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Diffusion weighted magnetic resonance imaging is increasingly being used for neonatal and young pediatric
subjects. Our purpose was to investigate a) whether cardiac triggering was needed to reduce variability of
diffusion (tensor) imaging data, b) how pulsation artifacts affect the fitted diffusion tensor when triggering
is not used and c) the feasibility of triggered data acquisition in neonates and young children.
Data were collected from 11 infants and 7 adults. In seven infants and seven adults, diffusion encoding was
applied solely along the z gradient direction with and without cardiac triggering. Non-parametric bootstrap
statistical methods were applied to investigate the dependence of variance on triggering. One infant and all
adults served as test–retest controls. From the remaining three infants diffusion tensor imaging data were ac-
quired with and without triggering.
Our findings that used the repeated measurements in a single diffusion-encoding direction indicated that
without triggering the variability in the data was increased significantly both in infants and adults. When
collecting diffusion tensor data in infants, this increased variability results in erroneous fractional anisotropy
values and artifactual fiber direction estimates. Contrary to previous reports but supported by our findings
involving adults, pulsation artifacts were present in a larger extent of the brain in the infant population.
In conclusion, triggering is feasible in young subjects and is preferred when acquiring diffusion MRI data. In
doing so, the amount of erroneous estimations due to image artifacts will be minimized, which in turn will
lead to more specific and less ambiguous interpretations. Although fitting the pulse-monitoring device re-
quires additional set-up time, the total imaging time is usually shorter than acquiring multiple data sets to
compile a single, artifact-free set.

© 2012 Elsevier Inc. Open access under CC BY license. 
Introduction

Magnetic resonance imaging (MRI) is increasingly being used
for neonatal and young pediatric subjects (Barkovich et al., 1988;
Rutherford, 2002; Woodward et al., 2006). Often the examination
protocol includes diffusion-weighted imaging (DWI) (Le Bihan et al.,
1986) to examine thewhitemattermicrostructure both in normal devel-
opment (Lebel et al., 2008;Miller et al., 2003;Mukherjee et al., 2002;Neil
et al., 1998) and in injured states (Huppi et al., 1998, 2001; Rutherford et
al., 1991; van der Aa et al., 2011). However, diffusion weighted images
(DWIs) are susceptible to several types of image artifacts which can be
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divided depending on whether the source is systematic or physiological
(Tournier et al., 2011). Often, these artifacts are signal drop-outs (Fig. 1
and Video 1) and may occur due to cardiac pulsation (Wirestam et al.,
1996). It has been shown in adults that pulse- or cardiac triggering
(henceforth referred to as ‘triggering’ for brevity) improves the quality
of diffusion-weighted data acquisition (Dietrich et al., 2000; Skare and
Andersson, 2001).

Imaging neonatal subjects is extremely challenging because an
awake baby will not stay still. Also, the heart rate of the newborns and
young children can be consistently 120–160 beats/min (bpm) allowing
little time for imaging between the heartbeats. Fitting sensors to detect
heartbeats can also take precious examination time. For these reasons
diffusion-weighted imaging of neonatal subjects usually proceedswith-
out triggering.

For diffusion tensor imaging (DTI) the DWIs are usually collected
along several non-collinear directions and used to estimate the apparent
diffusion coefficient (ADC) (Le Bihan et al., 1986), diffusion anisotropy,
e.g. fractional anisotropy (FA) (Basser and Pierpaoli, 1996), other mea-
sures of anisotropy (e.g., Frank, 2001), or carry out fiber tractography
(Behrens et al., 2003; Conturo et al., 1999; Jeurissen et al., 2011; Jones
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Fig. 1. The effect of triggering. Representative DWIs from a single slice of one subject (4.8 months, male). For the triggered series all 20 images are shown, for the non-triggered
series only images with the largest differences are shown as examples. Intensity scaling is arbitrary, but constant across images shown. (A) Demonstration of triggered acquisition
resulting in low volume-to-volume variance with 20 consecutive images without artifacts. (B) Without triggering the volume-to-volume variance increases resulting in visible positive
and negative differences in signal intensities. Six representative examples are shownwith themost prominent artifacts marked with arrows (altogether 10 out of 20 consecutive images
showed some artifacts).

