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Abstract
The need to map regions of brain tissue that are much wider than the field of view of the
microscope arises frequently. One common approach is to collect a series of overlapping partial
views, and align them to synthesize a montage covering the entire region of interest. We present a
method that advances this approach in multiple ways. Our method (1) produces a globally
consistent joint registration of an unorganized collection of 3-D multi-channel images with or
without stage micrometer data; (2) produces accurate registrations withstanding changes in scale,
rotation, translation and shear by using a 3-D affine transformation model; (3) achieves complete
automation, and does not require any parameter settings; (4) handles low and variable overlaps (5
– 15%) between adjacent images, minimizing the number of images required to cover a tissue
region; (5) has the self-diagnostic ability to recognize registration failures instead of delivering
incorrect results; (6) can handle a broad range of biological images by exploiting generic
alignment cues from multiple fluorescence channels without requiring segmentation; and (7) is
computationally efficient enough to run on desktop computers regardless of the number of images.
The algorithm was tested with several tissue samples of at least 50 image tiles, involving over
5,000 image pairs. It correctly registered all image pairs with an overlap greater than 7%, correctly
recognized all failures, and successfully joint-registered all images for all tissue samples studied.
This algorithm is disseminated freely to the community as included with the FARSIGHT toolkit
for microscopy (www.farsight-toolkit.org).

Index Terms
Montage Synthesis; Image Registration; 3-D Microscopy

I. Introduction
Many applications require high-resolution three-dimensional (3-D) imaging of regions that
are much wider than the lateral field of view of the microscope. This is accomplished by
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collecting a series of partial views of the overall region of interest, and then combining them
to form a synthetic image (montage or mosaic) covering the entire region (Capek et al.,
2009, Becker et al., 1996, Al-Kofahi et al., 2002, Price et al., 2006). Achieving a seamless
montage requires accurate registration (alignment) of the tiles along the lateral and axial
dimensions. This is difficult when imaging wide regions of mammalian brain tissue (ranging
from multiple millimeters to whole brains) at sub-cellular resolution. Solutions to this
problem are essential for investigating diverse questions in neuroscience ranging from the
study of cellular networks underlying learning and memory (Guzowski et al., 2005), to the
reconstruction of cells with processes that extend over significant distances (Oberlaender et
al., 2007), and characterization of brain tissue injury caused by the insertion of experimental
neuroprosthetic devices (Bjornsson et al., 2008). In this type of work, thick brain tissue
slices (10 – 1000μm) are imaged using 3-D fluorescence microscopes (confocal, multi-
photon, etc.) using one or more channels (fluorophores). One peculiarity of such imaging
methods is the anisotropy of the images with the axial dimension less well resolved
compared to the lateral dimension, and the presence of spatial distortions and aberrations.
Another peculiarity, rooted in physical causes, is the depth-dependent attenuation of the
fluorescence signal. Additionally, there is mechanical imprecision in microscope stages
along the lateral and axial dimensions as they execute a wide-ranging scanning pattern
across the specimen to collect the image tiles. This is particularly problematic when
scanning larger numbers of tiles, since small stage errors can accumulate and be
compounded by mechanical hysteresis. Finally, one must often process legacy datasets that
are collected without motorized stage micrometer data, or collected with stages that lack
accurate motorized micrometers. Adjacent tiles may also be collected at different
magnification in such cases where greater detail must be acquired only at specific locations
within a larger region of interest. There is a need for computational methods that achieve
accurate alignment and montaging of 3-D image tiles, while coping with the peculiarities
and artifacts noted above.

The goal of this work is to advance the accuracy, robustness, scalability, and level of
automation of 3-D montage synthesis in multiple ways.

• Our approach is designed to align an unorganized but laterally & axially
overlapping collection of 3-D image tiles. It can cope with a lack of stage
micrometer information. It uses a 3-D affine transformation that can cope with
common image distortions.

• The method is designed to align adjacent tiles with low and variable overlap (lateral
and axial offsets). Approximately 5-15% overlaps are usually adequate.

• By avoiding the accumulation of registration errors, it is scalable, allowing large
montages to be constructed to achieve higher spatial extent and resolution. This is
achieved by aligning all the images jointly, rather than sequentially yielding a
globally consistent set of alignments. This is accomplished at an affordable
computational cost.

