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In this work, we address the problem of using dynamic causal modelling (DCM) to estimate the coupling pa-
rameters (effective connectivity) of large models with many regions. This is a potentially important problem
because meaningful graph theoretic analyses of effective connectivity rest upon the statistics of the connec-
tions (edges). This calls for characterisations of networks with an appreciable number of regions (nodes). The
problem here is that the number of coupling parameters grows quadratically with the number of nodes—
leading to severe conditional dependencies among their estimates and a computational load that quickly be-
comes unsustainable. Here, we describe a simple solution, in which we use functional connectivity to provide
prior constraints that bound the effective number of free parameters. In brief, we assume that priors over
connections between individual nodes can be replaced by priors over connections between modes (patterns
over nodes). By using a small number of modes, we can reduce the dimensionality of the problem in an in-
formed way. The modes we use are the principal components or eigenvectors of the functional connectivity
matrix. However, this approach begs the question of howmany modes to use. This question can be addressed
using Bayesian model comparison to optimise the number of modes. We imagine that this form of prior –

over the extrinsic (endogenous) connections in large DCMs –may be useful for people interested in applying
graph theory to distributed networks in the brain or to characterise connectivity beyond the subgraphs nor-
mally examined in DCM.

© 2012 Elsevier Inc. Open access under CC BY license.
Introduction

Usually, analyses of directed (effective) connectivity using dynam-
ic causal modelling (DCM) (Friston et al., 2003) on fMRI data consider
a small number of regions (e.g., less than 10 regions), typically excit-
ed by carefully designed experimental manipulations (for a review
see (Friston, 2011b; Seghier et al., 2010b)). In terms of graph theory,
this corresponds to a characterisation of subgraphs that are exposed
to exogenous input—where these inputs can be experimental (stimu-
lus) functions or random fluctuations (Valdes-Sosa et al., 2011). Re-
cently, there has been growing interest in the modelling of larger
networks or graphs, which we take to imply graphs with sixteen or
more regions (Bullmore and Sporns, 2009; Guye et al., 2010; He and
Evans, 2010). These analyses are usually required to contextualise
the activity in subgraphs, within the setting of a larger distributed
network—or to provide estimates of effective connectivity for subse-
quent characterisation with graph theory measures such as charac-
teristic path length, modularity, centrality and network resilience
(Rubinov and Sporns, 2010).

However, increasing the number of regions or nodes in a DCM pre-
sents some problems. Clearly, the number of extrinsic (between-node)
connections or edges increases with the square of the number of nodes.
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This can lead tomodels with enormous numbers of free parameters and
profound conditional dependencies among the parameters (Daunizeau
et al., 2011). Furthermore, the computational time required to invert
thesemodels grows exponentially with the number of free parameters.
In this paper, we present a simple solution to the inversion of large
DCMs with sixteen or more regions. This solution is based on plausible
priors that effectively constrain the number of extrinsic coupling pa-
rameters. Crucially, the plausibility of these priors can be established
by Bayesian model comparison (Penny et al., 2004, 2010).

This approach is based upon the hypothesis that distributed brain
responses are mediated by coupling among spatial patterns or modes
(Friston, 2009), of the sort seen in resting state functional connectiv-
ity studies; see for example (Biswal et al., 2010; Damoiseaux et al.,
2006; Smith et al., 2009; Yeo et al., 2011). This means that the con-
nections among individual regions can be replaced by connections
among modes. Because we can control the number of modes, one
can place an upper bound on the number of extrinsic coupling param-
eters that need to be estimated. Crucially, this hypothesis can be test-
ed by examining the evidence for models with different numbers of
modes, where – in the limiting case that the number of modes and
nodes are the same – we return to the conventional (unconstrained)
priors. This constraint pertains to, and only to, extrinsic connections:
each node or region can still have its own intrinsic connectivity and
parameters of its (regionally specific) hemodynamic response func-
tion. This means, we do not simply model the coupling among
modes but rather use the modes to place prior constraints on, and
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only on, extrinsic connections. In what follows, we describe this ap-
proach in detail for deterministic DCM and evaluate the underlying
hypothesis using Bayesian model comparison. In brief, we test the no-
tion that distributed brain responses can be explained by extrinsic
coupling among modes by comparing the Bayesian model evidence
for models whose priors entertain an increasing number of modes.
If the hypothesis is correct, then we would expect to see model evi-
dence peak at a particular number of modes and then decline again
as the model becomes over parameterised.

