
Mixed-norm estimates for the M/EEG inverse problem using
accelerated gradient methods

Alexandre Gramfort1,2, Matthieu Kowalski3, and Matti Hämäläinen2

Alexandre Gramfort: alexandre.gramfort@inria.fr
1Parietal Project Team, INRIA Saclay-Ile de France, France.
2Department of Radiology, Martinos Center for Biomedical Imaging, Massachusetts General
Hospital, Harvard Medical School, Boston, MA.
3Laboratoire des Signaux et Systémes, Univ. Paris-Sud, SUPELEC (C-4-20), Plateau de Moulon,
France.

Abstract
Magneto- and electroencephalography (M/EEG) measure the electromagnetic fields produced by
the neural electrical currents. Given a conductor model for the head, and the distribution of source
currents in the brain, Maxwell’s equations allow one to compute the ensuing M/EEG signals.
Given the actual M/EEG measurements and the solution of this forward problem, one can localize,
in space and in time, the brain regions than have produced the recorded data. However, due to the
physics of the problem, the limited number of sensors compared to the number of possible source
locations, and measurement noise, this inverse problem is ill-posed. Consequently, additional
constraints are needed. Classical inverse solvers, often called Minimum Norm Estimates (MNE),
promote source estimates with a small ℓ2 norm. Here, we consider a more general class of priors
based on mixed-norms. Such norms have the ability to structure the prior in order to incorporate
some additional assumptions about the sources. We refer to such solvers as Mixed-Norm
Estimates (MxNE). In the context of M/EEG, MxNE can promote spatially focal sources with
smooth temporal estimates with a two-level ℓ1/ℓ2 mixed-norm, while a three-level mixed-norm can
be used to promote spatially non-overlapping sources between different experimental conditions.
In order to efficiently solve the optimization problems of MxNE, we introduce fast first-order
iterative schemes that for the ℓ1/ℓ2 norm give solutions in a few seconds making such a prior as
convenient as the simple MNE. Furhermore, thanks to the convexity of the optimization problem,
we can provide optimality conditions that guarantee global convergence. The utility of the
methods is demonstrated both with simulations and experimental MEG data.
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1. Introduction
Inverse problems are common in applied physics. They consist of estimating the parameters
of a model from incomplete and noisy measurements. Examples are tomography which is a
key technology in the field of medical imaging, or identifying the targets using sonars and
radars. Blind source separation, which is an active topic of research in audio-processing,
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also falls in this category. In this contribution, we target the localization of the brain regions
whose neural activations produce electromagnetic fields measured by
Magnetoencephalography (MEG) and Electroencephalography (EEG), which we will refer
to collectively as M/EEG. The sources of M/EEG are current generators classically modeled
by current dipoles. Given a limited number of noisy measurements of the electromagnetic
fields associated to neural activity, the task is to estimate the positions and amplitudes of the
sources that have generated the signals. By solving this problem, M/EEG become
noninvasive methods for functional brain imaging with a high temporal resolution.

Finding a solution to an inverse problem requires finding a good model for the observed data
given the model parameters: this is called the forward problem. The task in the inverse
problem is to infer the model parameters given the measurements. This is particularly
challenging for an under-determined problem where the number of parameters to estimate is
greater than the number of measurements. In such settings, several different source
configurations can explain the experimental data and additional constraints are needed to
provide a sound solution. In addition, the solution may be highly sensitive to noise in the
measurements. Such problems are said to be ill-posed. Note that even over-determined
problems can be ill-posed.

The linearity of Maxwell’s equations implies that the signals measured by M/EEG sensors
are linear combinations of the electromagnetic fields produced by all current generators. The
linear operator, called gain matrix in the context of M/EEG, predicts the fields measured by
the sensors due to a configuration of sources (Mosher et al. 1999). Computing the gain
matrix accurately is particularly crucial for EEG, and involves complex numerical solvers
(Kybic et al. 2005, Gramfort et al. 2010). In the M/EEG literature, solvers known as
distributed inverse solvers essentially seek to invert the gain matrix. In practice, the
distribution of estimated currents is defined over a discrete set of locations where are
positioned current dipoles. The distribution is scalar valued when only their amplitudes are
unknown, and vector valued when both amplitudes and orientations of the dipoles need to be
estimated. The current generators are commonly assumed to lie on the cortex and are in
practice fixed at the locations of the vertices of a cortical mesh (Dale & Sereno 1993a).
However, the number of generators largely exceeds the number of M/EEG sensors. To
tackle this problem, one needs to use a priori knowledge on the characteristics of a realistic
source configuration.

The priors most commonly used in the M/EEG community are based on the ℓ2 norm, leading
to what is known as the Minimum Norm (MN) inverse solver (Wang et al. 1992, Dale &
Sereno 1993a, Hämäläinen & Ilmoniemi 1994, Pascual-Marqui et al. 1994). This MN
inverse solver leads to a linear solution: i.e., Minimum Norm Estimates (MNE) are obtained
by simple matrix multiplication (Tikhonov & Arsenin 1977). This makes the estimation
extremely fast. However, ℓ2-based solvers suffer from several limitations. Among which is
the smearing of the even focal activations, often leading to overestimation of the extents of
the activated areas. Also, they require to use a two-step approach where the MNE are post-
processed to obtain an interpretable picture of the spatio-temporal activation patterns
(Pantazis et al. 2003, Gramfort et al. 2011). To address these limitations many alternatives to
MNE have been proposed.

In the mid 90’s, Matsuura et al (Matsuura & Okabe 1995) proposed to regularize the
amplitudes of the estimated sources with an ℓ1 prior using an optimization procedure based
on the simplex method. This approach was then later slightly modified by Uutela et al
(Uutela et al. 1999), who called the ℓ1 penalized solutions minimum-current estimates
(MCEs). About the same time, Gorodnitsky et al proposed to use Iterative Reweighted Least
Squares (IRLS) with the FOCUSS algorithm (Gorodnitsky et al. 1995) to approximate the
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solution that would be obtained with an ℓ0 prior. Subsequently, (Phillips et al. 1997)
proposed a Bayesian approach based of Markov random fields (MRF) and solved with mean
field annealing. All these approaches are motivated by the fact that realistic source
configurations are likely to have only a limited number of active sites. For example, only a
few brain regions are typically significantly activated by a given cognitive task. The source
configuration is said to be spatially sparse. This assumption has proved to be relevant for
clinical applications (Huppertz et al. 2001) and also justifies dipole fitting which is currently
the most widely used method in clinical settings.