• The method has a self-diagnostic ability, and can automatically identify pairs of
images that have not been registered correctly, instead of delivering an incorrect
result to the user.

• The algorithm is applicable to a broad range of biological images by exploiting
alignment cues from any and all fluorescence channels (assuming that they are
corrected for chromatic aberration by the microscope software/hardware) without
the need for segmentation of specific biological entities.

• The algorithm is free of adjustable parameter settings. This issue has a direct
impact on the practical usability of algorithms. This differentiates our work from
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many existing algorithms in the literature that require the user to provide initial
estimates of registration parameters, and various other hints and settings in order to
achieve satisfactory results (Appleton et al., 2005, Chow et al., 2006, Sun et al.,
2006, Thevenaz & Unser, 2007).

Our goal is to make this robust and state-of-the-art computational method usable in a
practical sense, and freely available to the microscopy community to enable unfettered
adoption. To this end we have made efforts to minimize the computational requirements,
and implemented the software in ways that enable it to be used on diverse types of
computers. The algorithms described here are disseminated freely as part of the NIH funded
Fluorescence Association Rules for Multi-Dimensional Insight (FARSIGHT; refer to Table
1 for a list of abbreviations used in this paper) toolkit for microscopy (www.farsight-
toolkit.org).

II. Review of Current Methods
Manual and approximate methods for montage synthesis continue to be used widely. One
such method is to project the 3-D images that are to be registered axially down to a pair of
two-dimensional (2-D) images, and estimate the lateral stage shift from these images.
Estimating the shift can be performed visually, or automatically (Beck et al., 2000). The
outcome is good for flat viewing, but not adequate for volumetric visualization or 3-D image
analysis (Bjornsson et al., 2008), since the two image stacks are not guaranteed to align
along the axial dimension due to issues such as non-uniform specimen thickness. This
problem is illustrated in Figure 1. To support studies that require 3-D analysis, accurate
alignment of 3-D image stacks must be carried out laterally and axially.

Much of the literature on image registration focuses on registering a pair of overlapping
images- the so-called “pair-wise” registration. Several literature surveys are available
(Lester & Arridge,1998, Hill et al., 2001, Maintz & Viergever, 1998, Makela et al., 2002,
Gholipour et al., 2007, Brown, 1992, Zitova & Flusser, 2003). Two broad classes of
algorithms have been described – intensity-based and feature-based. Intensity-based
approaches optimize an objective function based on the correlation of image intensities
(Capek & Krekule 1999, Appleton et al., 2005, Thevenaz & Unser, 2007) or measures such
as mutual information (Capek & Krekule, 1999, Karen et al., 2003) between the pair of
images being registered. The advantage of intensity-based methods is that they do not
require the extraction of image landmarks or segmentation, so they are broadly applicable to
images in any context. However, they are susceptible to imaging artifacts, such as non-
uniform illumination, and are computationally expensive since the computer must operate
upon the entire image volumes. On the other hand, feature-based techniques are driven by
alignment of automatically detected “features” or landmarks, that can be the result of
application-specific segmentation (Al-Kofahi et al., 2002, Becker et al., 1996) or simply
generic features, such as closed contours (Bajcsy et al., 2006) and keypoints (Hsu et al.,
2008, Sun et al., 2006). Unlike intensity-based methods, they are more tolerant of image
artifacts and are computationally efficient since only small sub-regions of the image
volumes (around the features) must be processed. However, the downside of feature-based
algorithms is their dependence on the robustness and accuracy of feature extraction. To
combine the advantages of intensity and feature-based approaches, some recent techniques
limit the intensity-based alignment to small windows around salient points (Chow et al.,
2006, Emmenlauer et al., 2009).