199L.R. Kozák et al. / NeuroImage 69 (2013) 198–205
et al., 1999; Mori et al., 1999). If motion induced signal reduction results
in an overestimation of the ADC along one ormore diffusion encoding di-
rections, the 3-dimensional diffusion profile, along with the above-
mentionedmeasures (e.g. FA), will be estimated inaccurately. In addition
to the erroneous estimation of the diffusion properties in a given individ-
ual, these biases can propagate to group level comparisons (Chung et al.,
2010; Zhu et al., 2009) if, by chance, the images of one group suffermore
pulsation artifacts than the images of the other group.

The aims of this paper were to (a) examine the presence and ex-
tent of pulsation artifacts in DWIs collected from young pediatric sub-
jects; (b) investigate the effect of pulsation artifacts on the estimated
diffusion measures; and (c) test feasibility of triggered acquisition in
this patient group.
Patients and methods

Subjects

Fifteen young children and infants were involved (age range
1–13 months, 10 girls, 1 preterm girl), each of which was in need of a
clinical MRI examination.With the approval of the local ethics commit-
tee and after written informed consent of a parent, the clinical scanning
Table 1
Description of infants and adults involved.

Age (months) Sex Start HR (bpm) b-val

Bootstrap (infant) #1 4.8 M 146 1000
#2 5.1 F 170 800
#3 7.8 F 121 800
#4 6.0 F 122 800
#5 9.6 M 125 800
#6 8.6 F 123 800
#7 8.6 M 120 800
#8 1.1 F 160 1000

DTI #9 10.1 F 132 800
#10 9.3 M 135 800
#11 13.3 F 137 800

Age (years) Sex Start HR (bpm) b-val

Bootstrap (adult) #1 21.3 M 85 1000
#2 21.9 M 70 1000
#3 22.4 F 70 1000
#4 21.4 M 80 1000
#5 26.9 M 70 1000
#6 27.9 F 60 1000
#7 24.9 M 70 1000
session was supplemented with one of two acquisition protocols
(described below). Additionally, twelve young adults (age: 23.3±
2.3 years, 3 females) were scannedwith the approval of the local ethics
committee and after written informed consent, to provide comparative
adult data. All of the collectedMRI data were first visually checked by at
least one of two of the co-authors (L.R.K., Z.N.) for gross subject motion
artifacts. Four infants (3 girls) and 5 adults (1 female) were excluded
from further analysis due to excessive movement, thus we only re-
port the results obtained on the remaining 11 infants and 7 adults
(see Table 1 for details).
Data acquisition

All images were collected on a 3 T Achieva Scanner (Philips Medical
Systems, Best, The Netherlands) using an 8-channel receive-only head
coil. According to local guidelines, the infants were sedated by qualified
anesthesiologists using intra-venous propofol. The partial pressure of
O2 and the heart rate of the subjects were constantly monitored during
the sedation. The adult volunteers were scanned awake andwithout se-
dation. The vector electrocardiograph available on the PhilipsMRI scan-
ners was fitted before the examination and used for monitoring the
electrocardiogram (ECG) and for triggering.
ue Reason for exam Actual finding

Orbital tumor Normal
Epilepsy Normal
Obstructive hydrocephalus No obstruction
Ewing sarcoma Progression
Oseomyelitis Improvement
Hemiparesis Left periventricular cyst, white matter loss
Orbital tumor Bone metastasis of neuroblastoma
Congenital malformation Stroke
Neuroblastoma follow-up No progression
Neuroblastoma follow-up Normal
Synovial sarcoma follow-up Normal

