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Abstract The generation of appropriate and diverse

neuronal and glial types and subtypes during development

constitutes the critical first step toward assembling func-

tional neural circuits. During mammalian retinogenesis, all

seven neuronal and glial cell types present in the adult

retina are specified from multipotent progenitors by the

combined action of various intrinsic and extrinsic factors.

Tremendous progress has been made over the past two

decades in uncovering the complex molecular mechanisms

that control retinal cell diversification. Molecular genetic

studies coupled with bioinformatic approaches have iden-

tified numerous transcription factors and cofactors as major

intrinsic regulators leading to the establishment of pro-

genitor multipotency and eventual differentiation of

various retinal cell types and subtypes. More recently, non-

coding RNAs have emerged as another class of intrinsic

factors involved in generating retinal cell diversity. These

intrinsic regulatory factors are found to act in different

developmental processes to establish progenitor multipo-

tency, define progenitor competence, determine cell fates,

and/or specify cell types and subtypes.
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Introduction

The mammalian retina is a delicate multilayered sensori-

neural epithelium composed of six major types of neurons

and one type of glia, the Müller cells (Fig. 1c). The

neuronal types include the rod and cone cells as photore-

ceptors, the horizontal, bipolar and amacrine cells as

interneurons, and the retinal ganglion cells (RGCs) as

output neurons. Except for rods, all major types of retinal

neurons consist of two or more subtypes that differ in

morphologies, physiological properties, and/or sublaminar

positions, with amacrine cells and RGCs as the most

diversified cell types [1–4]. During embryogenesis, retina

originates from the optic vesicle, a protrusion of the neu-

roepithelium of the neural tube at the diencephalon level.

Following invagination of the optic vesicle, a double-lay-

ered optic cup is formed with the inner layer containing

multipotent retinal progenitor cells (RPCs) capable of dif-

ferentiating into any of the seven neuronal and glial cell

types (Fig. 1a, b). Producing proper types and quantity of

retinal cells constitutes the critical first step toward

assembling a functional retinal circuitry. A central question

in retinal development is, thus, how these diverse cell types

and subtypes are specified and differentiated from the

multipotent RPCs.

During retinogenesis, the seven major cell types are

generated from multipotent RPCs following a loose and

overlapping temporal order [5–7] (Fig. 1d). It has been

proposed that both intrinsic and extrinsic factors together

determine the choice of retinal cell fates and that RPCs

may pass through successive and distinct states of com-

petence for the ordered generation of different cell types

[8–10]. Extrinsic factors such as FGFs, EGFs, CNTF, Shh,

thyroid hormone, and Notch/Delta are all known to affect

retinal cell fates [8–11]. For instance, constitutively
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activated Notch and elevated Dll signals are shown to

suppress neuronal differentiation whereas inhibiting Notch

signaling has the opposite effect [12–17]. Notch signaling

is also required to promote the Müller glial fate but inhibit

the photoreceptor fate [18–21]. Despite the involvement of

extrinsic factors, however, recent evidence suggests that

intrinsic factors are the primary determinants of retinal fate

choices. Retinal clones generated in serum-free clonal-

density cultures of late rat RPCs were found to be indis-

tinguishable in composition and size from clones generated

in explants of retina of the same age [22]. Moreover,

lineage tracing by time-lapse microscopy in such clonal

culture as well as in zebrafish developing retina revealed

that individual clones exhibit great variations in size,

composition, and division mode, but as a population, fit a

simple stochastic model in which equipotent RPCs have

certain probabilities of division and differentiation [23, 24].

One underlying mechanism for such stochasticity may be

the extreme heterogeneity exhibited by RPCs in their

expression of transcription factors (TFs) [25].

In the past two decades, experiments that perturb normal

expression of TFs have shed fundamental new light on the

molecular basis of retinal cell fate commitment and dif-

ferentiation. Not only have a variety of TFs and cofactors

been identified that control the competence states of RPCs

and/or participate in their specification and differentiation,

but many of them are found to have multiple roles in dif-

ferent developmental contexts (Fig. 2). For instance,

Neurod1 is involved in the determination of bipolar, ama-

crine, and horizontal cells, the specification of M-cones, and

Fig. 1 Retinal development from multipotent progenitor cells.

a, b Schematic illustration of the double-layered optic cup. The inner

layer harbors multipotent retinal progenitors that are capable of

differentiating into the ganglion, horizontal, amacrine, cone, rod,

bipolar, and Müller cells. c Schematic of the retinal structure

assembled from the seven cell types produced from multipotent

progenitors. d Order of birth of mouse retinal cell types. Birthdating

analysis has revealed a loose temporal sequence of generation of the

six neuronal and one glial cell types in the mouse retina. GCL

ganglion cell layer, INL inner nuclear layer, IPL inner plexiform

layer, ONL outer nuclear layer, OPL outer plexiform layer, RPC

retinal progenitor cell, RPE retinal pigment epithelium, NR neural

retina
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in terminal differentiation and survival of photoreceptors

(see below and Fig. 2). More recently, non-coding RNAs

(ncRNAs) have emerged as another important family of

intrinsic factors involved in regulating retinal cell devel-

opment. In this review, I will focus on these two families of

intrinsic molecules, with an emphasis on their functions in

RPC competence, specification, and differentiation.