We envisage that the resulting search over models (number of a
priori modes) could be applied to any fMRI time series using DCMs
with full extrinsic connectivity. The model with the greatest evidence
can then be pruned using post-hoc model optimisation (Friston et al.,
2011) to provide posterior estimates for subsequent characterisation
of the resulting directed graphs. We will illustrate these procedures
using empirical data.

This paper comprises three sections. In the first, we provide a brief
overview of dynamic causal modelling for functional magnetic reso-
nance imaging (fMRI), with a special focus on the priors over extrinsic
connectivity parameters—and how they are constructed using the ei-
genvectors (principle components or modes) of the functional con-
nectivity matrix. In the second section, we describe the fMRI data
used to illustrate the approach and the DCM used to model these
data. In the final section, we perform a Bayesian model comparison
over models with different priors to establish the optimal number
of modes. We conclude with a discussion of the behaviour of
model evidence and the structure of the reduced model after post-hoc
optimisation.

Methods

Dynamic causal modelling

In this section, we provide a brief review of dynamic causal model-
ling for fMRI, paying special attention to the prior constraints on the
extrinsic connectivity parameters. These Gaussian priors are based
upon the principal components or eigenvectors of the functional con-
nectivity matrix—or sample correlationmatrix of the time-series data.
We will see that the ensuing priors can be formulated in a reasonably
straightforward fashion using Kronecker tensor forms.

DCM for fMRI rests on a generative model that has two compo-
nents: (i) a neuronal model describing interactions (dependencies)
in a distributed network of neuronal populations, and (ii) a forward
biophysical model that maps neuronal activity to observed hemody-
namic responses. The default implementation in deterministic DCM
for fMRI models the rate change in neuronal activity according to
the following bilinear evolution or state equation (Friston et al.,
2003):

dz
dt

¼ A þ
Xk
i¼1

uiB
ið Þ

 !
z þ Cu ð1Þ

where z(t) is the (lumped) activity of the neuronal populations in a
given node, A is the first-order (endogenous or average) connectivity
in the absence of inputs, B is the second-order interaction between
activity and input (bilinear or modulatory effects), and C mediates
the effects of (exogenous or experimental) inputs u(t) on activity.
The set of neuronal connectivity parameters (A,B,C) and the hemody-
namic parameters H of the forward model are noted as vector θ.

The posterior probabilities of the model parameters θ=(A,B,C,H)
are assessed with Bayesian inversion using standard variational tech-
niques based upon the Laplace approximation (Friston, 2002; Friston
et al., 2002, 2007a). In this Bayesian inversion framework, two quan-
tities are estimated (e.g. (Daunizeau et al., 2011)): (i) the posterior
distribution over model parameters p(θ|M,Y), which can be used to
make inferences about model parameters θ of model M given data Y,
and (ii) the probability of the data given the model p(Y|M), known as
the model evidence or marginal likelihood. The log evidence is approx-
imated by a negative (variational) free energy that is used for Bayesian
model comparison or scoring (e.g. (Penny, 2012)). Further details about
DCM for fMRI responses can be found elsewhere (Friston, 2011b;
Seghier et al., 2010b).

Priors on the parameters of DCM for fMRI
In this work, we used the latest release of DCM (noted DCM12) on

MATLAB 2010a (MathWorks, Natick, Massachusetts USA). This re-
lease incorporates priors on the precision of observation noise with
an expected log-precision of four. This simply encodes the prior belief
that there is a reasonable signal to noise ratio in the fMRI timeseries,
which generally leads to more robust model inversion, with typical
fMRI responses.

Gaussian priors on the connectivity and hemodynamic parameters
are referred to as “shrinkage” priors (Friston et al., 2003) because
they tend to “shrink” posterior means to their prior expectation.
They are specified in terms of a prior mean and covariance. The
prior means and covariances on the endogenous (extrinsic and intrin-
sic) connectivity parameters usually depend on the number of nodes
(n) in the model. In this context, the prior precision increases with
the number of nodes to preclude runaway excitation—which makes
the shrinkage priors particularly stringent for larger DCMs. More spe-
cifically, the priors on self-connections and the between-node con-
nections in DCM12 are:

pðAij Mj Þ ¼ N ηij;υij

� �
¼ N −1=2;1= 8⋅nð Þð Þ i ¼ j

N 1= 64⋅nð Þ;8=nð Þ i≠j

�
ð2Þ

This leads to a diagonal form for the prior covariance Σ⊂Rn⋅n�n⋅n

over all the average connectivity parameters:

p vec Að Þ Mj Þ ¼ N vec ηð Þ;Σð Þ:Σ ¼ diag vec υð Þð Þð ð3Þ

This diagonal form means that we have no prior beliefs about cor-
relations among the intrinsic and extrinsic connectivity parameters in
the A⊂Rn�n. However, for large DCMs (e.g., n>8), we can now intro-
duce correlations to decrease the effective number of free parameters,
by reducing the rank of the prior covariance matrix. To do this we
need to find some plausible priors or constraints. Here these con-
straints are based upon the principal components or eigenvectors of
the functional connectivity matrix. These define the number of
modes (m) that will constrain the rank of the prior covariance. The
prior covariance is constrained as follows:

