of functional con-
nectivity were identified, a priori, based on the literature
and on previous examination of group data using one-
sample t-tests (Fig. 1; Model A and Model B). Given that
the current task requires semantic processing, it was
hypothesized that neuronal networks would be recruited
within the left hemisphere. Previous findings suggest the
right prefrontal cortex is engaged during memory retrieval
[Tulving et al., 1994]. However, research also suggests that
activation in the bilateral frontal cortices during memory
retrieval may facilitate task performance in older adults
[Rugg et al., 1996]. Given that the present task demands
require working memory, it was hypothesized that the
frontal cortex would be engaged during the present task
[Dade et al., 2001]. As such, activation was also modeled
in the right frontal cortex in Model A, and in the right and
left frontal cortices in Model B.

Research has shown that emotional aspects of stimuli
may aid in memory processes. Recent research examining
the connections among emotional processing regions in
primates has yielded a more comprehensive understand-
ing of how emotionally laden information is processed

Figure 1.

Schematic figure depicting two a priori hypothesized models of

functional connectivity during an olfactory recognition memory

task. For Figures 1 and 2: Connections represent associations

among brain regions and do not specify causal relationships.
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within the brain [Ghashghaei et al., 2007; Höistad and Bar-
bas, 2008]. Specifically, direct connections between the
OFC and hippocampus and indirect connections of these
regions via the amygdala have been documented. Human
neuroimaging experiments examining the brain areas acti-
vated during recognition memory have reported consistent
activation within regions similar to those found in the
rodent and nonhuman primate literature, namely the pre-
frontal cortex and MTL [Eichenbaum et al., 2007; Lepage
et al., 2000; Ranganath et al., 2004; Stark and Squire, 2000;
Wais et al., 2006]. In Model A, a direct path from the hip-
pocampus to the frontal cortex was specified. In both mod-
els, an indirect relationship from the left anterior
hippocampus to the right orbitofrontal cortex via the left
amygdala was specified.

In response to olfactory processing, anatomical experi-
ments in rodents and primates have demonstrated direct
connections from the olfactory inputs (i.e., olfactory bulb)
to the entorhinal cortex and subsequently to the hippo-
campus [Insausti et al., 2002]. Furthermore, anatomical
and functional connections have been identified among
the entorhinal, piriform, amygdala, hippocampus, lateral,
and ventrolateral orbitalfrontal cortex [Carmichael et al.,
1994; Critchley and Rolls, 1996; Price et al., 1985]. Addi-
tionally, there are anatomical projections between regions
involved in processing olfactory information and odor rec-
ognition memory [Carmichael et al., 1994; de la Rosa-
Prieto et al., 2008; Insausti et al., 2002; Price et al., 1985].
As such, direct paths from the left anterior hippocampus
to the left parahippocampus and left piriform cortex were
specified. Additionally, direct paths were specified from
the left amygdala to the left parahippocampus and the left
piriform cortex.

While there are multiple statistical methods available for
examining functional connectivity, the present study
employed maximum likelihood (ML) estimation to esti-
mate the unknown parameters, which allows for an empir-
ical analysis of the degree of fit between the hypothesized
model and observed data. In particular, the Satorra-Bentler
scaled test statistic was used because of its previously
demonstrated stable evaluation of small sample sizes with
both normal and nonnormal data [Bentler and Yuan, 1999;
Curran et al., 1996; Hu et al., 1992]. After applying the
model to the data, the Lagrange multiplier test was exam-
ined, which determines the magnitude of model fit
improvement, if the paths were freely estimated. In other
words, the Lagrange multiplier test was used to determine
whether adding or removing paths would result in an
increase of model fit. If a path was added or removed the
model was reestimated.