However, the above approaches suffer from significant limitations. As they promote a sparse
solution independently at each time instant, they fail to recover the time courses of cortical
sources. In order to go beyond these limitations, there has been a growing interest for
methods that promote spatially sparse solutions while taking into the temporal dynamics of
the data (Phillips et al. 2005, Friston et al. 2008, Wipf & Nagarajan 2009, Valdés-Sosa et al.
2009, Haufe et al. 2008, Ou et al. 2009). While the methods proposed in (Phillips et al.
2005, Friston et al. 2008, Wipf & Nagarajan 2009) are related to sparse Bayesian learning
where the problem boils down to the maximization of a non-convex cost function called the
model evidence, (Haufe et al. 2008, Ou et al. 2009) address the problem using a sparsity-
inducing prior that mixes both ℓ1 and ℓ2 norms. A ℓ1 prior is used to promote a spatially
sparse solution and a smooth ℓ2 prior is used either for orientations (Haufe et al. 2008) or
both time and orientations (Ou et al. 2009), leading to a convex optimization problem. A
problem is convex when it consists in minimizing a convex function over a convex set
(Boyd & Vandenberghe 2004). The main reason for the success of these solvers is the
structured sparsity induced by the ℓ21 mixed-norm. Figure 1 illustrates source estimates with
a simple ℓ1 norm compared to a structured prior with a ℓ21 mixed-norm. The latter leads to a
structured sparsity pattern while a simple ℓ1 norm provides a scattered pattern that is not
consistent with what is known about the sources. Here, the ℓ21 prior guarantees that the
active source sites will be the same over the entire time interval of interest. Furthermore,
grouping the temporal coefficients with an ℓ21 norm is a natural way to take into account the
smooth temporal dynamics of M/EEG data. More generally, mixed-norm based priors offer
a general way to take the structure of a problem into consideration. We call solutions
obtained with such priors Mixed-Norm Estimates (MxNE). For an application to other brain
imaging methods, see, for example (Varoquaux et al. 2010), where a two-level mixed norm
was employed for the identification of brain networks using functional Magnetic Resonance
Images (MRI) data.

Despite this growing interest, the use of sparsity-inducing priors is still limited to a small
group of researchers. One possible reason is that solvers proposed so far are slow when
applied to the analysis of real datasets. Another explanation is that algorithms proposed so
far are complex and difficult to implement. Indeed, while a basic minimum norm can be
computed in a few hundreds of milliseconds, sparse inverse solvers as proposed in (Haufe et
al. 2008, Ou et al. 2009) can take an hour to converge when realistic dimensions are used. A
challenge is therefore to develop efficient optimization strategies that can solve the M/EEG
inverse with such priors in a few seconds.

In the last few years, the machine learning and signal processing communities have devoted
a lot of efforts into the improvement of the optimization methods that help to solve non-
differentiable problems arising when considering sparse priors. One reason is that, under
certain conditions, it has been proved that sparsity could enable the perfect resolution of ill-
posed problems (Donoho 2006, Candés & Tao 2005). Among the list of algorithms that have
been proposed are IRLS methods, similar to the FOCUSS algorithm, that consist in
iteratively computing weighted MN solutions with weights updated after each iteration (Li
1993, Daubechies et al. 2008). The LARS-LASSO algorithm (Tibshirani 1996, Efron et al.
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2004), which is a variant of the homotopy method from Osborne (Osborne et al. 2000), is an
extremely powerful method for solving the ℓ1 problem. Simple coordinate descent methods
(Friedman et al. 2007) or blockwise coordinate descent, also called Block Coordinate
Relaxation (BCR) (Bruce et al. 1998), are also possible strategies. Alternatively, methods
based on projected gradients and proximity operators have been proposed (Daubechies et al.
2004, Combettes & Wajs 2005, Nesterov 2007a, Beck & Teboulle 2009). Even if some
MxNE can be obtained efficiently, e.g., with coordinate descent, the algorithms proposed in
this contribution rely on proximal operators and gradient based methods as they provide a
generic approach for all MxNE. They are also grounded on the current mathematical
understanding and convergence properties of these solvers.

In this paper, we introduce efficient methods to compute mixed-norm estimates from M/
EEG data. The three main contributions of this article are:

i. We present the M/EEG inverse problem as a convex optimization problem and we
explain how structured solutions can be promoted via appropriate priors based on
mixed-norms.

ii. We present in detail optimization methods that outperform in terms of convergence
speed previously proposed algorithms and derive optimality conditions to control
the convergence of the algorithm.

iii. We then give two examples of MxNE that are relevant for M/EEG using two and
three-level mixed-norms, including application to real data.

The first section of the paper provides the necessary background and notation. Mixed-norm
estimates with two or three-level mixed-norms are introduced. The second contains the
algorithmic and mathematical details of the optimization methods. The third section
provides experimental results on real MEG data, demonstrating the efficiency and relevance
of the proposed methods.

2. Mixed-norm estimates (MxNE)
In this section, we introduce inverse problems with linear forward models and more
specifically the M/EEG inverse problem. We then define formally the one, two and three-
level mixed-norms, explaining their influence on the solutions when used as priors. We
explain how a three-level mixed-norm can be used for functional mapping and detail how
the ℓ21 norm can be combined to obtain focal source estimates while promoting smooth time
courses.

2.1. Framework and notation
Solving an inverse problem consists of estimating one or more unknown signals from
observations, typically incomplete and noisy. When considering linear models, the
observations, also called measurements, are linear combinations of the signals, also called
sources. The linear relationship between the sources and the measurements, of this model,
also called the forward model, is commonly derived from the physics of the problem.

Distributed source models in M/EEG use the individual anatomical information derived
from MRI (Dale & Sereno 1993b). The putative source locations can be then restricted to
the brain volume or to the cortical mantle. Due to the linearity of the forward problem, each
source adds its contribution independently to the measured signal. We focus here on source
models where one dipole with a known orientation is positioned at each location. Source
estimates are the amplitudes of the dipoles. Such models are known as fixed orientation. The
framework however holds also in the free orientation case where three dipoles share a same
spatial location. In this case both amplitudes and orientations need to be estimated.
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The measurements M ∈ ℝN×T (N number of sensors and T number of time instants) are
obtained by multiplying the source amplitudes X ∈ ℝS×T (S number of dipoles) by a
forward operator G ∈ ℝN×S, i.e., M = GX. In addition, the measurements are corrupted by
an additive noise E:

In the context of M/EEG, N lies between 50 for EEG only and 400 for M/EEG combined
measurements, while S lies between 5000 and 50000 depending on the precision of the
source model considered.