ue Reason for exam Actual finding

N/A N/A
N/A N/A
N/A N/A
N/A N/A
N/A N/A
N/A N/A
N/A N/A
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Three experiments were performed using the Stejskal-Tanner
(Stejskal and Tanner, 1965) diffusion encoding and echo-planar data col-
lection methods. The common imaging parameters were: b-value=
0 s·mm−2 for the reference image and either 1000 s·mm−2 (2 infants
and 7 adults) or 800 s·mm−2 (9 infants) for the DWIs. If triggering was
used, a single image was collected per heart-beat in infants while two
images per heart-beat were collected in adults. The mean trigger delay
with respect to the R-wave of the ECG (Skare and Andersson, 2001)
was 202 ms (range: 202–250 ms) in infants, and 415 ms (range:
300–500 ms) in adults. Parallel imaging (SENSE (Pruessmann et al.,
1999)) was employed with an acceleration factor of 2. The echo time
was set to ‘shortest’ in the scanner software resulting in values in the
range of 66–70.17 ms.

In Experiment 1a, two sets of 21 image volumes were collected
from seven infants (4 females), one with and another without trigger-
ing. Each set contained one reference image and 20 DWIswith diffusion
encoding along the z gradient (i.e. through-slice direction) axis only, in
a fashion similar to Skare and Andersson (2001), because it maximizes
sensitivity to the suspectedmovement of the brain due to the blood pul-
sation. Twenty-to-thirty slices were collected with a thickness of 3 mm
and 1.5 mmgaps to provide full brain coverage. The field of view (FOV)
was 240 mm with an in-plane resolution of 3×3 mm2. For one infant
(1 month, female) a variant of Experiment 1a was performed, where
both acquisitions were triggered to examine the test–retest variability.

In Experiment 1b three sets of 21 image volumeswere collected from
seven adults (2 females), the first and third with triggering while the
second without triggering. Imaging parameters were otherwise the
same as those of Experiment 1a.

In Experiment 2, two sets of 16 image volumes were collected from
three infants (2 females), one with and one without triggering. Each
set contained one reference image, followed by 15 DWIs with the diffu-
sion directions distributed as implemented by Philips for diffusion tensor
imaging. The slice thickness was 2.5 mm and 40 slices were collected,
without gaps, to provide total brain coverage. The FOV was 200 mm
with an in-plane resolution of 2.5×2.5 mm2.

In all experiments the total time of the first (triggered) acquisition
was recorded and for the non-triggered acquisition the repetition time
(TR) was set to give the same total acquisition time. Although usually
triggering is avoided to minimize acquisition time, we controlled the
TR to ensure that the extent of T1-relaxation was identical between the
two datasets. If T1-relaxation is not controlled for, signal intensity, and
in turn its variance estimate, can vary independent of the presence or ab-
sence of pulsation artifacts, confounding the results.
Data processing

Image processing and statistical analyses were performed using
in-house developed scripts in Matlab 7.5 (MathWorks Inc., Natick MA,
USA), also utilizing the NIFTI image format manipulation routines of
SPM (http://www.fil.ion.ucl.ac.uk/spm/).

The data from Experiments 1a&b, were put through a bootstrap sta-
tistical procedure, see below and in Fig. 2, for testing the effect of trig-
gering on data variance.

To the data collected in Experiment 2 the diffusion tensor was fit
(Basser and Pierpaoli, 1996) using ordinary linear least squares (OLLS),
weighted linear least squares (WLLS), and non-linear least squares
(NLLS) models as implemented in the ExploreDTI software (http://
www.exploredti.com/) to test the effect of triggering on diffusion tensor
parameters. From the tensor, FA imageswere calculated and the x, y, and
z components of the eigenvector corresponding to the largest eigenvalue
(Anton, 2005) were color coded to represent fiber directionality (Pajevic
and Pierpaoli, 1999). The informed RESTORE (iRESTORE) algorithm
(Chang et al., 2012) was also applied to the non-triggered data sets to
evaluate its effectiveness in eliminating the effects of the artifacts on
the tensor fit as compared to pulse triggering. Before diffusion tensor
fitting, all DTI datasets were corrected for motion and eddy current in-
duced distortions (Leemans and Jones, 2009).