Group Analysis

A path analysis was conducted using EQS which exam-
ined the associations among brain regions in response to
performance on the crossmodal recognition memory para-

digm for e4 carriers and e4 noncarriers. Model fit was
evaluated statistically using the Satorra-Bentler scaled chi-
square index, which assesses the discrepancy between
observed and hypothesized variance/covariance matrices,
in other words, how well the hypothesized model fits the
data. Nonsignificant chi-square values indicate that the
observed data fits the hypothesized model. Additionally,
the comparative fit index [CFI; Bentler, 1990] and the root
mean square error of approximation [RMSEA; Steiger,
1990] are reported. The CFI compares the hypothesized
model to a null model that specifies no factors. CFI values
range from 0 to 1, values greater than 0.90 indicate an
adequate model fit. The RMSEA is a parsimony adjusted
fit index that adjusts the model fit by weighting indices of
fit by the number of parameters estimated, thereby
rewarding models that are more parsimonious. RMSEA
values less than 0.08 indicate an acceptable model. How-
ever, research has shown that when the sample size is
smaller than 250, RMSEA is more likely to reject a true
model [Hu and Bentler, 1999]. Given the small sample size
in the current study, the presence of non-significant chi-
square values and CFI values greater than 0.90, were con-
sidered to indicate an adequate model.

RESULTS

Demographics

Two-way factorial analysis of variance (ANOVA) tests
were performed to examine potential differences in
demographic characteristics [dependent variables: age,
education, dementia rating scale, odor identification,
odor and taste threshold] of male and female, e4 noncar-
riers and e4 carriers. Using an alpha level of 0.001 to
evaluate homogeneity assumptions, Levene’s homogene-
ity of variance test was not statistically significant. There
were no significant differences in demographic variables
between groups nor were there any significant interac-
tions (Table I).

Olfactory Recognition Memory Performance

Four between subjects one-way analysis of variance
(ANOVA) tests were conducted to examine differences in
olfactory recognition memory performance (hits and false
positives) between e4 carriers and e4 noncarriers (Table I).
There were no significant differences between groups for
FP; however, there were significantly more hits for e4 car-
riers relative to e4 noncarriers.

Path Analysis

Marida’s coefficient suggests that the data sets for e4
carriers and e4 non-carriers are normal (normalized esti-
mate: 1.63 and 1.29, respectively). In addition, data for e4
carriers and e4 non-carriers were within normal limits
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with respect to kurtosis and skewness, further suggesting
that the data are normally distributed. The current experi-
ment employed a crossmodal paradigm, where olfactory
stimuli were presented prior to the scan and verbal labels
corresponding to olfactory stimuli were presented in the
scanner. It is possible that connectivity could vary from
the first run and the second run based on the fact that in
the first run, the foils were novel and on the second run
the foils were no longer novel. Therefore, data were ana-
lyzed separately for Run 1 and Run 2.

Model A

During the first run, when e4 noncarriers correctly iden-
tified a target odor (hits), Model A fit well statistically, v2

¼ 5.85, P ¼ 0.3209 and descriptively (CFI ¼ 0.979, RMSEA
¼ 0.09, Fig. 2). In terms of the relations specified within
the model, the direct effect from the left anterior hippo-
campus to the right orbitofrontal cortex was not statisti-
cally significant (b ¼ �0.296, P > 0.05). However, all other
standardized path coefficients were large and statistically
significant (values ranged from 0.83 to 0.89). During the
second run, when e4 non-carriers had a hit, Model A fit
well statistically, v2 ¼ 8.67, P ¼ 0.1236, but not descrip-
tively (CFI ¼ 0.804, RMSEA ¼ 0.191). This finding may be
due in part to the nonsignificant relationships between the
right frontal lobe (ROFC) the left MTL structures (amyg-
dala and anterior hippocampus). During the first and
second runs, when e4 carriers made a hit response, Model
A did not fit well statistically (v2 ¼ 14.54, P < 0.05, v2 ¼
3.41, P < 0.05, respectively) or descriptively (CFI ¼ 1.00,
RMSEA ¼ 0.000, CFI ¼ 0.22, RMSEA ¼ 0.335, respec-
tively). Interestingly, when examining the Lagrange multi-
plier test, no model was identified for the hits condition in
e4 carriers during either run.