A classical approach to estimate X givenM consists in introducing a cost function ℱ whose
minimum provides the solution:

(1)

The cost function is composed of two terms:

• A data-fit term, f1, that quantifies how well the estimated sources match the
measured data. This term takes into account the characteristics of the measurement
noise.

• A regularization term, a.k.a., penalty term or prior, denoted f2, that is used to
introduce a priori knowledge on the solution. This term is mandatory to render the
solution unique when considering ill-posed problems.

These two terms are balanced by the regularization parameter λ > 0. In the context of M/
EEG, f2 can be directly a function of the source amplitudes or introduce a regularization
matrix like a spatial Laplacian D leading to a regularization term of the form f2(DX)
(Pascual-Marqui et al. 1994).

This contribution focuses on cases where f1 and f2 are convex functions (Boyd &
Vandenberghe 2004). As will be detailed later, the convexity of ℱ is a key assumption that
allows to obtain globally optimal solutions which are independent of the initialization of the
solver. As will be discussed in Section 3, this assumption allows us to employ very efficient
optimization procedures whose mathematical properties in terms of complexity and
convergence rate are fully understood. Another benefit of convexity observed in practice is
the increased stability of the solutions in the presence of noise.

In M/EEG, f1(X) is usually the squared ℓ2 norm of the residual R = M − GX:

(2)

The smaller is the residual, the better the sources explain the data. The minimization (2) is
equivalent to finding a maximum likelihood estimate under the assumption that the additive
noise E is Gaussian, i.e., E ~ 0, I). In practice, the M/EEG noise is not white but one can
estimate the noise-covariance matrix, which can be employed in whitening, either from
empty-room data or from periods of actual brain signals void of data of interest (Hansen et
al. 2010). Note that what is called here ℓ2 norm is in fact the Frobenius matrix norm, since,
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generally, T > 1. Note also that the factor  is included for convenience in the derivation of
the optimization methods.

The problem therefore reads:

(3)

The variance of each of the uncorrelated whitened signals is unity, which can help to set the

λ parameter. Indeed, assuming that E is Gaussian, the expected value of  is NT. It

suggests that λ should be chosen such that . This is known as the
discrepancy principle (Morozov 1966). It will be used in Section 4.

We now proceed to discuss suitable priors f2 for M/EEG.

2.2. The ℓw;p norm
The most common choice for f2(X) is the squared ℓ2 (Frobenius) norm of the sources
amplitudes X. This lies in the category of ℓp norms (Matsuura & Okabe 1995, Wagner et al.
1996, Uutela et al. 1999, Gorodnitsky et al. 1995) that work on a time-by-time basis.
Throughout this paper, we are often interested in estimating X ∈ ℝS×T or X ∈ ℝS×KT when
considering K > 1 datasets with a joint estimation. When considering ℓw;p norms applied to
such X, we consider X as a set of coefficients that can be seen as a vector x ∈ ℝP where P =
ST or P = SKT.

Definition 1 (ℓw;p norm) Let , some positive
weights. Let p ≥ 1. Then the ℓw;p norm of x is:

which is known to be convex for p ≥ 1 and strictly convex for p > 1 (Boyd & Vandenberghe
2004).

The reason for introducing weights in the ℓp norms is due to the fact the columns (G·s)s of M/
EEG forward operators are not normalized. The closer the dipole s is to the head surface, the
bigger ‖G·s‖2. This implies that a naïve inverse procedure would favor dipoles close to the
head surface. In the M/EEG literature, this is known as the “depth bias” (Lin et al. 2006).
Using a weighted norm is a way to address this problem.

2.2.1. The ℓw;2 norm—The squared ℓ2 norm when used both for the data-fit and the
penalty term f2 is known as MNE in the M/EEG literature. The optimization problem reads:

(4)

This corresponds to a penalized maximum likelihood estimate assuming the sources are
Gaussian and normally distributed, with a diagonal covariance matrix (Wipf & Nagarajan
2009). By using such a prior, one spreads the energy of the solution over all the sources. In
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the context of M/EEG source localization, it leads to activation maps where every brain
region has a non-zero amplitude (see Fig. 1-a) and where the extent of active regions is often
over-estimated. Solvers based on ℓw;2 penalty fail to recover high spatial frequencies. In
order to avoid this, we can employ a prior that promotes spatially sparse solutions where the
data will be explained by a few sources. Keeping f2 convex, this is can be done with an ℓ1
norm.

2.2.2. The ℓw;1 norm—The ℓ1 norm promotes sparse solutions, which is a strong
hypothesis: the solution should only have a small number of non-zero coefficients.

While sparsity can be a valuable assumption in some applications, e.g., denoising (Kowalski
& Torrésani 2008, Févotte et al. 2008, Dupé et al. 2009), it can also lead to unrealistic
solutions in other applications, e.g., blind source separation (Bobin et al. 2008), coding
(Daudet et al. 2004), and for M/EEG. Indeed, as illustrated in Fig. 1, an ℓ1 prior should be
used with some caution when performing M/EEG source imaging with temporally correlated
data. Such a prior, which estimates the active sources independently at each time instant,
will very likely fail to recover the smooth temporal dynamics of a realistic source. To
address this limitation a solution recently proposed in the literature estimates the sources for
all time instants jointly after introducing a coupling between the estimates (Ou et al. 2009).
This is achieved using a penalty based on a two-level mixed-norm.

2.3. Two-level mixed-norms
In order to define the two-level mixed-norm, we must consider a sequence indexed by a
double index (g,m) ∈ ℕ2 such that (x) = (xg,m)(g,m)∈ℕ2. One can then consider the two
canonical subsequences (xg,.) = (xg,1, xg,2, …) for a fixed g, and (x.,m) = (x1,m, x2,m, …) for
a fixed m. This labeling conventionintroduces a grouping of the coefficients and will be
utilized below.

Definition 2 (Two-level mixed-norms) Let x ∈ ℝP be indexed by a double index (g,m)
such that x = (xg,m).

Let  be a sequence of strictly positive weights labeled by a double
index (g,m) ∈ ℕ2. We call mixed-norm of x ∈ ℝP, the norm ℓw;p,q defined by

Cases p = +∞ and q = +∞ are obtained by replacing the corresponding norm by the
supremum.