Statistical methods

A bootstrap statistical procedure (Efron and Tibishirani, 1998) was
performed on the data from Experiments 1a&b to examine whether
the variance was systematically reduced in the triggered data (Nagy et
al., 2008). Usually, for evaluating the difference of variances between
twogroups the F-test is employed (Rosner, 2000), but this parametric sta-
tistical test is sensitive to deviations from the normal distribution. While,
given enough data, the central limit theorem (Freund et al., 1999) assures
that the sampling distribution of the mean is normal regardless the
population's distribution, no such theorem exists for variances. Indeed,
as shown by simulations, the shape of the distributions have dramatic ef-
fects on the precision of the F-test (Ott and Longnecker, 2010), thus sam-
pling a population that is not normally distributed can result in unreliable
p-values.

As the noise inMR images is not normally distributed (Haacke, 1999),
especially in the low signal-to-noise domain, which is typically the case
with DWIs, the theoretical F-distribution is not appropriate for testing
variances. This is the reason for using the bootstrap procedure (Efron
and Tibishirani, 1998), in this case set up as a non-parametric variant
of the F-test where the population distribution is simulated from the
available data by re-sampling it with replacement (for implementation
details see Fig. 2.)

Effect sizes were calculated by extracting voxel-wise variances ei-
ther from the whole brain or only from those voxels of the original
non-resampled data that were deemed to be significantly different by
the bootstrap. The ratio of variances of the non-triggered and triggered
datasets was calculated voxel-wise and then concatenated across
voxels and subjects to form an empirical distribution of variance ra-
tios (i.e. F-values). As this distribution is highly skewed the mean is
not representative, instead the median and the interquartile range
will be given.

Results

Experiments 1a&b— Investigating the effect of triggering on the variance
of the data

The variance in the acquired data is higher when triggering is not
used regardless of the investigated population. Often this can be easily
identified upon visual inspection (see Fig. 1 and Video 1), nevertheless
bootstrap statistics help establishing the significance of differences. In-
deed, bootstrap results from seven infants show large areas where the
voxel-wise variance in the repeated measurement of diffusion along
the z gradient axis is significantly reduced (pb0.0005) when triggering
is used (Fig. 3A). The minimum effect size over significant voxels was
2.1, meaning the non-triggered data had at least twice the variance;
the median effect size was 19.3, for more details see Table 2.

Note that, the distribution of lociwhere increased variance is found in
the non-triggered data is extensive in this group of young subjects with
significant differences present bilaterally not confined to CSF spaces, but
also affecting both grey andwhitematter, even in the superior slices. This
is in contrast both with previous observations in adults (Skare and
Andersson, 2001), and our results from Experiment 1b, where pulsatile
artifacts tend to be confined to CSF spaces and to central basal brain
areas (Fig. 3B). Moreover, the median effect sizes over significant voxels
were only half as large in adults (10.5 and 9.9 for the first and second
triggered acquisition compared against the non-triggered, respectively),
for detailed effect size calculations, see Table 2.

To internally validate the methods the same bootstrap statistics
was applied to repeated measurements with triggering in a single in-
fant, and in all adults. This resulted in a much smaller number of and
more scattered voxels both in the infant and in the adults that
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Fig. 2. Flowchart of Bootstrap algorithm. Because the distribution of signal intensity in a given voxel over repeated measurements cannot be assumed to be normal the parametric
F-test may not provide accurate p-values. This bootstrap procedure is the non-parametric equivalent of the parametric F-test and provides unbiased p values. Step 1) Obtain data with
(blue, nT=20) and without triggering (red, nN=20). Step 2) Pool the triggered and non-triggerred data Step 3) randomly draw (with replacement) N=nT+nN=40 images from
the pooled data. Consider the first 20 images as a pseudo dataset with triggering, the other 20 as a pseudo dataset without triggering. Repeat this re-sampling procedure 10,000 times,
calculate the variance for each of the resamples of pseudo triggered (σb1

T , σb2
T ,…, σb10000

T ) and pseudo non–triggered data (σb1
N , σb2

N ,…, σb10000
N ) and their respective ratios (F1b, F2b, …

F10000
b ) and store the results. Step 4), calculate the variance of the original triggered (σT) and the original non-triggered (σN) dataset and their ratio F ¼ σN

.
σT
. Step 5), compare the F

value of the original data (F) to the distribution of 10,000 pseudo Fb values obtained from the bootstrap re-sampling procedure. Step 6), identify voxels where fewer than 5 of the
10,000 pseudo Fb values are larger than the original F value. This corresponds to pb0.0005 meaning that if the triggered and non-triggered data were drawn from the same distribution,
there is less than 5 in 10,000 chance to obtain an F value that is as large; i.e. in a given voxel where there is no difference in variance there is only a 5/10000 chance that we would say there is.
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survived the same threshold of statistical significance (infant data not
shown, for adult group data see Fig. 3C).