Let Y=[y1,y2,y3,…yn] be the set of observed BOLD responses in n
nodes where yi is a timeseries from the ith node. This is itself usually
the principal component over a number of local voxels that constitute
the region. Furthermore, yi is generally adjusted by removing con-
founds (e.g. signal drift, session effects, etc.). We start using singular
value decomposition to find the principal modes:

Y ¼ U⋅S⋅VT ð4Þ

where the diagonal elements of S contain singular values (i.e. mode
amplitudes), U⊂Rn�n contains the modes or singular vectors, and V
contains the singular variates. We then select the modes with the
largest singular values Um⊂Rn�m and use them to remove minor
modes from the prior covariance as follows:

Σm ¼ Km⋅Σ⋅KT
m

Km ¼ Um⋅UT
m

h i
⊗ Um⋅UT

m

h i ð5Þ

where ⊗ denotes the Kronecker tensor product. Effectively, the pro-
jector matrices Km induce prior correlations among the connections
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Fig. 1. Illustration of the regions of interest for the contrast “reading>fixation” (in red)
and “fixation>all tasks” (in green) at pb0.05 FWE-corrected in a group level whole
brain SPM analysis. LH=left hemisphere, RH=right hemisphere. See Table 1 for a
list of the anatomical location and MNI coordinate of these 20 regions.
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and ensure certain mixtures of parameters have no prior variance—so
that they are essentially fixed. The ∑m thus reflects the constrained
prior covariance over all endogenous connectivity parameters in
DCMs with m modes.

It is important to keep in mind that these constrained priors per-
tain only to endogenous connectivity parameters. Prior beliefs about
the bilinear, exogenous input and hemodynamic parameters are
unchanged and thus each region can still have its own hemodynamic
response function. It is also worth noting that priors on the noise pre-
cision at each node remain independent (for more details see
(Daunizeau et al., 2009; Friston et al., 2007a; Li et al., 2011)). Note
that the use of modes – as prior constraints on coupling among
nodes – is similar to but formally distinct frommodelling the coupling
among modes per se; e.g. (Stevens et al., 2007)). In other words, the
DCM is still trying to explain region-specific activity in each node
(as opposed to the activity of modes). This concludes our description
of how functionally informed modes of activity are used to place con-
straints on the effective number of coupling parameters. In the next
section, we consider the optimal number of principal modes, in
terms of model evidence, using real fMRI data.

Empirical fMRI data and dynamic causal models

This section describes the empirical data used formodel inversion and
comparison. We describe the experimental design, the selection of re-
gions or nodes and the ensuing dynamic causal model. The empirical
data came from a block-design fMRI activation study of 10 healthy sub-
jects described in (Seghier and Price, 2010; Seghier et al., 2008). During
two separate scanning sessions, subjects were asked to (i) read aloud 96
three to six letter object names with consistent spelling-to-sound rela-
tionships (e.g. hat, tent, horse, carrot); (ii) namepresented pictures of fa-
miliar objects; (iii) say “1,2,3” to meaningless pictures of symbols or
non-objects (unfamiliar stimuli). Each session comprised four different
word reading blocks that lasted 18 s, with 12words per block presented
at a rate of three words every 4.5 s (i.e. as triads), four blocks of object
naming presented at the same rate as during reading, four blocks of
saying “123” to unfamiliar (meaningless) pictures of symbols or non-
objects, and six blocks of fixation (14.4 s per fixation block). To mini-
mise artefacts from head motion, subjects were asked to whisper their
response with minimal mouth movement. Stimulus presentation was
via a video projector, a front-projection screen and a system of mirrors
attached to a head coil. Additional details about the paradigm and stim-
uli can be found in our previous descriptions of this study (c.f. (Kherif et
al., 2009; Seghier and Price, 2010; Seghier et al., 2008)).

fMRI data acquisition and analysis
Data were acquired on a 1.5 T scanner (Siemens Medical Systems,