During the first and second runs, when e4 noncarriers
incorrectly identified a novel odor as being old (false posi-
tives), Model A fit well statistically (v2 ¼ 7.159, P ¼ 0.21,
v2 ¼ 8.61, P ¼ 0.13, respectively) and descriptively (CFI ¼
0.936, RMSEA ¼ 0.147, CFI ¼ 0.855, RMSEA ¼ 0.19,
respectively). Similar to the hits condition for e4 noncar-
riers, during both runs, the direct relationship between the
left anterior hippocampus and the right orbitofrontal cor-
tex was not significant. All other standardized path coeffi-
cients were moderate to large and statistically significant
(values ranged from 0.68 to 0.84). When e4 carriers had
false positive response during the first and second runs,
Model A did not fit well statistically (v2 ¼ 20.05, P <
0.001; v2 ¼ 14.18, P < 0.01, respectively) or descriptively
(CFI ¼ 0.592, RMSEA ¼ 0.421; CFI ¼ 0.811, RMSEA ¼
0.339, respectively).

Model B

When e4 noncarriers made a hit response during the
first and second runs, Model B did not fit well statistically
(v2 ¼ 38.44, P < 0.01; v2 ¼ 33.86, P < 0.01, respectively) or
descriptively (CFI ¼ 0.476, RMSEA ¼ 0.377; CFI ¼ 0.319,
RMSEA ¼ 0.345, respectively). Furthermore, during a hit
response for first and second runs of e4 carriers, Model B
did not fit well statistically (v2 ¼ 26.77, P < 0.01; v2 ¼
19.66, P < 0.05, respectively) or descriptively (CFI ¼ 0.198,
RMSEA ¼ 0.314; CFI ¼ 0.588, RMSEA ¼ 0.238,
respectively).

When e4 noncarriers made a false positive response dur-
ing the first and second runs, Model B did not fit well
statistically (v2 ¼ 17.74, P < 0.05, (v2 ¼ 36.42, P < 0.05,
respectively) or descriptively (CFI ¼ 0.829, RMSEA ¼
0.197, CFI ¼ 0.033, RMSEA ¼ 0.363, respectively). When e4
carriers made a false positive response for the first run,
Model B fit well statistically (v2 ¼ 10.5593, P ¼ 0.39) and

TABLE I. Demographics and olfactory recognition performance in E4 carriers and E4 noncarriers

Mean (SD)

E4 carriers E4 noncarriers F Significance

# (n ¼ 9) $ (n ¼ 9) # (n ¼10) $ (n ¼11) Gender e4 status P > 0.05

Demographics

Age (yrs) 73 (7.7) 72.4 (8.9) 69.6 (3.7) 75 (7.1) 1.14 0.035 P > 0.05
Education (yrs) 15.5 (3.5) 15.2 (3.5) 15.4 (2.6) 15 (3.5) 0.000 0.046 P > 0.05
Olfactory Threshold 4.3 (1.7) 5.8 (1.6) 5.5 (1.8) 5 (1.4) 0.854 0.045 P > 0.05
OID 5 (1.5) 5 (1.8) 4.7 (1.2) 5.8 (1.4) 1.36 0.293 P > 0.05
DRS 139.4 (3.5) 138.7 (5) 140.6 (2) 138 (4.1) 0.191 0.024 P > 0.05
Olfactory recognition

RUN 1
Hits 22.7 (5.3) 18.52 (5.3) 6.1 P ¼ 0.018
False positives 12 (4.1) 11.38 (4.9) 0.18 P > 0.05

RUN 2
Hits 21.81 (4.9) 18.29 (6) 3.7 P > 0.05
False positives 12.13 (3.9) 10.85 (5) 0.7 P > 0.05

# ¼ males, $ ¼ females, SD ¼ standard deviation, yrs ¼ years, OID ¼ odor identification test, DRS ¼ dementia rating scale.
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descriptively (CFI ¼ 0.986, RMSEA ¼ 0.057; Fig. 2). All
standardized path coefficients were moderate to large and
statistically significant (values ranged from 0.59 to 0.84).
However, during the second run, when e4 carriers made a
false positive response, Model B did not fit well statisti-
cally (v2 ¼ 24.75, P < 0.05) or descriptively (CFI ¼ 0.824,
RMSEA ¼ 0.304).