Experiment 2 — Investigating the effect of triggering on the diffusion
tensor

Cardiac pulsation affects both the acquired DTI data, and the ten-
sor fitting results. For the qualitative effects of pulsatile artifacts see
Fig. 4A which displays all the acquired DTI data, both with and without
triggering, in a single representative slice from one subject (female, age:
10.1 months, heart rate: 132 bpm). There is visible variability even in
the triggered data, however this is expected as the diffusion-encoding di-
rections change from volume-to-volume and thermal noise is also pres-
ent. When the corresponding images with identical diffusion-encoding
directions are subtracted large, connected areas become visible which
have non-anatomical arrangements — that is they are likely to be due to
pulsatile artifacts.

If the tensormodel is fit to the above two datasets both the FA values
and the fiber orientations can attain artifactual values that sometimes
are clearly visible (Figs. 4B & C), but sometimes can be very hard to
identify upon visual inspection as erroneous. E.g., the large artifact
seen on DWI vol. 7 leads upon OLLS tensor fitting to the large purple-
colored region of interest (marked with a white outline in Fig. 4B),
where FA values are significantly different between the non-triggered
(0.69±0.21) and triggered (0.37±0.11) acquisitions (pb0.0001, paired
Student's t-test).

Non-triggered acquisitions have larger mean absolute residual er-
rors in the diffusion tensor fits than triggered acquisitions regardless
of the fitting method used (Table 3). Applying the iRESTORE approach
(Chang et al., 2012) to the non-triggered data improves the results by
decreasing these errors, and by partially correcting the excessive FA
values and the incorrect tensor directionality (Fig. 5 and Supplemen-
tary Figs. 1 and 2). Despite these improvements the absolute residual
errors are bigger and more extensive, and the FA values and tensor
directionality are still artifactual in larger areas of brain tissue for
non-triggered data compared to what can be achieved by the triggered
acquisitions. E.g., the FA values in the region interest outlined by a thin
yellow line in Fig. 5 are 0.35±0.16 for the triggered acquisition (OLLS
fit), 0.70±0.15 for the non-triggered acquisition with OLLS fit, and
0.59±0.10 for the non-triggered acquisition with iRESTORE fit
(pb0.0001, one-way ANOVA; all groups are significantly different on
pairwise post hoc comparisons at pb0.05, with Tukey HSD test). The

image of Fig.�2


Fig. 3. Significant differences between triggered and non-triggered acquisitions. Cumulative distribution of significances was calculated by summing the thresholded (pb0.0005,
uncorrected) co-registered significance maps of the subjects. Any given color-coded voxel was statistically significant in at least 1 subject (blue) but possibly in all subjects
(red). The infant map is shown projected onto the Cincinnati Children's Hospital Medical Center infant brain template (https://irc.cchmc.org/software/infant.php), the adult
map is projected to the non-linear 1 mm MNI152 template of the FMRIB Software Library (http://fsl.fmrib.ox.ac.uk/fsl/) (A) Significant differences between triggered and
non-triggered acquisitions in infants. (B) Significant differences between the first triggered and the non-triggered acquisition in adults. Comparing the non-triggered acquisition
to the second triggered acquisition lead to similar results (not shown but see Table 2 for quantitative description) (C) Results of the control experiment where the two triggered
acquisitions were statistically compared in adults.
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mean orientation of the principal eigenvectors differ by 27.0° in the trig-
gered v. non-triggered (OLLS fit) and 28.5° in the triggered v.
non-triggered (iRESTORE fit) comparison; the difference between the
two different fits of the non-triggered data is 4.3°. Similar effect of pulsa-
tion is visible in the region of interest outlined by a thin purple line in
Fig. 5 where FA values are 0.38±0.16 for the triggered acquisition
(OLLS fit), 0.75±0.16 for the non-triggered acquisition with OLLS fit,
and 0.65±0.14 for the non-triggered acquisition with iRESTORE fit
(pb0.0001, one-way ANOVA; the triggered data is significantly different
from the non-triggered ones on pairwise post hoc comparisons at
pb0.05, with Tukey HSD test). In this ROI the mean orientation of the
principal eigenvectors differ by 84.5° in the triggered v. non-triggered
(OLLS fit) and 92.3°in the triggered v. non-triggered (iRESTORE fit) com-
parisons; the difference between the two different fits of the
non-triggered data is 8.2°.