Erlangen, Germany). Functional imaging consisted of an EPI GRE se-
quence (TR/TE/Flip=3600 ms/50 ms/90°, FOV=192 mm, matrix=
64×64, 40 axial slices, 2 mm thick with 1 mm gap). Data processing
and statistical analyses were performed with the Statistical Parametric
Mapping SPM software package (Wellcome Trust Centre for Neuroim-
aging, London UK, http://www.fil.ion.ucl.ac.uk/spm/). All functional
volumes were spatially realigned, un-warped, normalized to the MNI
space using a unified normalisation–segmentation procedure and
smoothed with an isotropic 6-mm FWHM Gaussian kernel, with final
voxel sizes of 2×2×2 mm. The pre-processed functional volumes of
each subject were then submitted to a fixed-effects analysis, using the
general linear model at each voxel. Each stimulus onset was modelled
as an event, encoded in condition-specific “stick-functions” with an
inter-stimulus interval of 4.5 s and duration of 4.32 s per trial. Each
block contained four successive events. The resulting stimulus functions
were convolved with a canonical hemodynamic response function to
form regressors for the linear model. Confounding regressors included
drift terms and head motion. The appropriate summary or contrast
image was then entered into a second-level (between subject)
analysis (i.e. random-effects analysis) to enable inferences about
regional responses at the group level in the usual way. These
were used to constrain the subject specific regions or nodes for
subsequent DCM analysis.

Selection of nodes
Based on the group analysis, we identified a total of 20 regions of

interest that showed significant effects across subjects at pb0.05
FWE-corrected over the whole the brain; see Fig. 1 for their locations
and Table 1 for a full list of coordinates. These regions were chosen to
cover a distributed bilateral network from visual cortex to articulatory
motor regions. This region selection ensured that the regional responses
were defined functionally, in a sense that they showed significant
task-related effects. Here, we used two contrasts of interest: the first
was “reading>fixation” that identified 16 regions with strong

http://www.fil.ion.ucl.ac.uk/spm/


Table 1
List of regions selected for DCM and their group coordinates in the MNI space. Regions
of the default mode network are shown in italic. BA=Brodmann areas.

Region Anatomical location Coordinates
(in mm)

OCC_L Left middle occipital gyrus (BA 18) −20 −92 −6
OCC_R Right middle occipital gyrus (BA 18) 44 −82 −8
pvOT_L Left posterior ventral occipito-temporal cortex

(BA 19/37)
−38 −78 −10

Cereb_L Left cerebellum (Lobule VI) −22 −60 −22
Cereb_R Right cerebellum (Lobule VI) 22 −58 −24
SOG_L Left superior occipital gyrus (BA 19) −26−70 32
SPL_R Right superior parietal lobule (BA 7) 30−56 52
pSTG_L Left posterior superior temporal gyrus (BA 22) −56−42 16
pSTG_R Right posterior superior temporal gyrus (BA 22) 60−36 14
STG_L Left superior temporal gyrus (BA 22) −62−20 12
STG_R Right superior temporal gyrus (BA 22) 54 −16 4
IFG_L Left inferior frontal gyrus (BA 44) −56 10 −4
IFG_R Right inferior frontal gyrus (BA 44) 60 12 0
M1SI_L Left primary motor and somatosensory cortex (BA 3/4) −48 −14 38
M1SI_R Right primary motor and somatosensory cortex

(BA 3/4)
50 −8 32

SMA Supplementary motor area (BA 6) 0 −2 58
IPL_L Left inferior parietal lobule (BA 39/40) −50 −72 30
IPL_R Right inferior parietal lobule (BA 39/40) 48 −68 38
PCC Posterior cingulate cortex (BA 7) −8 −58 26
MFC Medial prefrontal cortex and anterior cingulate (BA 10/24) −2 40 −10
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activations during reading aloud relative to fixation – including a large
bilateral set of visual, auditory, phonological and articulatory regions
(Fiez and Petersen, 1998; Price, 2000). The second contrast was
“fixation>all tasks” and identified four task-induced deactivations
that are part of the well-known default mode network (Greicius and
Menon, 2004; Raichle et al., 2001)—including bilateral inferior parietal
lobule, posterior cingulate cortex and medial prefrontal cortex (Fig. 1).
Our rationale – of selecting nodes with both task-induced activations
and deactivations – was to ensure positive and negative posterior
estimates of the coupling parameters and to explicitly model interac-
tions between functionally heterogeneous networks (e.g. (Andrews-
Hanna et al., 2010; Graves et al., 2010; Laird et al., 2009; Richardson et
al., 2011; Seghier and Price, 2009; Seghier et al., 2010a; Wirth et al.,
2011)).