TFs involved in conferring/maintaining neurogenic

competence and multipotency of RPCs

Prior to retinogenesis, neuroepithelial cells in the optic cup

must acquire multipotency and establish competence for

the generation of the full range of retinal cell types.

Accumulating evidence has indicated that maintaining a

precise ratio of Sox2 and Pax6 levels in RPCs is essential

for establishing and/or maintaining neurogenic competence

and multipotency of RPCs (Fig. 2). Pax6 is a paired-type

homeodomain TF required for early patterning of eye

development. Its mutations or overexpression resulted in a

range of ocular phenotypes including small eyes, absence

of eyes, cataract, or aniridia in the mouse and human

[26–30]. Conditional ablation of Pax6 from mouse RPCs

caused loss of all retinal cell types except for GABAergic

amacrine cells, suggesting a requirement of Pax6 by RPCs

to acquire and/or maintain their multipotent state [31].

Pax6 controls RPC multipotency by regulating the

expression of multiple retinogenic bHLH and homeodo-

main TFs which are key intrinsic regulators of cell type

specification [31–33]. Pax6 is also highly expressed in iris

and ciliary body epithelium and crucially required for their

differentiation [34].

At the optic cup stage of retinal development, Pax6 and

Sox2, a HMG-box TF, are expressed in opposite gradients,

with Sox2 displaying a central-high to peripheral-low

gradient but Pax6 a peripheral-high to central-low gradient

[35]. Sox2 inactivation in RPCs resulted in loss of neuro-

genic competence and a switch to non-neural ciliary

epithelial fate, accompanied by loss of Notch1 and neu-

rogenic factor expression, and simultaneous increase in

expression of Pax6 and ciliary epithelial markers [35, 36].

The maintenance of Rax/Rx and Vsx2/Chx10 homeobox

gene expression in Sox2 null RPCs [35] indicates that,

despite its necessity, Pax6 is insufficient to maintain neu-

rogenic competence of RPCs even in the presence of Rax

and Vsx2. In contrast, ablating Sox2 on a Pax6 heterozy-

gous background partially rescued the Sox2 mutant

phenotype, suggesting that a proper ratio of Sox2 to Pax6

levels is key to the maintenance of RPC neurogenic

Fig. 2 Known transcription factors and cofactors involved in retinal progenitor multipotency and competence as well as in the specification and

differentiation of different retinal cell types and subtypes
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competence and multipotency [35]. Consistent with this

hypothesis, both Sox2 and Pax6 mutant phenotypes are

sensitive to their gene dosage [26, 28, 30, 36], and similar

to Pax6, Sox2 mutations are associated with anophthalmia

and microphthalmia in humans and mice [36, 37]. Aside

from Sox2, Vsx2 is also required to prevent RPCs from

differentiating into the ciliary body and pigmented epi-

thelium by repressing the expression of Mitf, a bHLH

leucine zipper TF gene involved in retinal pigment epi-

thelium differentiation [38–40]. Vsx2 mutation caused RPC

fate switch to pigmented cells and Mitf upregulation

whereas misexpressed Vsx2 led to Mitf downregulation and

nonpigmented epithelium [38]. Thus, the maintenance of

RPC neurogenic competence depends on precise and

coordinated regulation of Pax6, Sox2, and Vsx2 TFs during

retinogenesis.

The multipotent RPCs are thought to gradually change

their competence states as retinogenesis progresses from

embryonic to postnatal stages [8, 9]. It has been demon-

strated that the Ikzf1/Ikaros zinc finger TF plays a key role

in establishing the early temporal competence states

responsible for generating early-born cell types [41]. Inac-

tivating Ikzf1 caused loss of early-born neurons including

ganglion, amacrine, and horizontal cells without affecting

late-born cell types. On the other hand, while suppressing

late-born cell types including bipolar and Müller cells, Ikzf1

misexpression in postnatal RPCs was sufficient to confer

them with prenatal competence to generate early-born

neurons [41]. The intrinsic factor(s) responsible for con-

ferring late temporal competence states still remains

elusive, but its identification will help to more completely

elucidate the molecular mechanism underlying neurogenic

competence and multipotency of RPCs.

TFs involved in retinal cell diversification

Photoreceptors

A cascade of TFs acts combinatorially for the determina-

tion and differentiation of rod and cone cells (Fig. 2). Their

fate commitment and differentiation require the function of

three paired-type homeodomain TFs, Rax, Otx2, and Crx.

Conditional inactivation of Otx2 in mouse RPCs resulted in

a failure to generate rods and cones while causing a fate-

switch to amacrine cells, whereas its misexpression in

RPCs promoted a photoreceptor cell fate [42]. Otx2

determines the photoreceptor fate in part by activating the

expression of Crx [42], which has been shown by gene

targeting and overexpression analyses to be essential for

maturation but not for specification of photoreceptor cells

[43, 44]. In the human, mutations in CRX are associated

with retinal diseases including cone-rod dystrophy, retinitis

pigmentosa, and Leber congenital amaurosis [45–48]. Otx2

may also have a role in terminal differentiation of photo-

receptors, as Otx2?/-Crx-/- mice exhibited a more severe

photoreceptor phenotype than either Otx2?/- or Crx-/-

animals [49]. Rax, a retinal field specifier [50], has turned

out to be a crucial upstream regulator of Otx2 [51]. It binds

directly to the embryonic Otx2 enhancer to activate its

expression in photoreceptor precursors, and this expression

can be severely attenuated by genetic ablation of Rax in

RPCs [51]. Thus, Rax may have a role in photoreceptor

competence acquisition and/or fate determination.