Note that the mean residuals for the OLLS diffusion tensor fit are
largest when diffusion encoding is along the z gradient axis (3rd bar
Table 2
Mean effect sizes as assessed by variance ratio calculation over subjects.

Over whole brain Over significant voxels

Median Interquartile
range

Median Interquartile
range

Infant triggered v. non-triggered 3.6 1.5–11.4 19.3 9.3–49.4
Adult triggered1 v. non-triggered 2.2 1.0–5.4 10.5 5.9–23.0
Adult triggered2 v. non-triggered 2.6 1.2–6.3 9.9 5.6–21.9
Adult triggered1 v. triggered2 1.2 0.7–1.9 0.2 0.1–0.3
from the left in blue in each plot of Fig. 5B). This result supports using
the z gradient axis for experiment 1 but there is a tendency for a higher
mean residual also along the x gradient axis (1st bar from left in each
plot of Fig. 5B).
Discussion

Taken together, our results indicate that imaging neonatal sub-
jects without triggering the acquisition results in increased variance
in the data, causing a severe bias in the estimated diffusion (tensor)
parameters in a larger portion of the brain than that in adults.

The identification of pulsatile artifacts in diffusion-weighted brain
image data is not new (Wirestam et al., 1996). It has been demonstrated
previously in adults and triggering has already been suggested as a rem-
edy (Dietrich et al., 2000; Gui et al., 2008; Nunes et al., 2005; Skare and
Andersson, 2001). However, the acquisition of diffusion data in neo-
nates usually proceeds without triggering and a systematic investiga-
tion whether triggering is beneficial in this patient group has never
been performed to date. Here, we investigated pulsatile artifacts and
demonstrated that these artifacts are more widespread in infants than
it would be expected from adult data (Skare and Andersson, 2001). In
addition, we showed that triggering is a remedy for these widespread
artifacts, as it significantly decreases their presence. The cause of the dif-
ferences in the distribution of pulsatile artifacts between infant and
adult brains is still unclear. It may be due to a) the infants' higher
heart rate; b) the fact that the vasculature is not yet fully developed
and may be more compliant; c) the larger water percentage of infant

image of Fig.�3
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Fig. 4. Pulsation artifacts affect the tensor estimation. (A) Volume-wise comparison of DWIs shows clear differences between triggered and non-triggered acquisitions. (B) The dif-
ferences are propagated to the calculated (OLLS) tensor parameters, as seen on the FA modulated colored orientation maps. A coregistered slice of the Cincinnati Children's Hospital
Medical Center infant brain template (https://irc.cchmc.org/software/infant.php) is shown in inset as reference for anatomical localization. (B) FA difference maps, and the principal
eigenvectors' angular difference maps highlight areas most affected by pulsation artifacts. Representative data from a single subject, the angular difference maps are modulated by
the FA difference map. See text for quantitative analysis of the data in the region of interest outlined by white.
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brain tissue; d) the larger relative size of the skull compared to the size
of the brain in infants; and e) the more flexible skull of infants.