The two indices g and m can be interpreted as a hierarchy of the coefficients. The double
indexing needed by the definition of mixed-norms allows to consider coefficients by groups.
Coefficients are indeed distinguished between groups which are blind to each other, and the
coefficients that belong to a same group are correlated. With the notation above, the g index
can be seen as the “group index” and the m index as the “membership” index. Mixed-norms
are then a practical way to induce explicitly a coupling between coefficients, instead of the
independence hypothesis behind the ℓp norms. Hence, mixed-norms allow to promote some
structures that have been observed in real signals. Properties of such norms, convexity in
particular, enable the use of efficient optimization strategies.
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In order to illustrate this, let us consider the use of the ℓw;21 norm in the problem (3). The
ℓw;21 norm defined on a matrix X ∈ ℝS×T, and with weights w depending only on the space
index s (t indexes time), is given by:

This corresponds to the sum of the ℓ2 norm of the lines. As a consequence, an estimation of
X given by the minimization of Eq. (3) is sparse through the lines, i.e., all the coefficients of
a line of X are either jointly nonzero, or all set to zero (see Fig. 1-c). Such a behavior will
become more explicit with the definition of the so called proximity operator, see Section 3.2.
This approach, proposed earlier for M/EEG (Ou et al. 2009), avoids the irregular time series
obtained with a simple ℓ1 norm. Note that the general formulation in Definition 2 using (g,m)
covers the case with sources having unconstrained orientations. In this case g indexes each
spatial location which contains three dipoles (Haufe et al. 2008, Ou et al. 2009).

The two-level mixed-norms were introduced during the 60’s in (Benedek & Panzone 1961).
These norms were then studied more formally in the context of Besov and modulation
spaces (Samarah & Salman 2006, Feichtinger 2006, Rychkov 1999, Grochenig & Samarah
2000). Also see (Kowalski 2009) and (Kowalski & Torrésani 2009), who introduced the use
of the ℓ12 norm under the name Elitist-Lasso.

2.4. Three-level mixed-norms
In this section, we are interested by models where sources X can be indexed by three
indices. In the context of M/EEG, these three indices can correspond to the spatial location,
the experimental conditions, and the time. For example, for somatosensory data of Section 4,
an experimental condition corresponds to the finger that is stimulated. Let us denote this
new index by k. The sources, with elements indexed by (s, k, t), are denoted by X ∈ ℝS×KT

(K concatenated datasets) or simply x ∈ ℝP with P = SKT. Using this notation we can define
a three-levelmixed norm.:

Definition 3 (Three-level mixed-norms) Let x ∈ ℝP be indexed by a triple index (s, k, t)

such that x = (xs,k,t). Let  a sequence of strictly positive weights. We
call mixed norm of x the norm ℓw;p,q,r defined by

Cases p = +∞, q = +∞ and r = +∞ are obtained by replacing the corresponding norm by the
supremum.

The inverse problem then reads:

(5)

For our application, we will use the ℓw;212 mixed-norm. Note that the ℓ2, ℓ12 and ℓ21 norms are
special cases of the latter norm. Indeed ℓ2 is obtained by setting K = 1, ℓ21 by setting S = 1
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and ℓ12 by setting T = 1. This suggests that an optimization procedure for the ℓ212 norm
readily works for both ℓ12 and ℓ21 norms. Also, it can be observed that ℓw;221 is equivalent to
ℓw;21 after grouping conditions as well as time instants. By doing so one imposes the active
sources to be common between all experimental conditions.

With the ℓ1 norm to penalize the experimental conditions, while keeping the ℓ2 norm on other
indices, source estimates with non-zero activations for few conditions are promoted. By
doing so, one penalizes the overlap between the active regions for the different conditions.
With the somatosensory example, such a mixed-norm promotes activations where a given
spatial location is active only for one, or at least few, experimental conditions. By definition,
this norm corresponds to the a priori information that the stimulation of the different fingers
leads to brain activations at different cortical locations, see Section 4.

3. Algorithms
The algorithms we employ are first-order methods that fit in the same category as the
iterative thresholding procedures proposed in (Daubechies et al. 2004) for the ℓ1 penalty. We
extend them to problems where f2 is a convex mixednorm (Kowalski 2009), which, as
explained in Section 2, can take into account the specific characteristics of, e.g., M/EEG
source localization. The properties of such algorithms are based on recent mathematical
results (Combettes & Wajs 2005).

Let us first introduce the notion of proximity operator, a.k.a., proximal operator (Moreau
1965):

Definition 4 (Proximity operator) Let ϕ : ℝP → ℝ be a proper convex function. The
proximity operator associated to ϕ and λ > 0, denoted by proxλϕ : ℝP → ℝP reads:

(6)

3.1. Iterative proximal gradient methods
In a nutshell, proximal gradient methods are a natural extension of gradient-based
techniques when the objective function to minimize has an amenable non-smooth part. Such
procedures based on iterative thresholding and more generally on projected gradients require
that the cost function (1) meets the following hypothesis (Combettes & Wajs 2005):

• f1 is a proper convex function whose gradient is Lipschitz continuous: ƎL ∈ ℝ+
such that ‖∇f1(x) − ∇f1(y)‖ ≤ L‖x − y‖ for all x and y in ℝP. L is called the Lipschitz
constant.

• f2 is a proper convex function (not necessarily differentiable).

In our case, the gradient of the data-fit (2) is Lipschitz continuous. It reads:

and its Lipschitz constant is given by L = ‖GT G‖ (spectral norm which corresponds to the
largest singular value).

The “simplest” iterative scheme to minimize (1) given in Algorithm 3.1 is called Iterative
soft-thresholding and sometimes referred to as Forward-Backward or Landweber iterations
(Combettes & Wajs 2005).
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[here] Initialization: Let X(0) ∈ ℝS×KT (for example 0).

convergence X(k+1) = proxμλ f2 (X(k) + μGT (M − GX(k))), with . ISTA (Iterative
shrinkage/thresholding algorithm) The idea is to alternate the minimization over f1 using a
small gradient step and the computation of the proximal operator associated with f2. As the
proximal operator can be seen as a generalized projection, this algorithm is a generalized
iterative projected gradient method (see (Combettes & Wajs 2005) for a proof of
convergence).

Unfortunately, this algorithm may converge rather slowly. It has been proved that its
convergence rate is 1/k), where k is the number of iterations

To improve the convergence speed, at least two accelerated projected gradient schemes
whose convergence speed is 1/k2) have been proposed (Nesterov 2007b, Weiss 2008, Beck
& Teboulle 2009). The FISTA (Fast Iterative shrinkage/thresholding algorithm) algorithm
(Beck & Teboulle 2009) is one of them. It’s a small modification of ISTA that takes into
account the previous descent direction. It is a two-step approach. Note that a classical
example of a multi-step approach is the conjugate gradient algorithm used to solve positive
definite linear systems. More details on these approaches can be found in (Tseng 2010).