The PR domain zinc finger TF Prdm1/Blimp1 is also

involved in photoreceptor specification as its inactivation

caused a decrease of photoreceptors with a concomitant

fate change to bipolar and Müller cells while its misex-

pression suppressed the bipolar cell fate [52, 53]. It inhibits

the bipolar fate by repressing the expression of Vsx2 and

Vsx1 [53], two homeodomain TFs involved in bipolar cell

development as discussed below. Besides Crx, Neurod1, a

bHLH TF, is required for terminal differentiation and

survival of photoreceptors. Inactivating Neurod1 resulted

in shortened inner and outer segments, abnormal synapses,

and degeneration of rods and cones [54]. The maturation of

rods additionally depends on the retinoblastoma protein

Rb1. Genetically ablating Rb1 or biochemically inactivat-

ing its protein activity caused loss of rod marker

expression, deformed rod inner and outer segments, and

defective rod pedicles [55]. Despite the downregulation of

rod determination genes Nrl and Nr2e3 in Rb1 null retinas,

it is unclear whether Rb1 has any role in specifying the rod

fate because its absence causes no S-cone increase, nor-

mally seen in Nrl and Nr2e3 mutants [55] (see below).

Three types of photoreceptors, rod, S-cone, and M-cone,

are specified from photoreceptor precursors during mouse

retinogenesis. Humans are trichromatic with the additional

L-cone. The specification of these photoreceptor subtypes

relies on a complex network of TFs. Rorb, a retinoic acid

receptor-related orphan nuclear receptor TF, acts directly

upstream of Nrl, a basic leucine zipper TF, to specify the

rod fate. Targeted inactivation of either gene caused a

similar phenotype—conversion of rods into S-cones, while

misexpressed Nrl was sufficient to promote the rod fate in

photoreceptor precursors and partially rescue the Rorb

mutant phenotype [56–58]. There is complete downregu-

lation of Nrl expression in the absence of Rorb [58], and

Rorb together with Otx2 and Crx directly binds to an Nrl

enhancer to activate its expression [59, 60]. In the human,

missense mutations in NRL are associated with autosomal

dominant retinitis pigmentosa [61, 62]. Nrl functions

to determine rods from precursor cells by activating

numerous rod-specific genes as well as by suppressing

cone-specific genes in part by directly regulating expres-

sion of the Nr2e3 orphan nuclear receptor gene [56, 63].
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Nr2e3 mutation in mice causes the rd7 retinal degeneration

characterized by the presence of hybrid photoreceptors and

increased S-cones [64–67], and in humans it is associated

with the enhanced S-cone syndrome [68, 69]. Nr2e3 is

expressed exclusively in rods to repress the expression of

cone-specific/enriched genes [66, 67, 70]. This gene

repression program requires Nr2e3 association with and

SUMOylation by Pias3, a transcription cofactor and E3

SUMO ligase [71]. Misexpressed Pias3 promoted rod dif-

ferentiation in the developing retina whereas its reduced

expression led to increased S-cone-like cells [71].

M-cone specification critically depends on the concerted

action of Neurod1, TRb2/Thrb (thyroid hormone receptor

b2), and Rxrg/RXRc (retinoid X receptor c). Inactivating

Neurod1 or Thrb in mice caused a complete loss of M-cones

and a concomitant increase of S-cones [72, 73]. The absence

of Rxrg resulted in a similar S-cone increase but a normal

pattern of M-opsin expression [74]. Neurod1 appears to

directly activate Thrb expression to specify M-cones while

Rxrg may form a heterodimer with TRb2 to repress S-opsin

expression in M-cones [73, 75]. During late retinogenesis,

TRb2 responds to the dorsal-high to ventral-low gradient of

thyroid hormone to promote M-opsin expression while

suppressing S-opsin expression in the dorsal retina [75].

TRb2 and Rxrg specify M-cones by directly binding to the

promoter of Pias3 to selectively activate its expression in

M-cones [76]. Pias3 overexpression promoted the M-cone

fate at the expense of S-cones whereas its knockdown or

SUMOylation-deficient mutant caused the opposite effect

[76]. Interestingly, TRb2 expressed from the Nrl locus is

sufficient to specify M-cones in Nrl null background but not

in the heterozygous background, indicating the presence of a

common photoreceptor precursor as well as Nrl dominance

in specifying the rod fate [77] (Fig. 2). Other TFs involved

in M-cone development include Nr2f1/COUP-TFI and

Nr2f2/COUP-TFII, two orphan nuclear receptors that are

expressed in reciprocal dorsal-to-ventral gradients within the

mouse retina and required for suppressing S-opsin expres-

sion in the dorsal region [78]. Their genetic ablation resulted

in elevated S-cones in the dorsal retina [78].