One argument against triggering could be that the extended ac-
quisition time allows for more subject movement, introducing further
variance in the data. This argument however is not necessarily valid
for young pediatric patients, where the examinations are usually
performed while asleep or under sedation. Moreover, this limitation
is only true if the strategy is to collect single images per heart cycle.
On our 3 T system, a single DWI is collected in 100 ms, so theoretical-
ly more slices could be collected in a heartbeat (see Supplementary
Fig. 3), similar to the approach of Chung et al., 2010. However, further
investigation is needed to determine the optimal time window for
low-artifact image collection.

Another argument against triggering could be the time penalty of set-
ting up the ECG leads. However, this can be achieved in less than a min-
ute in parallel with other aspects of patient preparation (induction of
sedation, setting up other monitoring devices, e.g. pulse oximeter, etc.).

As the brains of neonates and young children are relatively small, a
volume-to-volume minimum TR of only 2–3 s is sufficient to achieve
full-brain coverage. Because such a short TR does not allow appropriate
relaxation of the longitudinal magnetization, investigators usually do
not collect data with this setting, instead the TR is set to about 6–8 s
(Anjari et al., 2007; Counsell et al., 2006; Deipolyi et al., 2005; Hermoye
Table 3
Mean absolute residuals of model errors upon diffusion tensor fitting. OLLS: ordinary
linear least squares fit; WLLS: weighted linear least squares fit; NLLS: non-linear least
squares fit; iRESTORE: informed RESTORE.

Infant #09 Infant #10 Infant #11

99%
range

Median 99%
range

Median 99%
range

Median

Triggered OLLS 2.1–30.6 5.95 2.4–33.3 6.86 1.6–28.6 4.99z
WLLS 2.1–30.2 5.90 2.4–34.1 6.80 1.6–28.2 4.95
NLLS 2.1–30.0 5.91 2.4–32.1 6.82 1.6–27.6 4.96

Non-
triggered

OLLS 2.6–63.3 8.31 2.8–43.6 8.84 2.0–33.0 6.16
WLLS 2.6–57.0 8.23 2.9–42.4 8.83 2.0–31.5 6.12
NLLS 2.6–57.8 8.27 2.9–41.4 8.81 2.0–31.5 6.13
iRESTORE 2.5–56.5 8.00 2.8–40.1 8.56 1.9–30.2 5.95
et al., 2006). Nevertheless, one could acquire all of the images twice
with the minimal TR of e.g. 3 s and average them for a

ffiffiffi
2

p
gain in

signal-to-noise ratio (SNR), without increasing the acquisition time. As-
suming a T1 relaxation time of 1700 ms for white matter (Jones et al.,
2004), the amount of relaxation and hence the available signal strength
would then increase from about 83% to 97%. At first sight, this might
seem to be an advantageous approach, however, if artifacts occur, averag-
ing could not be done and the gain in SNRwould not be achieved, leading
to a dataset of varying SNR. The same issuewith directionally varying SNR
is true for the practice of collecting non-triggered datasets multiple times
with 6-8 s TR and then subsequently compiling a single set of artifact-free
images (Mori et al., 2002; Simonyan et al., 2008).Moreover, the latter ap-
proach doubles acquisition time.

Another strategy is to use outlier rejection methods (Chang et al.,
2005, 2012; Morris et al., 2011), where in each voxel, the diffusion
tensor is fit to only those diffusion-encoding directions that fit the
model well. Performing informed RESTORE (Chang et al., 2012) on
our data improves the results significantly but residual artifacts remain
(see Fig. 5 and Supplementary Figs. 1 & 2). This is most likely due to
the limited amount of high quality diffusion weighted volumes. Using
12–15 diffusion directions is common practice in the pediatric popula-
tion (Bassi et al., 2011; Bednarek et al., 2012; Skiold et al., 2010), and
as our results suggests the tensor estimates can be biased even after
the exclusion of outliers (see also the Discussion in Chang et al., 2005,
2012). Note, however, that there are studies with neonatal participants
that proceed with the minimally needed 6 diffusion directions (Seghier
et al., 2005). In this case, outlier rejection methods are not possible be-
cause the exclusion of a single direction removes the possibility of fitting
a tensor to the remaining data (note that there are no non-zero residuals
in the first place). Only a few research groups have now started to collect
datawith up to 42 directions (Dudink et al., 2011; van der Aa et al., 2011;
van Kooij et al., 2012), in which case outlier rejection methods may be a
viable alternative to pulse triggering for diffusion tensor imaging. If the
larger number of diffusion-encoding directions are used to fit a more
complex model, the redundancy of the data will be reduced (i.e.,
larger number of parameters need to be estimated). As pulse trigger-
ing carries less of an overhead in acquisition time for infants than in
adults, and given the fact that most vendors do not support robust