After defining our 20 regions from the group analysis, principal
eigenvariates (i.e., summary time series) were extracted from each
subject (using voxels in subject-specific SPMs that survived a criteria
of pb0.05 uncorrected) around the subject-specific maximum that
was closest to the coordinates of the group maximum in Table 1.
Regions were extracted for each session separately within an 8 mm
radius sphere and the principal eigenvariates were adjusted for
confounds. The resulting summary time series from each region
were concatenated over the two sessions for dynamic causal
modelling.
Specification of the DCM
The dynamic causal model for each subject's (concatenated) time se-

ries specified as follows: (i) we assumed that visual information entered
at the level of bilateral occipital regions (low-level visual areas, Table 1).
Thus the driving input (i.e. words, objects and unfamiliar stimuli) was
connected to the two occipital regions, (ii) all between-node (extrinsic)
connections were considered, resulting in a fully-connected model. In
this illustrative analysis we ignored condition and stimulus specific ef-
fects—treating the activations as due to simple stimulus processing. This
meant that we did not specify any modulatory or bilinear parameters.
In summary, our fully connected DCM comprised 20 nodes, where the re-
sponse of each node was summarised by its principal eigenvariate of 198
observations. Note that thismodelwas not designed to test hypotheses or
cognitivemodels ofword reading—it is a simplemodel thatwas sufficient
to focus on the prior constraints specified in terms of the number of prin-
ciple modes.

Prior constraints
As noted above, removing the minor modes from the priors on the

connectivity parameters induces prior dependencies among endoge-
nous coupling parameters. Fig. 2A illustrates this in terms of the prior
covariance matrix – from one typical subject – after removing the
minor modes. The dependencies between the parameters appear as
off-diagonal covariances in Fig. 2A, which increases with the number
of modes removed (Fig. 2B). These prior constraints mean that the
prior covariances are no longer fixed and may differ between subjects.

Bayesian model comparison
To test the hypothesis that the fMRI data can be explained in terms

of constrained coupling among modes or patterns of nodes, we
inverted the DCM above using an increasing number of modes, with
m varying from 1 to n. This resulted in 20 DCMs per subject. In
other words, the number of minor modes removed from the priors
in our models varied between 0 to n−1. We expected to see the ev-
idence for each model increased initially, with the number of modes
and then decreased again as redundant coupling parameters ren-
dered the model overly parameterised and thus too complex. Note
that if the data were caused by unconstrained coupling among indi-
vidual nodes, the model with the largest number of modes could
have the most evidence. Put another way, the very existence of a
peak in the log evidence – as a function of the number of modes –

provides evidence in favour of the hypothesis upon which our prior
constraint rests.

All 20 dynamic causal models of the data from our 10 subjects
were inverted using variational Bayesian procedures as described
above (Friston et al., 2007a, 2007b). This provided posterior parameter
estimates and a free energy bound on the log evidence for each model.
The log evidence can be regarded as the difference between accuracy
and complexity (c.f. Equations [19–23] in (Penny, 2012), where accura-
cy is simply the log likelihood of the data expected under the posterior
estimates. Roughly speaking, the complexity can be regarded as the
number of free parameters that are required to explain the data accu-
rately. Our prior constraints therefore place an upper bound on model
complexity and, in principle, could provide models for which there is
greater evidence.

Post-hoc model optimisation
Post-hoc model optimisation or network discovery (Friston et al.,

2011) is a recent Bayesian procedure that can infer the functional ar-
chitecture of distributed systems using DCM after inverting one fully
connected model. It uses Bayesian model selection to assess the impact
of absent edges or connections (i.e. discover the sparsity structure) in a
graph that best explains the observed time-series. Its core algorithm is
based on a proxy (post-hoc) scheme for scoring a huge number of
models, based on the posterior density of a single fully connected
model. This scoring can then identify the (reduced) model that has
the highest evidence or marginal likelihood (Friston et al., 2011).
Here, post-hoc optimisation or reduction was applied to the model
with the optimal number of modes. Note that the post-hoc model opti-
misation operates at the individual subject level and thus the structure
of the reduced model at the group level was obtained using Bayesian
parameter averaging over our 10 subjects, as implemented in DCM12.
Synthetic fMRI data