Besides its role in rod fate commitment, Rorb is also

involved in S-cone specification. In association with Crx, it

binds directly to the S-opsin gene promoter to activate its

expression, and in early postnatal Rorb null mutant retinas

there is complete loss of S-cones [79]. However, in late

postnatal Rorb null retinas, S-cones are greatly increased

[58], suggesting the presence of additional TFs involved in

S-cone development. Rora, another member of the ROR

family, also participates in regulating S-opsin expression.

Similar to Rorb, Rora binds to the S-opsin gene promoter

and acts synergistically with Crx to activate S-opsin gene

expression [80]. However, unlike Rorb, its inactivation led

to reduced expression of both S- and M-opsins, indicating a

role for Rora in differentiation of both S- and M-cones

[80]. S-cone subtype specification also depends on the

Sall3 zinc-finger TF. It could bind to the promoters of

S-cone genes and activate their expression when ectopi-

cally expressed, whereas its deficiency caused loss of

S-cones [81]. On the other hand, Nr2f1 is required to

repress M-opsin expression in S-cones since its ablation

caused increased number of M-cones in the ventral retina

and eliminated the gradient of M-cone distribution [78].

Bipolar cells

Fate determination of bipolar cells depends on the syner-

gistic activities of Vsx2 and bHLH TFs Ascl1/Mash1,

Neurod4/Math3, Neurod1, and Neurog2/Ngn2 (Fig. 2).

Loss of Vsx2 function caused a blockage of bipolar cell

specification and RPC proliferation accompanied by a RPC

fate switch to photoreceptors and perhaps also Müller cells

[82, 83]. Vsx2 null mutations caused microphthalmia in

both mice and humans [82, 84]. Misexpressed Vsx2 in

postnatal RPCs promoted bipolar cell formation while

inhibiting the photoreceptor fate, whereas its knockdown

had the opposite effect [83]. Retinas deficient for both Ascl1

and Neurod4 lacked bipolar cells and displayed a fate

change to Müller cells [85, 86]. Similarly, bipolar cells were

missing and Müller cells increased in retinas deficient for

Neurog2, Neurod4, and Neurod1 even though bipolar cells

were generated in retinas deficient for any two of them [32].

When Ascl1 or Neurod4 was co-expressed with Vsx2 in

RPCs, they were able to promote the bipolar cell fate, but

they lacked this activity on their own [85], indicating that

commitment to a bipolar cell fate requires the combinatorial

action of Vsx2 and Ascl1 or Neurod4 in RPCs.

Besides the essential roles of Otx2 and Crx in photore-

ceptor development, they are also cooperatively required

for bipolar cell differentiation. There was a significant

decrease of bipolar cells in Otx2?/-; Crx-/- double mutant

retinas but not in Otx2?/- or Crx-/- single mutant retinas;

additionally, marker genes for bipolar cells were more

severely downregulated in the double than the single

mutants [49, 87]. Conditional ablation of Otx2 also resulted

in loss of mature bipolar cells [49]. Otx2 and Crx appear to

control bipolar cell differentiation by directly binding to

cis-regulatory sequences of Vsx2 and other bipolar cell-

specific genes to activate their expression [87]. The LIM-

homeodomain protein Isl1 is another TF involved in

bipolar cell differentiation. Its inactivation did not affect

bipolar cell generation but caused loss of multiple bipolar

subtypes and greatly reduced expression of Bhlhe23/

Bhlhb4 and Vsx1, two TFs required for differentiation of

rod and OFF-cone bipolar cells, respectively [88–90].

In the mouse retina, there exist one type of rod bipolar

cells and at least nine types of morphologically and
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physiologically distinct cone bipolar cells [91]. At present,

little is known about how each of these subtype identities is

specified and differentiated from the bipolar precursors.

The bHLH TF Bhlhe23 is expressed by all developing rod

bipolar cells, and its targeted deletion caused a near com-

plete loss of these cells due to a failure in their terminal

differentiation [92]. For cone bipolar cells, the Vsx1

homeodomain TF may be required for differentiation of all

OFF-cone bipolar cells, as its inactivation led to diminished

OFF-cone bipolar marker expression and disrupted phot-

opic OFF responses [89, 90]. Acting in parallel with Vsx1,

the Irx5 homeodomain TF controls the differentiation of

Type 2 and 3 OFF-cone bipolar cells [89, 90, 93]. On the

other hand, the bHLH TF Bhlhe22/Bhlhb5 functions

upstream of Vsx1 to specify the Type 2 OFF-cone bipolar

cells, as retinas deficient for Bhlhe22 displayed a failure in

their generation and decreased Vsx1 expression [94]. The

Ebf (Ebf1–4) HLH TFs are also involved in specifying

Type 2 OFF-cone bipolar cells. Their misexpression in

RPCs promoted the differentiation of this cone bipolar

subtype whereas their loss-of-function suppressed its dif-

ferentiation [95].