Many biomedical image registration algorithms require initial estimates to be provided by
the user (Viola et al., 1997, Maes et al., 1997, Hsu & Loew, 2001). They also assume that
there are no major changes in viewpoint between images. While this assumption is
reasonable for PET/MR imaging, it does not hold for microscope images intended for
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montage synthesis, since it is desired to maximize the coverage with the fewest images. As a
result, our images have major displacements and small overlaps, at least in the lateral (x – y)
plane. For this reason, many algorithms designed specifically for microscopy data rely on
positions of the scanning stage or manual pre-alignment (Thevenaz & Unser, 2007, Sun et
al., 2006, Chow et al., 2006, Appleton et al., 2005, Karen et al., 2003). Automatic
initialization can be achieved in a variety of ways including multi-resolution (Feldmar et al.,
1997), image-wide measurements (Higuchi et al., 1995, Johnson & Hebert, 1998), phase-
correlation (Slamani et al., 2006, Emmenlauer et al., 2009, Preibisch et al., 2009), invariant-
indexing and initial matching of key points (Al-Kofahi et al., 2002), Hough transforms
(Becker et al., 1996), minimal-subset random-sampling on the pre-matched correspondences
(Chow et al., 2006, Fischler & Bolles, 1981), and multiple starting points (Jenkinson &
Smith, 2001).

Common approaches for generating microscope montages involving more than 2 images
include incrementally registering the partial montage with a new image that is not yet part of
the montage (Becker et al., 1996, Karen et al., 2003, Chow et al., 2006), building the
minimum/maximum spanning trees where the images are the nodes and the edges are valid
transformations with weight assignment (Thevenaz & Unser, 2007), and finding the least-
squares solution using the parameters or correspondences from a pair-wise registration (Hsu
et al., 2008, Emmenlauer et al., 2009, Sun et al., 2006, Preibisch et al., 2009). The first
approach suffers from heavy memory consumption since the size of the partial montage
scales with the number of images involved, whereas the second approach lacks global
consistency if more than two images share a common area. This results in an accumulation
of small pair-wise alignment errors as one attempts to process an extended array of image
tiles. Left unchecked, this makes it impossible to produce seamless/accurate/consistent
montages of regions beyond a certain number of tiles (depending upon the extent of the drift
errors).

III. Methodology
Given an unorganized and unordered collection of images, our method for achieving
globally consistent multi-channel 3-D montaging operates in two steps, both of which are
fully automatic. The first step performs 3-D pair-wise registration of all possible image pairs
when no stage information is available (fewer registrations can be done when such data are
available). This has the effect of registering most, if not all image pairs that overlap. The
second step leverages the results of the pair-wise registrations to perform a joint registration
of all the image tiles with global consistency. The outcome of the latter is a set of accurate
spatial transformations between every pair of stacks that can be used to construct a 3-
dimensional montage at the final stage. The individual steps are described in greater detail
below.

Step 1: Robust Pair-wise Image Registration

Given a pair of image tiles denoted  and , respectively, the purpose of this step is to
establish a preliminary estimate of the 3-D affine transformation that maps points in one
image to the image space defined by the second image (Figure 2). Our method combines
feature- and intensity-based registration approaches using all available image channels. The
low overlap between the images implies the need for a robust registration algorithm that can
handle outliers among matches. It is well known that a rigid transformation fails to account
for small spatial distortions that exist between image pairs. Al-Kofahi et al. (2002), showed
that an affine transformation models translation, rotation, scaling and shearing between two
images is sufficiently accurate, yet of a manageably low dimension for registering 3-D
microscopy images (Al-Kofahi et al., 2002). It accommodates a modest but realistic degree
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of deformation (usually arising from spatial aberrations) between adjacent images without
incurring the massive computational cost of a fully deformable model. Even then, direct
registration of a pair of 3-D images (especially if they are large) to fit an affine model can be
computationally expensive since it contains 12 free parameters (dimensions). With this in
mind, we make reasonable but non-limiting tradeoffs. Assuming that the user is acquiring a
series of image tiles by shifting the stage, the spatial transformation from one image tile to
the next is largely accounted for by the lateral shift – the contributions of rotation and shear
in the 3-D space are much less in comparison. With this in mind, we decompose the problem
into three substeps to reduce computation. First, we estimate the lateral shift between the
images by registering the maximum-intensity axial projections at a low computational cost.
Second, we estimate the shift along the axial dimension separately. The estimates from the
first and second substeps are combined to generate an initial estimate of the full 3-D
transformation. This estimate is refined using the intensity information from the estimated
overlapping volumes to yield the pair-wise registration, as described further below.