[here] Initialization: X(0) ∈ ℝS×KT, Z(1) = X(0), τ(1) = 1, k = 1,  convergence X(k)

= proxμλf2 (Z(k) + μGT (M − GZ(k)))

 FISTA

In order to tackle the optimization problem (3), one just needs to know how to compute
proxμλf2 where f2 is a mixed-norm presented in Section 1.

3.2. Proximity operators corresponding to mixed-norms
The following proposition gives details of the proximity operators associated with the
mixed-norms presented in Section 1. It corresponds to the solutions of (6) when ϕ is a
mixed-norm.

Proposition 1 (Proximal operators for MxNE) Let x ∈ ℝP and y ∈ ℝP. Let  be a
vector of weights.

ℓ2 norm Let x be indexed by s. The proximity operator associated to the squared ℓ2 norm is

given by  where x reads coordinate by coordinate:

ℓ1 norm Let x be indexed by s. The proximity operator associated to the ℓ1 norm is given by x
= proxλ‖·‖w,1 (y) where x reads coordinate by coordinate:
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The function (·)+ is defined as (a)+ = max(a, 0) and we use the convention 0/0 = 0. The
proximity operator for the ℓ1 norm is known as “soft-thresholding”.

ℓ21 norm Let x be indexed by (s, t). Let us consider a vector of weights used to weight each
group. The proximity operator associated to the ℓ21 norm is given by x = proxλ‖·‖w,21 (y)
where x reads for each coordinate:

where ys is the vector formed by the coefficients indexed by s.

ℓ12 norm Let x be indexed by (s, k). Let us consider w a vector of weights used to weight

each group. Let rs,k be defined such that . For each s, let the indexing

denoted by  be defined such that . Let the index Ks be such that:

The proximal operator x = proxλ‖·‖w,12 (y) is given coordinate by coordinate:

where .

This proposition shows the effect of such proximal operators on their inputs. For ℓ2, it is a
simple weighting. The associated cost function being differentiable, a proof is obtained
simply by computing the derivative with respect to each xs. For ℓ1 it is a thresholding of all
the coefficients independently (see (Donoho 1995) for a proof). As a result, some
coefficients are set to zero which reflects the sparsity obtained with such a penalty. With the
ℓ21 norm, a group is globally set to zero depending on its norm. A coefficient is non-zero
only if the norm of the group it belongs to is large enough. If groups are formed by rows
then the ℓ21 prior promotes a row structured sparsity pattern as illustrated in Fig. 1-c. For
completeness, a derivation of this proximal operator is given in Appendix A. Note that such
results have been previously obtained like in (Kowalski 2009). However, the later work does
not address the weighted case.

From Proposition 1, the proximal operators associated to any mixed-norm combining ℓ1 and
ℓ2 norms can be derived. This is in particular the case of the ℓ212 norm for which the proximal
operator is given by the following proposition.
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Proposition 2 (Proximal operator associated to the ℓw;212 norm) Let y ∈ ℝP be indexed
by (s, k, t). Let w ∈ ℝP be a vector of positive weights such that ∀t, ws,k,t = ws,k. Let us

define . For each s, let the indexing

denoted by  be defined such that . Let the index Ks be such that:

Then,  is given, for each coordinate (s, k, t), by:

where .

A proof of this proposition is given in Appendix B.

Having established the minimization procedures for MxNE, we need next to test for the
convergence and the optimality of the current iterate X(k).

3.3. Optimality conditions and stopping criterion
When the cost function ℱ to be optimized is smooth, a natural optimality criterion is
obtained by checking whether the gradient is small: ‖∇ℱ(X(k))‖ < ε. Unfortunately, this
approach does not apply to the non-differentiable cost-functions involving ℓ1 norms.

An answer for convex problems more generally consists of computing, if possible, a duality
gap. For a subset of these problems the Slater’s conditions apply and, consequently, the gap
at the optimum proves to be zero (Boyd & Vandenberghe 2004). Computing the gap starts
by deriving a dual formulation of the original problem, also called the primal problem. The
duality gap is defined as the difference between the minimum of the primal cost function ℱp
and the maximum of the dual cost function ℱd. For a value of X(k) of the primal variable at
iteration k, if one can exhibit a dual variable Y(k), the duality gap η(k) is defined as:

At the optimum (corresponding to X*), if the Y(k) associated to X(k) is properly chosen, η(k)

is 0. By exhibiting a pair (X(k), Y(k)) one can guarantee that: ‖ℱp(X(k)) − ℱp(X*)‖ ≤
‖ℱp(X(k)) − ℱd(Y (k))‖. A good stopping criteria is therefore given by η(k) < ε. The solution
meeting this condition is said to be ε-optimal. The challenge in practice is to find an
expression for ℱd and to be able to associate a “good” Y to a given X for the problems of
the form (3).
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We now give a general answer for the class of problems detailed in this contribution. The
solution is derived from the Fenchel-Rockafellar duality theorem (Rockafellar 1972) which
leads to the following dual cost function:

(7)

where Tr stands for the trace of a matrix and  is the Fenchel conjugate of f2 defined by:

In Appendix C we provide the Fenchel-Rockafellar duality theorem in order to obtain this
result.

The Fenchel conjugates of mixed-norms and squared mixed-norms, which remain to be
given in (7), can be computed thanks to the following proposition:

Proposition 3 (Fenchel conjugate of a mixed-norm) (i) The Fenchel conjugate of norm
‖u‖p1, …, pn is the indicator function of the dual norm:

where  is such that 

(ii) The Fenchel conjugate of the function  is the function:

Moreover, the Karush-Khun-Tucker (KKT) conditions of the Fenchel-Rockafellar duality
theorem (see Appendix C) give a natural mapping from the primal space to the dual space:

which then needs to be modified in order to satisfy the constraint of . When  is an
indicator function, it corresponds to a projection on the associated convex set. It is then
possible to use the dual gap as stopping criterion. Algorithm 3.3 summarizes the
computation of the dual gap, in cases of ℓ21 and ℓ212 penalty function. An 1D illustration with
the ℓ1 is provided in Fig. 2.