Ganglion cells

The competence state for RGC generation has been shown to

be conferred by the bHLH TF Atoh7/Math5 (Fig. 2). Atoh7

is transiently expressed in a subset of RPCs during or after

their terminal cell cycle [96, 97]. Its mutation in the zebrafish

lakritz mutant leads to a complete loss of RGCs, and in the

human, deletion of the ATOH7 remote enhancer causes optic

nerve aplasia in the nonsyndromic congenital retinal non-

attachment (NCRNA) disease [98, 99]. Targeted disruption

of Atoh7 in mice resulted in near complete loss of RGCs and

overproduction of amacrine, cone, horizontal, and Müller

cells [100–102]. Atoh7 is required only for conferring RPCs

with the competence of RGC generation since genetically

marked Atoh7-expressing RPCs are multipotential, being

able to generate all major cell types present in the adult

retina [96, 103]. That Atoh7 overexpression in mouse retinal

progenitors/precursors did not favor the RGC fate or prolong

RGC birth further demonstrated a permissive-only role for

Atoh7 in RGC development [104]. By contrast, Atoh7

misexpression in Xenopus and chick RPCs was shown to

promote the RGC fate and activate expression of the RGC

differentiation TF Pou4f2/Brn3b or equivalent [105, 106],

implicating a species difference. Atoh7 controls RGC

competence in part by directly activating the expression of

Pou4f2 and Isl1, two homeobox TF genes involved in

RGC specification and differentiation [107, 108]. In addi-

tion, gene expression profiling analysis has revealed that

Atoh7-regulated genes include the two branches of genes

controlled by Pou4f2 and Isl1 [108, 109].

The LIM-homeodomain TF Isl1 and POU-domain TF

Pou4f2 appear to act in parallel to control RGC specifica-

tion and differentiation. During mouse retinogenesis, they

are co-expressed in migrating newborn RGCs as well as

differentiated RGCs [107, 110]. Inactivating either Pou4f2

or Isl1 caused optic nerve hypoplasia, a loss of *70 % of

RGCs, delayed RGC axon growth, RGC axon guidance

errors, and RGC nerve fiber defasciculation [107, 108,

110–115]. Distinct but redundant functions are implicated

between Pou4f2 and Isl1 or other Pou4f TFs during RGC

development because more severe RGC loss and axon

growth defects were seen in Pou4f2 and Isl1 or Pou4f3

double mutant mice [107, 116]. Correspondingly, Pou4f2

and Isl1 regulate overlapping but distinct groups of genes

and they co-occupy the promoters of shared RGC genes

[107, 108]. Similarly, despite RGC loss in both Pou4f1 and

Pou4f2 conditional knockout mice, conditional ablation of

Pou4f1 changed dendritic morphology and stratification of

RGCs whereas conditional inactivation of Pou4f2 caused

RGC transdifferentiation and central projection defects but

no alteration in RGC dendritic stratification [117, 118].

Pou4f2 specifies RGCs from early retinal precursors not

only by promoting RGC differentiation but also by inhib-

iting non-RGC differentiation programs. It suppresses the

expression of TF genes involved in the specification and

differentiation of amacrine, horizontal, and late-born gan-

glion cells, and correspondingly, Pou4f2 inactivation

results in overproduction of these cells [119]. On the other

hand, Pou4f2 misexpression led to increased RGC differ-

entiation but decreased non-RGC cell types [119, 120].

Gene expression profiling has revealed that Pou4f2 regu-

lates a large set of genes involved in RGC development,

among them the T-box TF gene Eomes, homeobox TF gene

Barhl2, and HLH TF genes Ebf1–4 [95, 119, 121–123].

The expression of Eomes and Ebf3 is directly activated by

Pou4f2 through the promoter or enhancer, although it

remains to be determined whether this is also the case for

Barhl2 [95, 122]. Inactivation of Eomes or Barhl2 caused a

phenotype resembling that of Pou4f2 mutants, which

includes a 30 % decrease in RGC number and optic nerve

size [122, 123]. Ebf factors appear to be necessary but

insufficient for RGC differentiation as a dominant-negative

form of Ebf suppressed RGC formation whereas the wild-

type Ebf1 had no effect [95].

The Dlx1 and 2 homeodomain TFs are co-expressed

with Pou4f2 in developing RGCs during retinal develop-

ment and play a key role in the differentiation of late-born

RGCs [124, 125]. Mice deficient for both Dlx genes

exhibited a mild optic nerve hypoplasia, a loss of

*30–40 % of RGCs, and aberrant expression of the pho-

toreceptor TF gene Crx in the RGC layer of the retina

[125]. Late-born RGCs failed to generate, whereas there

was essentially normal production of early-born RGCs in
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the double mutant retina [125]. Neurod2, a bHLH TF

expressed in a small population of RGCs [126] might be

involved in RGC subtype specification. It induced RGC

differentiation when misexpressed in postnatal RPCs [126].