DISCUSSION

The present study utilized EQS, a structural equation
modeling software program, to elucidate differences in the

neuronal networks between nondemented e4 carriers and
e4 noncarriers during a cross-modal olfactory recognition
memory paradigm. While there are many different data
analytic approaches available for the examination of func-
tional connectivity models, the present study employed
the Sattora–Bentler scaled test statistic, which was used in
the present analysis because of its stable evaluation of
small sample sizes with both normal and nonnormal data
[Bentler and Yuan, 1999; Curran et al., 1992; Hu et al.,
1992). Model A and Model B indicated significant connec-
tivity between frontal cortex and MTL structures during a
cross modal olfactory recognition memory task in e4 car-
riers and e4 noncarriers (Fig. 2a,b). These findings are in
accordance with a number of previously published experi-
ments documenting the involvement of the frontal cortex
[Nyberg et al., 2000; Rugg et al., 1996; Tulving et al., 1994]
and MTL [Cerf-Ducastel and Murphy, 2006, 2009; Eichen-
baum, et al., 2007; Stark and Squire, 2000] during memory
retrieval.

Model A fit well statistically and descriptively for e4
noncarriers during the hit condition (Fig. 2a). However,
Model B did not fit well for e4 noncarriers during the false
positive condition. Given the good model fit for hits in e4
noncarriers, we decided to apply the Model A to the false
positive condition. Interestingly, this model fit well statisti-
cally and fit fairly well descriptively. This suggests that e4
noncarriers engage the same functional network for both
hits and false positives. Contrary to e4 noncarriers, the
Model A did not fit well for e4 carriers during the hits
condition. If fact, utilizing the Lagrange multiplier test did
not yield a single adequately fitting model, of those inves-
tigated, for hits in the e4 carriers. The failure to find an
adequately fitting model for hits in e4 carriers could have
resulted from a number of different factors such as the
type of statistical approach employed, sample size, and
greater variability in the functional networks recruited by
e4 carriers during correct identification of previously pre-
sented stimuli. In addition, although speculative, the fail-
ure to find a cohesive functional connectivity model, may
be a function of the prodromal neuropathological proc-
esses that are associated with the presence of the e4 allele,
which first disrupt connections between structures that
subserve memory functioning [e.g., entorhinal cortex and
hippocampus; Braak and Braak, 1997; Corder et al., 1993;
Price et al., 1991; Saunders, et al., 1993]. The present cohort
of e4 carriers may compensate for prodromal neuropatho-
logical changes by recruiting additional neuronal networks
to perform at a level that is equivalent to that of e4 noncar-
riers and those e4 carriers who have not undergone the
neuropathological processes associated with the e4 allele.
In fact, e4 carriers with mild memory dysfunction [Bartres-
Faz et al., 2008] and without memory dysfunction [Bondi
et al., 2005] and individuals diagnosed with probable Alz-
heimer’s disease [Becker et al., 1996; Stern et al., 2000]
have been shown to compensate for neuropathological
changes by engaging different neuronal networks during
memory performance. On the other hand, one could also

Figure 2.