Finally, we used simulations to quantify the behaviour of the pos-
terior estimates of the coupling parameters, when the number of
modes is reduced. Clearly, to assess any bias in the parameter estimates
due to prior covariance constraints, we needed to know their true value.
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Therefore, we used the same procedure as in Penny (2012) to generate
synthetic fMRI timeseries for 20 nodes, with known coupling parame-
ters. These data were created using the “spm_dcm_generate” routine
of DCM12, under the following conditions: (i) the stimulus functions
of our fMRI experiment (detailed above) were used as driving inputs.
This produced synthetic fMRI data that have the same characteristics
as the real data (number of volumes=198, TR=3.6 s, TE=0.05 s),
(ii) synthetic (smooth Gaussian) noise was added to the deterministic
response to match the signal-to-noise ratio (about one) of our real
fMRI data. This means that the proportion of variance explained by
DCM is around one half, and (iii) the posterior parameter estimates
(of one subject)were used as the “true” connectivity parameters to gen-
erate the synthetic timeseries (formore details see Fig. S1 of the Supple-
mentary Material). These synthetic fMRI timeseries were then used to
invert DCMs that included two driving regions and a fully-connected
endogenous connectivity matrix—in the same way as for the empirical
data (i.e., by varying the number of modes from 1 to n). This procedure
was repeated ten times (i.e. ten different datasets of n=20 timeseries).

Results

Fig. 3 shows the free energy bound on log model evidence as a
function of the number of modes averaged over all 10 subjects. Al-
though the log evidence profile is not as smooth as one might like,
there is a plateau at intermediate number of modes. This was the
case for the (fixed-effect) group model comparison, with a peak at
around m=15. In other words, under the formal constraints of the
model, the best explanation for these data is in terms of connections
among 15 distributed patterns or modes. Note how the free energy
falls systematically as the number of modes increases, after this
peak. This particular pattern was observed in all but one subject
(see subject-specific results in Fig. S2 of Supplementary Material).
This reflects the fact that we are relaxing prior constraints on the ex-
trinsic coupling by increasing the span of the prior covariance matrix.
In effect, the model becomes over parameterised and its complexity
starts to dominate (see Fig. 3). However, as we increase the number
of modes, the model has more latitude to explain data and provide
a more accurate prediction. In other words, we would expect the ac-
curacy to increase monotonically with the number of modes. This is
shown in Fig. 3 at the group level—and was seen in every subject
(see Fig. S2 of the Supplementary Material).

As the number of modes increases – and the prior covariance con-
straints are relaxed – one would expect the posterior covariances to in-
crease. Fig. 4 shows the posterior expectations and variances for all
endogenous coupling parameters, as a function of the number of
modes. The right panel shows that, as expected, posterior variance in-
creases with the number of modes and loss of prior constraints. The be-
haviour of the posterior expectations in the left panel is interesting:
some coupling parameters are high with a few (e.g., three to eight)
modes, presumably because they have to explain most of the influence
ofmodes on each other. Other sets of parameters seem to increasemono-
tonically with the number of modes, as clearly evident for the connec-
tions with the driving regions (e.g. see details in Fig. 4). In situations in
which differences in log evidence are not very strong (e.g. less than five
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(Kass and Raftery, 1995)), one could consider Bayesian averaging over
models (Penny et al., 2010); such that the posterior expectations are
weighted by the respective evidence for their model. However, in our
case, the winning model had a sufficiently high log evidence to make
this Bayesian parameter averaging unnecessary (as shown in Fig. 3).

This behaviour was confirmed in our modelling of simulated data.
Specifically, across the ten different synthetic fMRI datasets, we found
that the free energy was greatest at an intermediate number of modes
(see Fig. 5). Fig. 5 shows the posterior means of exemplar coupling pa-
rameters. As in the real fMRI data, some parameters increased with the
number of modes, while most remained close to the true value. A few
parameters (e.g. bottom-right panel of Fig. 5) had inflated values with
a small number of modes (e.g. m=3), as seen with the real fMRI data
(Fig. 4). We note that, for the model with unconstrained priors
(m=20), the posterior estimates of the coupling parameters were
very close to their true values. Heuristically, differences between true
and posterior estimates can be regarded being produced by a projection
of the true values onto the parameter space spanned by the prior covari-
ance matrix. Provided the true values lie in (or near) this space, the dif-
ferences will not be large. The correspondence between the true
parameters and the posterior estimates, for an intermediate number
of modes, suggests that these modes produce a parameter subspace
that (nearly) contains the true values. Fig. S3 of the supplementary
material provides a detailed illustration of all connections, under dif-
ferent numbers of modes.