Amacrine and horizontal cells

A common set of TFs including the forkhead/winged-

helix TF Foxn4 and bHLH TFs Neurod1, Neurod4, and

Ptf1a are involved in the specification of both amacrine

and horizontal cells, suggesting the presence of a possible

intermediate amacrine and horizontal precursor at early

stages of retinogenesis (Fig. 2). Inactivating Foxn4 eliminated

horizontal cells and caused loss of the majority of amacrine

cells (Fig. 3a), whereas its overexpression strongly pro-

moted amacrine cell differentiation and horizontal cell

marker expression, indicating that Foxn4 is required by

RPCs for amacrine and horizontal cell competence and

specification [127, 128]. Foxn4 specifies RPCs into ama-

crine cells in part by activating the expression of Neurod1,

Neurod4, and Ptf1a (Fig. 3c) [21, 127, 129]. Neurod1 and

Neurod4 are redundantly required for determining the

amacrine cell fate. In mice deficient for both Neurod1 and

Neurod4, a complete loss of amacrine cells was accompa-

nied by a fate-switch of RPCs to RGCs and Müller cells

[130], whereas amacrine cell differentiation was essentially

normal in their single mutants [130, 131]. Ptf1a is inde-

pendently required for specifying the amacrine cell fate, for

its ablation resulted in near complete loss of amacrine cells

with concomitant increase of RGCs [129, 132]. Although

Neurod1 alone or in combination with Pax6 is able to

promote amacrine cell differentiation [130, 131], Neurod4

alone lacks this activity and it is capable of doing so only in

the presence of Pax6 [130]. Thus, Pax6 may be also

involved in specifying amacrine cells apart from its key role

in establishing the RPC multipotency.

Fig. 3 Model by which Foxn4 promotes the amacrine and horizontal

cell fates but suppresses the alternative photoreceptor and ganglion

cell fates in early retinal progenitor cells (RPCs). a Schematic

illustration of retinal phenotype in Foxn4 null mutant mice. b Early

RPCs are capable of generating ganglion, amacrine, horizontal, and

photoreceptor cells. c Foxn4 specifies early RPCs into amacrine and

horizontal cells by activating the expression of Ptf1a, Neurod1, and

Neurod4, three bHLH transcription factors (TFs) involved in the

specification of these two cell types. Meanwhile, Foxn4 may

simultaneously suppress the ganglion fate also by activating the

expression of these three bHLH factors due to their activity to repress

the expression of Atoh7 and Pou4f2. Another possibility is that Foxn4

may directly repress Atoh7 and Pou4f2 expression. Foxn4 suppresses

photoreceptor fates by directly activating Dll4-Notch signaling which

in turn represses the expression of Otx2, Crx, TRb2, and perhaps

other TFs involved in photoreceptor fate determination and

differentiation
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During mouse retinogenesis, early RPCs give rise to

several cell types including ganglion, amacrine, horizon-

tal, cone, and rod cells (Fig. 3b). Foxn4 appears to select

the amacrine and horizontal cell fates from early RPCs,

not only by promoting these two fates but also by sup-

pressing alternative fates available to the multipotent

RPCs. Foxn4 normally inhibits the photoreceptor fate and

thus there is a significant increase of photoreceptors and

Crx expression in Foxn4 null retinas (Fig. 3a) [127]. Our

group has shown by expression profiling and in situ

hybridization analyses that Dll4 expression dramatically

decreased in the absence of Foxn4 and that its overex-

pression greatly induced Dll4 expression in retinal

explants [21]. Foxn4 colocalizes with Dll4 in RPCs and

can directly bind to a Dll4 enhancer to activate gene

expression. Conditional ablation of Dll4 significantly

increased photoreceptors and photoreceptor marker gene

expression despite the reduction of other non-photore-

ceptor cell types [21]. Thus, Foxn4 appears to suppress

photoreceptor fates in early RPCs by directly activating

Dll4-Notch signaling (Fig. 3c). Similarly, microarray

profiling and in situ hybridization analyses have demon-

strated that Neurod1, Neurod4, and Ptf1a all depend on

Foxn4 for their expression, and that these bHLH TFs all

have the activity to suppress RGC generation and Atoh7

and Pou4f2 expression [21, 127, 129, 130, 132]. Thus,

Foxn4 may limit the competence of early RPCs to gen-

erate RGCs by directly and/or indirectly activating the

expression of Ptf1a, Neurod1, and Neurod4 (Fig. 3c). It is

unclear whether Foxn4 directly represses Atoh7 and

Pou4f2 expression to inhibit the RGC fate (Fig. 3c).

Amacrine cells constitute the most diversified retinal

cell class that contains at least 28 subtypes with charac-

teristic morphologies, sublaminar positions, physiological

properties, and functions [3, 133, 134]. Based on the neu-

rotransmitters used, they can be grouped into two major

subtypes, GABAergic and glycinergic, and a small subtype

named nGnG (non-GABAergic non-glycinergic) [135,

136]. Barhl2 is involved in specifying subpopulations of

both GABAergic and glycinergic amacrine cells since its

inactivation resulted in significant loss of both subtypes

and its overexpression elevated glycinergic amacrine cell

production [123, 137]. Bhlhb22 and the orphan nuclear

receptor Nr4a2 are specifically required for specifying

subsets of GABAergic amacrine cells that include the

dopaminergic neurons, and misexpressed Nr4a2 was

capable of promoting their formation [94, 138]. In addi-

tion, overexpression and knockdown experiments have

implicated a role for Sox2 in specifying GABAergic neu-

rons [139]. The cholinergic amacrine cells, which comprise

a subset of GABAergic neurons, depend on Isl1 for their

specification as the absence of Isl1 caused near complete

loss of them [88]. For glycinergic amacrine cells, Ebf TFs

were able to promote the non-AII glycinergic amacrine cell

fate whereas their dominant-negative form or knockdown

had the opposite effect [95]. By contrast, Neurod2 is

required for specifying a subset of AII cells and its mis-

expression promoted the glycinergic amacrine cell fate

[126]. Additionally, Pax6 may have a specific role in

specifying glycinergic amacrine cells such that its ablation

led to near complete loss of this subtype [31].