Schematic illustration of the best fitting models, and their associ-

ated standardized path coefficients, for (a) e4 non-carriers dur-

ing hits and (b) for e4 carriers during false positives (FP). Note:

NS ¼ non-significant, * ¼ significant standardized path coeffi-

cient, R ¼ right, L ¼ left, OFC47 ¼ orbitofrontal cortex brod-

mann area 47, Amyg ¼ amygdala, Ant Hipp ¼ anterior

hippocampus, ParaHip ¼ parahippocampus.
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hypothesize that e4 carriers may be implementing different
cognitive processes to perform the same task (e.g.,
responses based on familiarity rather than recognition),
which may be related to deficits in encoding, resulting in
the engagement of different neuronal networks [Grady
et al., 1995]. In addition to e4 allele status, other factors
have been shown to moderate fMRI brain activation, such
as family history of AD [Seidenberg et al., 2009] and phys-
ical exercise [Smith et al., 2011]. In the present experiment,
it is possible that these factors could be contributing to the
variability in the hit model for e4 carriers.

In the present study, the rate of false positive responses
did not significantly differ between e4 carriers and e4 non-
carriers. However, when e4 carriers misidentify an odor as
being previously presented, MTL structures as well as
bilateral frontal lobes are positively associated (Fig. 2b);
this model does not fit e4 noncarriers. As stated above, the
false positive performance in e4 non-carriers is associated
with significant connectivity among right frontal lobe and
MTL structures. Interestingly, there are a number of asso-
ciations that differ between the false positive model for e4
carrier and noncarriers. For example, the e4 carrier false
positive model does not specify connections between right
frontal cortex and anterior hippocampus, amygdala and
piriform, or amygdala and parahippocampus. As such,
this model may reflect disassociations among brain regions
associated with prodromal changes in e4 carriers [Filippini
et al., 2009]. The significant associations between bilateral
frontal lobes may reflect compensatory recruitment in e4
carriers. A number of studies have shown a positive asso-
ciation between bilateral PFC activation and memory per-
formance [Bondi et al., 2005; Cabeza, 2002; Cabeza et al.,
2002; Grady, 2001; Wisheart et al., 2006], which may be
specific to episodic memory encoding and retrieval
[Burggren et al., 2002]. Whereas, others have demonstrated
an inverse relationship between bilateral PFC activation
and memory performance [Duverne et al., 2009; Logan
et al., 2002; Morcom et al., 2007], suggesting that greater
activation does not necessarily facilitate memory
performance.

One could speculate that the differences in the func-
tional connectivity between e4 carriers and noncarriers in
the present study are related to cross modal olfactory rec-
ognition memory task on two levels, sensitivity and diffi-
culty. Given that the primary olfactory regions are the
initial sites of neuropathological changes associated with
AD, a task that engages these regions may be particularly
sensitive to prodromal neuronal changes in e4 carriers. On
the other hand, differences in functional connectivity may
also be related to the high task demands required during
olfactory recognition performance [Frank et al., 2011]. Pre-
vious studies have found that high task demands are asso-
ciated with increased prefrontal activation [Grady et al.,
1996]. It is also possible that different combinations of the
e4 allele, e2/e4, e3/e4, e4/e4 would result in differential
performance and differential connectivity at various stages
of the incipient disease process, a topic for future studies.

Nevertheless, the current results suggest that e4 carriers
engage different neural networks during olfactory recogni-
tion memory relative to e4 noncarriers.

Activation within the amygdala, for e4 noncarriers (hits
and false positives) was positively associated with activa-
tion in the hippocampus, frontal lobe, piriform, and para-
hippocampus. Interestingly, the direct path between the
hippocampus and frontal cortex was not significant. At the
group level, in e4 carriers, amygdala activation was associ-
ated with activation in the hippocampus and frontal lobe
during false positives [Murphy et al., to be submitted].
The amygdala has been shown to be involved in process-
ing the emotional saliency of stimuli [Fitzgerald et al.,
2006] and the right prefrontal cortex (PFC) has been impli-
cated in the retrieval of episodic memories [Buckner et al.,
1996; Lepage et al., 2000]. A number of recent studies con-
ducted by Barbas et al. have identified robust reciprocal
connections between the frontal cortices and the amygdala,
as well as connections among the amygdala and other
MTL structures (e.g., entorhinal and perirhinal cortices) in
rhesus monkeys [Ghashghaei et al., 2007; Höistad and Bar-
bas, 2008]. It has been suggested that these connections
may aid in memory formation and retrieval and help to
establish reward related contingencies. In fact, previous
studies have reported amygdala activation is associated
with better memory performance in individuals diagnosed
with Alzheimer’s disease [Grady et al., 2001]. As such,
affective cues and the subsequent recruitment of the amyg-
dala may facilitate olfactory memory retrieval.