[here] Entries: X(k)

Mapping to the dual space: Y(k) = M − GX(k)

Compute :
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f2 = ℓ21 Project dual variable on the constraint if necessary: Y(k) = Y(k) /
max(‖GTY(k)‖2∞/λ, 1)

Compute duality gap:

Duality gap for ℓ212 or ℓ21

From a numerical point of view, every solution is ε-optimal for a particular value of ε. The
duality gap observed at the end of the computation is for example limited by machine
precision. Also, Algorithm 3.3 shows that η(k) depends on the scaling of the data. Therefore,
in practice the duality gap is meaningful if the input data have been scaled or normalized in
a certain way. This is guaranteed with M/EEG data by the pre-whitening step. Our
experimental results show that for whitened data a duality gap lower than 10−5 does not
produce distinguishable solutions.

3.4. An active set method to improve the convergence speed using the ℓ21 norm
Like the ℓ1 norm, the ℓ21 norm leads to sparse solutions; only a few sources will have non-
zero activations. Knowing this, we can accelerate the computation with an active set strategy
which will restrict computations to sources likely to have non-zero activations. This amounts
to solving problems with only a subset of columns of G. Let us call Γ the set of sources

considered in the sub-problem and  the associated estimated sources. By computing the
duality gap associated to the full problem for a value of X, such that X restricted to Γ is

equal to  and where the rest of X is filled with 0, one can test the quality of the solution
for the full problem. If this solution is not good enough according to the stopping criteria,
one needs to add to Γ sources that are likely to be active. Such sources violate the KKT
optimality conditions (Boyd & Vandenberghe 2004). These conditions are specific to the
penalty considered. With a ℓw;21 penalty, denoting by W the diagonal matrix of weights, the
KKT optimality conditions impose the following constraint on X:

(8)

The indices of the sources that need to be added to the active set at a next iteration, are given
by the indices of the rows of W−1GT (M − GX) that do not meet this constraint. Intuitively it
says that the sources that should be added to the active set are the ones whose forward fields
correlate the most with the current residual. Such an active set strategy is known as forward
as the size of the problem keeps increasing.

In practice, one can simply add to Γ the source that violates the most the latter constraint.
This can however be rather slow if the active set contains hundreds of variables. That would
mean running FISTA hundreds of times. A natural idea consists in adding groups of sources,
i.e., the set of sources that violate themost the constraint. When no more source violates the
KKT constraint, the solver has converged to an optimal solution. The number of sources that
should be added to the active set at each iteration is however application specific. For M/
EEG, we have found that adding blocks of 10 new variables is a good trade-off. For an
optimal solution containing at the most about a hundred active sources a solution is obtained
in practice by running the solver ten times at the most on very small problems. Note that the
procedure do guarantee the optimality of the solution at the end as the active set can only
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grow meaning that the solver will end up solving the original full problem (Roth & Fischer
2008).

Using the active set strategy, the solution corresponding to an experimental data set (with
about 300 channels, 200 time samples and 10000 sources) can be obtained in a few seconds.
This means that the proposed optimization strategy makes the use of the ℓ21 penalty
computationally trackable in practical M/EEG applications, which was not the case using the
methods relying on second order cone solvers proposed in (Haufe et al. 2008, Ou et al.
2009).

3.5. Convergence results on simulated data
In order to illustrate the convergence rate of the algorithms detailed above in a realistic
experimental setting, we performed a simulation using a real MEG gain matrix (151 sensors
and 5,000 sources). The implementation used is written in Matlab and involves only linear
algebra and standard vectorized operations. Fig. 3 shows the size of the duality gap as a
function of computation time using ISTA, FISTA, or FISTA with the active set (AS-FISTA)
approach on a problem with an ℓ21 prior. One can observe that FISTA actually converges
much faster than ISTA and that AS-FISTA clearly outperforms both of them. For
comparison we also ran on the same configuration of dipoles a SOCP (Second Order Cone
Program) solver using the CVX Matlab toolbox (http://cvxr.com/cvx/) as in (Ou et al. 2009).
Employing only 1,000 dipoles out of 5,000, the computation took 86 s. Such a solver relies
of the inversion of a Hessian matrix whose size in S × S. It’s cost per iteration is therefore 
S3), i.e., cubic in the number of dipoles, and it also requires to store in memory of matrix of
size S × S which may be prohibitive. To tackle the realistic problem used for Fig. 3, it
suggests that besides the problem of storing a 5000 × 5000 matrix in memory, computation
should approximately be multiplied by 125 which corresponds to more than 2 hours of
computation.

4. Simulations and MEG results
The following section first presents results with the ℓ21 norm applied to M/EEG data, and
then some simulation and experimental results obtained with the ℓ212 prior. We show that our
solver applied with an ℓ21 norm provides accurate results in a few seconds on a real auditory
M/EEG dataset and that the ℓ212 norm can improve the accuracy of reconstructions when
performing functional mapping of the somatosensory cortex.

4.1. MxNE with the ℓ21 norm
The data used to illustrate the performance of the ℓ21 MxNE consists of MEG and EEG
combined recordings of the evoked response to left-ear auditory pure-tone stimulus‡. Data
were acquired using a 306-channel MEG Neuromag Vectorview system with 60 EEG
electrodes, sampled at 600 samples/s. The signals were low-pass filtered at 40 Hz. The noise
covariance matrix was estimated from the 200 ms of recordings preceding each stimulus.
The source space consisted of 8192 dipoles on the cortex with orientations constrained to be
normal to the cortical mantle. Two channels with technical artifacts were ignored from the
analysis resulting in a lead field matrix of size 364 × 8192. We averaged 55 epochs and the
sources were estimated between 0 and 400 ms resulting in 241 time samples, hence M ∈
ℝ364×241.

The results are presented in Fig. 4. The computation time using AS-FISTA for the entire
source estimation was 20 s on a laptop (4 GB of RAM and 2.8 GHz CPU). At the optimum

‡Condition 1 of the sample data provided by the MNE software.
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the cost function values was 2073.2 and the duality gap about 10−5 corresponding to a
change in fifth significant digit of the cost function. The estimated sources are located in
both contralateral and ipsilateral primary auditory cortices (cA and iA). A first early
component is observed in cA between 30 and 50 ms with a peak around 90 s in cA and later
at 100 ms in iA.

In many respects the source estimates look similar to standard multi-dipole fittings results.
However, a few remarks should be made about the present results. First, when working with
constrained orientations, the signs of the estimated wave forms are dependent on the
orientation used for the dipole, i.e., the wall of a sulcus on which the dipoles are located.
This is a fundamental problem of M/EEG source imaging well known from the classical
MNE. Also, the cluster of 3 active dipoles in iA illustrates a natural behavior of convex
priors. These 3 dipoles have very similar forward fields making them very hard to
disambiguate with M/EEG. The stability of the ℓ21 convex prior produces this cluster of
dipoles while a non-convex prior, e.g., ℓ2p with p < 1, would certainly pick any one of these
dipoles.