The identity of nGnG amacrine cells is specified by

Neurod6 and the special AT-rich sequence binding protein

Satb2. These two TFs were found to be selectively

expressed in nGnG amacrine cells by sorting transgenically

marked nGnG neurons followed by inventorying and

comparing the genes they expressed by microarray profil-

ing [136]. Loss of Neurod6 function caused a fate change

from nGnG to glycinergic amacrine cells, whereas its

misexpression led to increased generation of nGnG ama-

crine cells [136]. Acting upstream of Neurod6, Satb2

promotes Neurod6 expression as well as the nGnG cell fate

[136].

As aforementioned, Foxn4 is required for the compe-

tence and genesis of horizontal cells as retinas deficient for

Foxn4 failed to generate any of these cells [127]. It fulfills

this function in part by activating the expression of Ptf1a,

Prox1, Neurod1, Neurod4, and Neurog2 (Fig. 3c) [21, 127,

129]. Ptf1a plays an essential role in specifying horizontal

cells such that its absence in mice abolished these cells

[129, 132]. Acting downstream of Ptf1a, the homeodomain

TF Prox1 also functions to determine the horizontal cell

fate (Fig. 3c) [140]. Its inactivation caused near complete

loss of horizontal cells accompanied by a fate-switch to rod

and Müller cells, while its overexpression strongly pro-

moted the horizontal cell fate [140]. Neurod1, Neurod4,

and Neurog2 appear to act redundantly with each other and

in parallel with Ptf1a to specify horizontal cells [32, 129,

132]. Their triple mutants lacked horizontal cells whereas

these cells were generated in all double mutants between

them [32]. The LIM homeodomain TF Lhx1/Lim1 acts

downstream of Ptf1a to control the migration and laminar

position of horizontal cells (Fig. 3c) [141]. Lhx1 is found

to depend on Sall3 for the maintenance of its expression,

therefore inactivating Lhx1 or Sall3 resulted in similar

mutant phenotypes including inner displacement of hori-

zontal cells and reduced expression of mature horizontal

cell markers [81, 141, 142]. Consistent with a role in

horizontal cell differentiation, Sall3 overexpression could

only induce a partial horizontal phenotype but was unable

to specify the horizontal cell fate [81, 142].

Müller cells

It has been shown that committing RPCs to Müller glial

cells involves the closely related bHLH transcriptional
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repressors Hes1, Hes5, and Hey2/Hesr2 as well as the

homeodomain TF Rax (Fig. 2). Hes1, Hes5, and Hey2 are

all expressed early in RPCs but later restricted to Müller

cells, and their overexpression strongly promoted the

Müller cell fate at the expense of neurons [18, 143, 144].

Conversely, Hes5 inactivation resulted in decreased gen-

eration of Müller cells [143]. Rax and the HMG-box TFs

Sox2, Sox8, and Sox9 are expressed in a spatiotemporal

pattern closely resembling that of the Hes TFs during ret-

inogenesis [18, 139, 145, 146]. Similar to the Hes TFs, Rax

potently promotes the Müller cell fate and does so in part

by directly activating Hes1 expression [18]. Sox9 is

required for Müller cell differentiation as its conditional

ablation and knockdown led to loss of Müller cell marker

expression [145, 146]. Similarly, Sox8 knockdown resulted

in diminished Müller cell differentiation [146]. Sox8 and 9

appear to mediate Notch-dependent Müller cell develop-

ment as their expression could be upregulated by activated

Notch but downregulated by a Notch inhibitor [18, 146].

They are insufficient to specify Müller cells since overex-

pression of either TF failed to promote this cell fate [146].

By contrast, Sox2 might play a role in Müller cell speci-

fication because its misexpression in postnatal RPCs

promoted the Müller and amacrine cell fates at the expense

of rod cells [139].