Despite good model fit for data collected during the first
run, data collected during the second run did not fit well
for Model A in e4 noncarriers during hits and false posi-
tives and for Model B in e4 carriers during false positives.
This suggests that different functional networks are
recruited for novel olfactory labels relative to previously
presented olfactory labels. While the exact mechanism can-
not be parsed out in the present experiment, a number of
studies have found differential activation in response to
novel versus familiar stimuli. The present findings are con-
sistent with the hemispheric encoding/retrieval asymme-
try model proposed by Tulving et al. [1994] that posits the
left PFC is differentially recruited during the retrieval and
encoding of novel information. Logan et al. [2002] have
reported similar findings, such that greater association
between left PFC and left anterior hippocampus may be
related to the encoding of foils during the first trial. The
present findings may also be associated with differential
involvement of the hippocampus and parahippocampus as
a result of stimulus novelty [Johnson et al., 2008]. Taken
together, the current results may reflect the use of different
retrieval strategies for novel versus familiar labels or it
may be the result of the second run requiring greater cog-
nitive demands (e.g., discriminating targets from old foils).
In other words, the lack of significant model fit in the sec-
ond run, may reflect a transition from encoding novel
aspects of previously encoded olfactory information to
familiarity based memory processes.
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The fact that different functional connectivity models fit
well for e4 carriers and noncarriers during olfactory rec-
ognition memory task performance may be better under-
stood by conceptualizing the present findings in the
context of what is known regarding the default mode net-
work. The default mode network is comprised of an ana-
tomical substrate that is active when individuals are not
engaging external stimuli [Raichle et al., 2001; for a review
see Buckner et al., 2008]. Research has shown that over
the life-span, deactivation within the default mode net-
work was reduced in older adults relative to middle-aged
and younger adults, suggesting an age-dependent inabil-
ity to filter out information that is irrelevant to the task
[Grady et al., 2006; Stevens et al., 2008]. Recently, Beason-
Held et al. [2009] have shown that the default mode net-
work is relatively stable in normal aging, while studies
examining disease processes have found a disruption
within the network during task performance [Frings et al.,
2009; Persson et al., 2008]. Specifically, nondemented e4
carriers had significantly reduced deactivation in the
default mode network relative to nondemented e4 noncar-
riers [Persson et al., 2008]. Other studies have explored
differences in default network of disease states by examin-
ing resting state BOLD networks. In particular, differences
in resting state connectivity between e4 carriers and non-
carriers have been reported within the frontal, temporal,
and parietal lobes [Fleisher et al., 2009; Sheline et al.,
2010]. In addition, Sheline et al. [2010] also reported dif-
ferences in resting state connectivity among the MTL (e.g.,
hippocampus, parahippocampus), anterior cingulate,
hypothalamus, and occipital cortex. These findings are
congruent with the present study and suggest that during
memory processing, e4 carriers recruit from other neural
networks as a means of compensation for less efficient
processing.

In conclusion, the present findings have shown that a
task that places demands on olfactory, semantic, and epi-
sodic networks is capable of revealing differential func-
tional connectivity between individuals genetically at risk
for AD relative to those who are not. Furthermore, the
findings highlight the potential role of early neurodegener-
ative changes on cognition in individuals genetically at
risk for AD. In the future, differential functional connectiv-
ity during memory processing may be useful in contribut-
ing to the prediction of incipient dementia. Understanding
preclinical markers of AD may help to identify those who
would be targets of pharmaceutical interventions designed
to delay the progression to dementia and subsequently
improve the lives of the afflicted.
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