4.2. MxNE with the ℓ212 prior: Functional mapping
4.2.1. Motivation—During an M/EEG experiment, a subject is generally asked to perform
different cognitive tasks or to respond to various stimuli. Without an adapted prior, it may
occur that the estimated active cortical region in experimental condition 1 overlapswith the
active region of experimental condition 2, which may in practice be unrealistic considering
the underlying physiology. The primary somatosensory cortex (S1) (Penfield & Rasmussen
1950) and the primary visual cortex (V1) (Wandell et al. 2007) are examples of brain
regions with such known organizations. The different body parts are mapped to locations at
S1 and a location in the visual field maps to an area at V1 This later is known as the
retinotopic organization of V1 (Wandell et al. 2007). Recent work, such as (Sharon et al.
2007, Hagler et al. 2009), emphasize the interest for advanced methods able to reveal such
functional organizations noninvasively. However, while (Hagler et al. 2009) propose to use
functional MRI data to improve MNE results, we propose the ℓ212 prior which is a principled
way of taking into account the spatial properties of such regions in order to obtain better
functional mappings of the brain using only M/EEG data.

To illustrate the fact that an ℓ2 prior tends to smear the activations and therefore to
overestimate the extent of the active regions, we first performed a simulation study.

4.2.2. Simulation study—We generated a synthetic dataset that mimics the organization
of the primary somatosensory cortex (S1) (Penfield & Rasmussen 1950). Three non-
overlapping cortical regions with a similar area (cf. Fig. 5a), that could correspond to the
localization of three right hand fingers were assumed and were used to generate synthetic
measurements corrupted with an additive Gaussian noise. The amplitude of activation for
the most lateral region (colored in red in Fig. 5), that could correspond to the thumb, was set
to be two times as big as the amplitudes of the two other regions. An inverse source estimate
was then computed with a standard ℓw;2 (4) norm, an ℓw;1 norm, and the ℓw;212 mixed-norm
(5). Each source in the three simulated active regions was then assigned a label
corresponding to the condition for which its estimated amplitude was the largest.
Quantification of performance was done for multiple values of signal-to-noise ratio (SNR)
by counting the percentage of dipoles that have been incorrectly labeled. The SNR is defined
here as 20 times the log of the ratio between the norm of the signal and the norm of the
added noise. The results are also presented in Fig. 6. It can be observed that the ℓw;212 always
produces the best result and that the ℓ1 norm is more strongly affected by the decrease in
SNR. In order to have a fair comparison between all methods, the λ was set in each case to
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have ‖M − GX*‖2 equal to the norm of the added noise, always known in simulations. The

depth bias was corrected in the ℓw;212 norm case by setting . This amounts to
scaling the columns of G. The depth bias correction was applied the same way for ℓ1 and ℓ2
solutions.

The results are illustrated in Fig. 5b and 5c on a region of interest (ROI) around the left
primary somatosensory cortex. It can be observed that in the ℓw;2 norm result the extend of
the most lateral region is overestimated while the result obtained with the ℓw;212 mixed-norm
is clearly more accurate.

4.2.3. MEG data—We also analyzed somatosensory data acquired using a CTF Systems
Inc. Omega 151 system at a 1250 Hz sampling rate. The somatosensory stimulus was an
electrical square-wave pulse delivered randomly to the thumb, index, middle, and little
finger of the right hand of a healthy right-handed subject. The evoked response was
computed by averaging 400 repetitions of the stimulation of each finger. The triangulation
over which cortical activations have been estimated contained a high number of vertices
(about 55,000). The forward solution was computed using the spherically symmetric head
model (Sarvas 1987). The sphere was positioned to match the shape on the inner surface of
the skull near the primary somatosensory cortex (central sulcus). Prior to source estimation,
data were whitened using a noise covariance matrix estimated during baseline periods.

The source estimates during the period between 42 and 46 ms are presented in Fig. 7. For
each type of prior, the regularization parameter λ was set in order for X* to satisfy

, knowing that after whitening the data, NKT is a good estimate of the
noise variance.

During the time interval of interest the measured magnetic fields indicate the currents are
directed into the cortex at S1 which is known to lie on the posterior bank of the central
sulcus. Therefore, we next ignored the positive activations located on the anterior bank.
Each dipole with negative amplitude was then assigned a label between 1 and 4 based on its
maximum amplitude across the 4 conditions. For each condition, equivalently each label, the
biggest connected component of dipoles with the same label was kept. Each of the 4
estimated components, corresponding to the 4 right hand fingers are presented in Fig. 7.
Solutions using both ℓw;2 and ℓw;212 norms are presented. The solution with ℓw;1 is not
represented as the sparsity promoted do not produce a continuous mapping which make
results difficult to compare.

With ℓw;212 the well known organization of the primary somatosensory cortex (Penfield &
Rasmussen 1950) is successfully recovered with regions of similar size for each finger.
While with ℓw;2, the component corresponding to the index finger is overestimated leading to
an incorrect localization of the area corresponding to the thumb. Note that some activation
does remain at the right location for the thumb using the ℓw;2 norm. However, it is not strong
enough to match with the biggest connected component represented here. These results
demonstrate that an alternative to the standard ℓ2 priors, can improve the localization of
cortical activations by offering the possibility to use a prior between different conditions. By
solving the inverse problem of multiple conditions simultaneously and by using a mixed-
norm that sets an ℓ1 prior between each condition, our method penalizes current estimates
with an overlap between the corresponding active regions. When such a hypothesis holds,
the localization of the neural activity becomes more accurate with increasing number of
conditions recorded and included in the analysis.
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5. Discussion
In the present paper, we capitalize on advanced numerical methods to tackle multiple
convex optimization problems present in many applications such as functional brain imaging
using M/EEG. Our paper provides a unifying view of many solvers previously proposed in
the M/EEG literature and is to our knowledge the first demonstration that the M/EEG
inverse problem can be solved in a few seconds using non-ℓ2 priors. Rapid computations are
essential in functional brain imaging, since interactive exploratory analysis is often needed.