Non-coding RNAs in retinal cell development

Apart from TFs, evidence has been accumulating to impli-

cate non-coding RNAs (ncRNAs) as a group of important

intrinsic regulators for retinal cell development. MicroR-

NAs (miRNAs) are single-stranded 19- to 25-nt small

ncRNA molecules processed from larger pri-miRNAs by the

Drosha and Dicer double-stranded RNA endonucleases. As

part of the RNA-induced silencing complex, they pair with

target sites located primarily within the 30 untranslated

region of mRNAs to suppress gene expression by inhibiting

translation or inducing RNA degradation [147, 148]. miR-

NA profiling and in situ hybridization analyses have shown

that numerous miRNAs are expressed in the mammalian

retina during development and at the adult stage in over-

lapping and distinct patterns [149–152]. A collective role for

miRNAs in retinal development has been demonstrated by

conditional ablation of Dicer in RPCs [153, 154]. Dicer

inactivation caused selective loss of miRNAs, increased and

prolonged production of early-born cell types such as RGCs,

a failure to express late RPC markers including Sox9 and

Ascl1, and a failure to generate late-born cell types including

rod and Müller cells [153, 154]. These results indicate that

loss of Dicer function traps RPCs at an early competence

state and that miRNAs are collectively required for RPCs to

make a proper transition from the early to late competence

state. Although Dicer ablation resulted in diminished Notch

and Hedgehog signaling [154, 155], transgenic expression of

the Notch intracellular domain (NICD) failed to rescue

major Dicer mutant phenotypes [155], suggesting a minor

role for Notch signaling in mediating miRNA function in

retinal development.

miRNAs are additionally required for patterning the

distal optic cup and maintaining long-term survival of

retinal cells. The presence of a mixture of neuronal and

non-neuronal progenitors in the distal retina of Dicer

mutants suggests that miRNAs may have a role in parti-

tioning or maintaining the retina–ciliary body boundary

[154]. A function for miRNAs in retinal maintenance has

been implicated by the observed progressive degeneration

of retinal cells resulting from Dicer inactivation and further

confirmed by miR-124a ablation [153, 156, 157]. The

absence of miR-124a caused mislocalization of M- and

S-cones and their degeneration by apoptosis, a phenotype

that could be rescued by transgenic expression of miR-124a

[157]. miR-124a is required for preventing cone dislocation

and degeneration by targeting Lhx2 mRNA to inhibit its

translation [157]. Downregulation of Lhx2 is necessary for

cone survival because its overexpression caused cone

apoptosis whereas its knockdown partially rescued cone

loss in miR-124a-deficient retinas [157].

The long non-coding RNAs (lncRNAs) comprise

another large class of ncRNAs whose functions are largely

unknown but are currently being actively explored [158,

159]. Tug1 (taurine upregulated gene 1), which was iden-

tified in a microarray screen for genes induced by taurine in

cultured retinal cells, is the first lncRNA known to play a

key role in mammalian retinal development [160]. Its

knockdown in RPCs caused decreased rods and missing or

shortened outer and inner segments, accompanied by

reduced Otx2 and Crx expression but increased cones and

apoptosis [160], suggesting a crucial role for Tug1 in rod

fate determination, differentiation, and survival. Both

knockdown of another lncRNA RNCR2/Miat and overex-

pression of its dominant-negative form in RPCs promoted

the differentiation of amacrine and Müller cells at the

expense of photoreceptors [161]. It is therefore likely that

RNCR2 may be normally required for specification of the

photoreceptor fate but inhibiting the amacrine and glia

fates. The mechanism of how Tug1 and RNCR2 control

photoreceptor development remains to be determined.

Many lncRNAs are transcribed in opposite orientation

of a protein-coding gene and often overlap with the pro-

moter but not the transcribed region of the coding gene.

Over one-third of retina-expressed TFs are associated with

these opposite-strand transcripts (OSTs) [158, 162].

Six3OS represents such a lncRNA which appears to

genetically interact with Six3 in a complex manner to

control retinal cell development [163]. Six3 when
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overexpressed in postnatal RPCs led to increased amacrine

cells and diminished bipolar cells, but co-expression with

Six3OS was able to rescue this phenotype [163]. Knock-

down of either Six3OS or Six3 increased Müller cells at the

expense of bipolar cells, but simultaneous knockdown of

both rescued this phenotype while reducing amacrine cells

[163]. Additionally, Six3 overexpression was able to rescue

the phenotype of Six3OS knockdown whereas the opposite

was not true [163]. Interestingly, Six3OS does not appear to

exert its retinal developmental function by regulating Six3

expression. Instead, it was found to directly interact with

Ezh2, SMARCE1, and Eya family members, suggesting a

possibility that Six3OS may act as a molecular scaffold to

recruit chromatin remodeling factors and TFs [163].

Future perspectives

Rapid advances made over the past two decades have

uncovered a complex mechanism of retinal cell specification

and differentiation. Molecular genetic studies coupled with

bioinformatic approaches have yielded a wealth of informa-

tion about TFs and cofactors as intrinsic regulators leading to

the establishment of RPC multipotency and eventual differ-

entiation of various retinal cell types and subtypes (Fig. 2).

These powerful approaches are continuing to reveal the

regulatory gene networks in which these TFs participate as

well as new classes of intrinsic factors for retinal cell devel-

opment such as ncRNAs. Despite the tremendous progress,

however, there are still numerous questions that remain to be

answered. For instance, how do TFs and signaling molecules

interact and cooperate at cellular and transcriptional levels to

establish RPC competence and drive RPC differentiation?

What TFs are responsible for specifying the numerous sub-

types of amacrine cells and RGCs? What miRNAs are

involved in modulating RPC competence and what is the

regulatory relationship between them and the TFs in this

process? Are there any lncRNAs involved in RPC compe-

tence and how do they interact with TFs at the molecular level

to control retinal cell fate and differentiation? Progress in

these and other areas promises to yield many more exciting

findings in the near future.
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