The parameter estimates of the reduced model of the real fMRI data
after post-hoc model optimisation are shown in Fig. 6. Starting from a
fully connected model structure, post-hoc optimisation revealed a
sparse model structure after identifying 247 anti-edges (Fig. 6). For
instance, this revealed a striking difference between left cerebral
versus right cerebellar nodes, with left temporal regions acting as target
regions—receiving inputs from almost all nodes (e.g. left posterior ven-
tral occipito-temporal cortex and posterior superior temporal gyrus),
whereas the right cerebellum acted as a source region sending inputs
to other nodes. The structure of the reduced model is also shown in
a functional space, where the distance between nodes reflects the
strength of bidirectional coupling (using spectral embedding as detailed
in Friston et al., 2011). This revealed for instance a difference in the
strength of bidirectional coupling between the core midline regions of
the default mode network (as hubs (Andrews-Hanna et al., 2010)),
with the other nodes of the reading system (see nodes 19 and 20 of
Fig. 6C).We will not comment further on this connectivity graph; how-
ever, many readers will note that the underlying weighted adjacency
matrix, encoding corrected connectivity, lends itself to several interesting
analyses both in terms of functional anatomy and formal graph theoretic
analyses.
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(right graph).
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Discussion

In this paper, we addressed the Bayesian inversion of large graph-
ical models using constrained priors that bound the number of effec-
tive free parameters. The implicit problem of over parameterisation
was finessed by replacing priors on coupling among nodes with priors
on coupling among modes—where modes correspond to the principal
components or eigenvectors of the functional connectivity matrix.
This reduces the dimensionality of the model inversion problem and
incidentally speeded up the inversion scheme. Crucially, because the
estimated coupling parameters are conditional on the model selected,
it is important to ensure optimal posterior estimates under the best
models that have the most evidence. Our findings showed models
with a smaller number of modes – relative to number of nodes –

had a greater model evidence, where the optimal number of modes
appears to be around 15, for the data we analysed.

Although functional connectivity cannot identify directed interactions
within a system (e.g. see recent discussion in Friston, 2011b), our results
suggest that models with functional connectivity constraints provide
better explanations for distributed responses than models without
constraints. However, it is important to note that the functional connec-
tivity does not bias the estimates of effective connectivity—functional
connectivity was used to constrain the prior covariance of the model pa-
rameters, as opposed to their prior mean or expectation. Interestingly,
this is exactly the same as the use of (undirected probabilistic) anatomical
connectivity, when using diffusion weighted imaging or tractography
data to inform dynamic causal models (Stephan et al., 2009). The use of
such informative constraints ensures that each node still has its own
intrinsic connectivity and haemodynamic parameters, while enabling
DCM to provide unbiased and more efficient estimates of effective con-
nectivity among nodes. The notion that functional connectivity may pro-
vide useful constraints can be motivated by the fact that strong statistical
dependencies betweenmeasured timeseries are likely to be mediated by
directed (effective) connections. More exactly, if two nodes (or sets of
nodes) are statistically independent and show little functional connectiv-
ity, one can assume a priori that their effective connectivity is small. This
prior assumption is embodied by the constraints on the prior covariance
matrix. Our findings, with both real and synthetic fMRI data, confirmed
that functional connectivity did indeed provide informative constraints
(models with higher evidence) when inverting large DCMs.

We now turn to the impact of the number of modes on the posterior
estimates of the coupling parameters. As illustrated with both real and
synthetic fMRI data, using constrained priors (that bound the effective
number of free parameters) changes the posterior expectations of the
coupling parameters (Figs. 4 and 5). The results in Fig. 5 suggest the fol-
lowing. (i) The true values of coupling parameters lie within the 95%
confidence intervalwith the full (m=20) number of nodes, i.e., without
prior covariance constraints. This confirms that unconstrained (in terms
of prior coupling parameter covariance) inversion provides unbiased
posterior estimates. (ii) However, for the intermediate number of
modes (e.g. m=8–12) where free energy is greatest, some true cou-
pling values lie outside the 95% confidence interval. (iii) Moreover, for
those coupling parameters, the true coupling values lie inside the 95%
confidence interval only for the full number of modes. This would
seem to indicate that maximising model evidence can lead to bias in
the posterior estimates of some parameters. This is an inherent aspect
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of Bayesianmodel section, because changing the model is equivalent to
changing the priors, and increasing prior constraints generally shrinks
or biases posterior estimates towards their prior expectations (c.f.,
Stein shrinkage estimators in a classical setting or shrinkage priors in
a Bayesian setting). More specifically, some connections (e.g. those
connecting the two driving nodes) appeared to decrease in amplitude
with prior constraints and the number of removed minor modes. This
means that Bayesian estimators may underestimate the strength of
some endogenous coupling and this should be considered in any quan-
titative interpretation. However, parameter shrinkage is generally not
problematic in terms of inference about models. Indeed, one can see
from Fig. 4 that the posterior variances also shrinkwith the number of re-
moved minor modes, suggesting that significant connections (i.e. with
significant posterior probabilities) are retained when using more infor-
mative priors.
One practical question is whether one should optimise the num-
ber of modes for each new study. The procedures outlined in this
paper describe how this can be done in a relatively straightforward
fashion. However, we would not necessarily recommend inverting
all possible DCMs for each new dataset. This is because of the compu-
tational load, particularly for studies with a large number of nodes or
subjects. When looking at the range of m that ensured relatively high
model evidences in each subject, it was clear that DCMs with a wide
range of intermediate m values showed higher evidence (i.e. a differ-
ence in log evidence more than 5 (Kass and Raftery, 1995)) than the
model with n nodes in almost all subjects (see Fig. 7). Put another
way, there is a range of m values that ensure higher evidence for
DCMs between modes than DCMs between nodes. Thus, for compara-
ble group fMRI datasets, one might recommend between 8 and 16
modes for large models.