image of Fig.�4
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Fig. 5. The iRESTORE algorithm provides partial remedy for pulsation artifacts. (A) Color coded maps of the orientation of the principal eigenvector are displayed for the triggered
(top middle) and non-triggered acquisitions obtained using OLLS tensor fitting (bottom left), as well as for the non-triggered acquisition after employing the iRESTORE algorithm
(bottom right). The iRESTORE algorithm corrects some of the artifacts that are clearly present in the non-triggered data set without employing the algorithm. Still the triggered data
set provides the most reliable results, Paired fractional anisotropy difference images are also presented among the 3 methods. The bottom middle figure depicts the improvement
due to the iRESTORE algorithm. The white arrows indicate the acquisition methods compared. A coregistered slice of the Cincinnati Children's Hospital Medical Center infant brain
template (https://irc.cchmc.org/software/infant.php) is shown in inset as reference for anatomical localization. For comparison of the principal eigenvectors' orientation, see Sup-
plementary Fig. 1. (B) Mean (and range) of absolute residuals of OLLS tensor fit errors for the non-triggered, triggered and non-triggered with iRESTORE experiments. The y axis
scale is arbitrary but identical for all 3 plots while the x axis represents the 15 diffusion encoding directions. Note that mean residual is largest for the 3rd diffusion direction,
which is along z gradient axis. The bars are color coded according to the diffusion encoding direction using the standard DTI color scheme (see inset). See Results for quantitative
analysis of the error introduced in FA values and the principal tensor directions within the regions of interest outlined on the color coded maps.
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diffusion tensor estimation procedures, such as (i)RESTORE, trigger-
ing is especially recommended in a clinical setting.

Triggering has the composite benefit that it helps eliminating artifacts
from the data while increasing the volume-to-volume TR, thus allowing
for more complete T1-relaxation and optimum SNR in an artifact free
data set. For 20 slices and using the parameter set of this study, the min-
imum TRwas 2.1 s whereas the effective TR for the triggered acquisition
was approximately 10.0 s allowing for 71% and ~100% T1-relaxation, re-
spectively. Note that this fortunate scenario only occurs in this particular
target group. In older subjects with larger brains, shorter T1-relaxation,
and slower heart rate, the minimum volume-to-volume TR may allow
for complete T1-relaxation; therefore triggering per se does not neces-
sarily result in an increased SNR.

It must also be noted that the sensitivity of different reconstruction
schemes to pulsatile motion of the brain is variable (Robson and Porter,
2005). If in doubt, and if the population is available, the bootstrap proce-
dure can be easily implemented to ascertain the local need for triggering.
However, as triggered acquisitions in infants hardly increase examina-
tion time, we would recommend using triggering in general, unless evi-
dence is available to the contrary.
The main limitations of our study stem from the extremely limited
access to our target infant pediatric population; this is the reason why
(a) the bootstrap procedurewas only applied to repeatedmeasurements
with diffusion-encoding along the z gradient direction but not on diffu-
sion tensor data; (b) repeated measurement with triggering was not
performed for the diffusion tensor imaging. One can argue that our deci-
sion of collecting data for the bootstrap statistics with 1.5 mm gaps in
order to reduce examination time is another limitation, but as the ob-
served pulsation artifacts have larger extent than a single slice thickness
the gaps did not limit the sensitivity of themethod, i.e., it is not likely that
false negatives could have occurred due to missing data in the gaps.
Conclusion

Cardiac triggering is a feasible approach for improving the quality of
diffusion-weighted MR images in infants as it effectively decreases
circulation-related artifactswith a negligible increase in acquisition time.

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.neuroimage.2012.11.063.
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