This work relates to the distributed solvers based on sparse Bayesian regression that have
been recently proposed (Nummenmaa et al. 2007, Friston et al. 2008, Wipf & Nagarajan
2009). These solvers are not explicitly derived from cost-functions like (3) and they lead to
non-convex optimization problems not covered by the algorithms detailed above. Note also
that formulating the inverse problem as the minimization of a cost function does not
guarantee convexity. For example, Valdes-Sosa et al propose in (Valdés-Sosa et al. 2009) to
estimate the source activations as a linear combination of a small number of spatiotemporal
maps. Here again, sparsity is a key assumption of the method, however, the minimized cost
function is not jointly convex in space and time. The consequence of the non-convexity for
all these methods, is that the optimality of the solutions cannot be guaranteed and that
solutions depend on the initialization of the algorithm. Our formulation of MxNE does not
suffer from these shortcomings.

Another benefit of MxNE is the diversity of a priori knowledge that can be taken into
account. With the same mathematical foundations and very similar implementations, the ℓ21
norm can be used to promote sparse source estimates with smooth temporal activations, an
ℓ221 norm can furthermore impose a common set of active dipoles between conditions, and
the ℓ212 norm can be used for more accurate functional mapping. From the neuroscience
perspective, the ℓ21 prior models the a priori assumption that active brain regions should be
consistent during a time interval. This assumption is adapted to some datasets like the
auditory data presented here, however it is likely to be wrong for a long time interval during
which active sources are changing. The ℓ212 prior is motivated by its ability to explicitly
model the functional specificity of brain regions thus leading to more insights on neural
circuitry (Chklovskii & Koulakov 2004). The latter application is also to our knowledge the
first attempt to improve the M/EEG inverse problem by using multiple datasets jointly.

Finally, an important point is that there is no prior that fits all needs. That is why MxNE
does not refer to a particular prior but to a class of solvers that use mixed-norms to better
constrain the M/EEG inverse problem. This implies that depending on the assumptions made
about the underlying sources, a particular mixed-norm can be more relevant than others.

Conclusion
In this article, we have shown how mixed-norms can be used to promote structure on inverse
estimates in order to take into account some a priori knowledge. In the case of M/EEG, the a
priori knowledge is based on the understanding of both neurophysiology and biophysics.

This contribution provides principled first-order optimization strategies which are simple to
implement and fast, especially when an active set approach is used. Furthermore, the speed
of convergence of these algorithms is well understood thanks to a theoretical analysis. All
these algorithms rely on proximity operators, which are in practice special thresholding
operators. Moreover, we were able to construct practical criteria to stop the optimization
process while guaranteeing the optimality of the solutions obtained.
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The utility of mixed-norms is demonstrated with both synthetic and experimental MEG data.
Our results match existing knowledge about auditory evoked responses and lead to a more
accurate mapping of the somatosensory homunculus than the unstructured standard methods.
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Appendix A. Derivation of the (ℓ21 proximal operator)
We are looking for:

with

We can differentiate the functional, when ‖xk‖w;2 ≠ 0, to obtain the variational system:

which gives:

As  does not depend on t, it implies that for all t and ν:

By injecting this last result in Eq. (A.1) we obtain

which is the desired result.
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Appendix B. Proof of Proposition 2 (ℓ212 proximal operator)
Proof We are looking for:

with

We can differentiate the functional, when xs,k,t ≠ 0, to obtain the variational system:

(B.1)

which gives:

(B.2)

By summing over t, we get:

(B.3)

This last equality is true for all k. Then for k and l satisfying ‖xs,k‖2 > 0 and ‖xs,l‖2 > 0, we
have:

(B.4)

Furthermore, we have that:

which implies that:

(B.5)

By injecting (B.4) in (B.5) we get:
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where . We therefore have for all s:

If we reorder the  and introduce Ks defined in the proposition, it leads to:

(B.6)

with . Let us rewrite (B.2):

Using (B.3), we get:

By injecting the result (B.6) in this equation we get:

Note that this result gives also the proof of the proximal operator associated to the Elitist-
Lasso in Proposition 1.

Appendix C. Proof of equation (7)
Theorem 1 (Fenchel-Rockafellar duality (Rockafellar 1972)) Let f : ℝM ∪ {+∞} → ℝ be
a convex function and g : ℝN ∪ {+∞} → ℝ a concave function. Let G be a linear operator
mapping vectors of ℝM to ℝN. Then
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where f* (resp. g*) is the Fenchel conjugate associated to f (resp. g), and GT the adjoint
operator of G.

Moreover, the Karush-Kuhn-Tucker (KKT) conditions read:

We can apply this Theorem to the functional (3) with  and f(X) =
λf2(X). Then, one just have to compute the conjugate of f. By definition of the dual, given
here for a concave function, we have

then, by the change of variable Y = M − X we have

Moreover, we know by Proposition 3 that the Fenchel conjugate of a squared norm is the
squared dual norm. Then, we have

For the Fenchel conjugate of f(X) = λf2(X), one can apply simple calculus rules given in

(Boyd & Vandenberghe 2004), which give . Finally, the Fenchel-Rockafellar
dual function of (3) is given by

Furthermore, one can check that the dual variable Y = M − GX verifies the KKT condition
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Figure 1.
(a), (b) and (c) show in white the non-zero in the estimated source amplitudes obtained with
the three norms. The non-zero coefficients are shown in white. While ℓ2 yields only non-zero
coefficients (all sources have a non-zero amplitude), ℓ21 promotes non-zero coefficients with
a row structure (only a few sources have non-zero amplitude over the entire time interval of
interest).
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Figure 2.
Duality gap illustration with a 1D ℓ1 problem (λ = 2 and M = 2). It can be observed that the
minimum of ℱp is equal to the maximum of ℱd, i.e., that the duality gap is 0.
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Figure 3.
Convergence of ISTA, FISTA and AS-FISTA using a ‖·‖w;21 penalty with a real MEG lead
field (151 sensors and 5,000 sources) and synthetic measurements. It can be observed that
ISTA can be slow to converge compared to FISTA and that the active set strategy speeds
significantly the convergence.
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Figure 4.
ℓw;21 estimates on auditory M/EEG data. Estimation leads to 4 active dipoles in both
contralateral and ipsilateral auditory cortices (cA and iA).
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Figure 5.
Simulation results on the primary somatosensory cortex (S1) (SNR = 20dB). Neighboring
active regions reproduce the organization of S1. It illustrates that the ℓw;212 prior improves
over a simple ℓw;2 prior.
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Figure 6.
Evaluation of ℓw;2, ℓw;212 and ℓw;1 estimates on synthetic somatosensory data. The error
represents the percentage of wrongly labeled dipoles.
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Figure 7.
Labeling results of the left primary somatosensory (S1) cortex in MEG using both ℓw;2 and
ℓw;212 priors. Source estimated during the period between 42 and 46 ms. The ℓw;212 leads to a
more coherent estimate of the functional organization of S1.
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