Posterior means Posterior probabilitiesA

B

C

>0.5Hz

< 0.5Hz

node node
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their posterior probabilities thresholded at p>0.95 (posterior confidence—right). The coupling parameters of the reduced model ranged from −0.7 Hz to 0.8 Hz. Both maps can be
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anatomical space. Here, we defined a weighted adjacency matrix that indicates the maximum between the absolute coupling parameters of a given connection and its reciprocal con-
nection, excluding the self-connections (for a similar rationale see Friston et al., 2011). (C) provides a projection of the nodes into a functional space – using spectral embedding –where
the distances reflect the strength of (bidirectional) coupling. The functional space was defined here using the first three principle components of the weighted adjacency matrix
(c.f. Pages 1214–1215 of Friston et al., 2011). Regions are labelled from 1 to 20 in the same order as in Table 1.
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It is not unusual that fMRI activation maps contain multiple re-
gions that one might want to explain in terms of distributed process-
ing. The selection of candidate nodes for subsequent DCM analysis is
generally motivated by one of two aims: network discovery through
structural model selection (see discussion in Roebroeck et al., 2011)
or testing hypotheses about specific connections. In the latter context,
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inferences on models with a small number of nodes are generally suffi-
cient, given that conditional estimates of effective connectivity from a
full graph are often consistent with estimates based on subgraphs
(Friston, 2011a). In the setting of network discovery, our approach en-
ables the inversion of large DCMs that can then be submitted to graph
theory and related analyses. In principle, the analyses described in this
paper can also be applied to resting state fMRI data with stochastic
DCM (Daunizeau et al., 2009; Li et al., 2011). Although we have focused
on deterministic DCM and standard activation paradigms, the proce-
dures outlined in this paper can also be applied to stochastic DCM,
using task free designs. Because stochastic DCMhas to estimate both hid-
den states and parameters, it is computationally more intensive. This
means the search for the optimal number of prior covariance (functional
connectivity) modes may become prohibitive. However, this problem
can be finessed using post-hoc optimisation (Friston and Penny, 2011).
In other words, one would invert a full model (with no covariance con-
straints) and then evaluate the post-hoc model evidence (free energy)
of reduced models, whose prior covariances have progressively fewer
modes. Mode (model) selection using post-hoc optimisation appears to
work extremely well for the deterministic DCM considered in this
paper. The ensuing log evidence profiles are generally smoother (and
possibly more reliable) than the estimates we have reported above. The
estimates reported in this paper were obtained by brute force—inverting
reduced models as opposed to reducing inverted models as described in
Friston and Penny (2011). We will present this application of post-hoc
optimisation – and related results pertaining to stochastic DCMof resting
state timeseries – in a subsequent paper.

In conclusion, we hope that the ability to invert large DCMs, in an
efficient way, will provide a new opportunity for analyses using graph
theory—analyses that rest upon the statistics on a relatively large
number of edges (Rubinov and Sporns, 2010). Furthermore, the abil-
ity to discover the structure of large models, using post-hoc model
optimisation (Friston et al., 2011) may be valuable for studies of
large and complex networks, in healthy and diseased populations.
Our procedure can be combined with recent trends of using informed
or tailored priors based on prior beliefs forwarded by models of ana-
tomical connectivity—or on the basis of meta-analytic functional con-
nectivity (see recent review in (Fox and Friston, 2012)). Future work
needs to explore how our findings generalise to other DCM schemes,
including stochastic DCM (Daunizeau et al., 2009; Li et al., 2011).
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