1. Initial estimation of lateral shift—This is performed on 2-D axial maximum-

intensity projections, denoted  and  of the 3-D images  and , computed across all
the channels. The computation across channels allows us to take advantage of alignment
cues from any and all channels, while keeping the memory requirements modest compared
to the direct alternative of processing multiple channels and then combining the cues. Figure
2(A & B) show two adjacent images of brain tissue containing 5 channels. Panels C & D
show the composite projections overlaid with extracted landmarks. The yellow circles
indicate corners and the yellow lines indicate the locations and normal directions of edge
points. We perform 2-D alignment of the projected images using the Generalized Dual-
Bootstrap Iterative-Closest-Point (GDB-ICP) algorithm (Yang et al., 2007), which is known
for its robustness to low overlap, substantial orientation and scale differences, and large
illumination (or photobleaching caused) image changes. Indeed, GDB-ICP aligns generic
features, such as corners and edges, instead of segmented biologically meaningful entities
such as cells. This avoids a dependence on image segmentation algorithms that are only
available for some types of entities, and subject to errors of their own. Specifically, a set of

multi-scale key points is extracted from each image (Lowe, 2004). A key point in  is

matched against key points in  based on the similarity of the Scale Invariant Feature
Transform (SIFT) descriptor (Lowe, 2004). Since each key point is associated with the
location of the keypoint center, the major orientation of the gradient directions, and the scale
in which the key point is extracted, it defines a local coordinate system that is sufficient to
constrain a similarity transformation (scale, rotation, and translation) with its matching key
point. A set of rank-ordered similarity transformations are generated from key point
matches, and tested individually in succession. Because of the effectiveness of key point
matching, it is seldom necessary to test more than 5 matches if correct matches exist
between the two images. For each key point match, the initial pair-wise transformation is
refined using the Dual-Bootstrap Iterative-Closest Point algorithm DB-ICP (Stewart et al.,
2003), driven by matching of the generic features — corners and edges extracted in
Gaussian-smoothed scale-space. The features are adaptively pruned to ensure an even
distribution across the image. The refinement process starts from an initial local region
defined by the key point match. The region is expanded to cover the entire overlap between
images while refining the estimate and choosing the best transformation model as the region
grows at a rate controlled by the uncertainty in the transformation estimate. To determine the
correctness of the final transformation, measurements of alignment accuracy, stability in the
estimate, and consistency in the matches are examined. The algorithm terminates as soon as
one initial transformation is refined to the desired accuracy, or terminates with failure after
exhausting all potential key point matches and returns no transformation. The result of a
successful registration is a 2D affine transformation in the x-y plane, which captures the
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major displacement between the two volumes. Figure 2E shows the alignment generated by
GDB-ICP.

2. Initial estimation of axial shift—The 2-D affine transformation resulting from the

above step is denoted , where A2D is an 2 × 2 affine parameter matrix
and t2D is the 2-D lateral translation. Using this transformation, we compute a pair of 3-D
boxes, one for each image, that together define the region of overlap between the two
images. For each image volume, the 3-D box is the smallest rectangle that encloses all the
points within the overlapping area formed by the 2-D projected images. To estimate the shift
in the axial direction (z), we compute the 0th moments (center of mass) for each bounding

box. Let cr = (xr, yr, zr) be the center of mass for  in the bounding box, and

cm=(xm,ym,zm) for . Combining this with the initial guess of the lateral shift, the initial
estimate of the 3-D affine transformation is given by:

3. Refinement of the initial 3-D transformation—This initial transformation  is
refined using a 3-D intensity-based registration algorithm that operates on the sub-volumes
defined by the bounding boxes. This algorithm is implemented as part of the open source
Insight Toolkit (Ibanez et al., 2003). It performs a regular-step gradient descent
minimization of the inverse pixel-wise normalized cross-correlation (NC) error between

volumes  and  defined below:

(1)

where (ri,mi) is a corresponding pair of voxels from  and , respectively. This metric is
in the range of [0,1] and is minimum when the images are in perfect alignment. This metric
is insensitive to multiplicative intensity factors between the two images. Therefore, it is
robust to linear illumination changes and is adequate for a well-run microscope. Another
advantage of NC is its normalization, so a larger overlap does not result in a higher value.

The final pair-wise transformation from image  to image  resulting from this
refinement algorithm is written as follows:

where the submatrix A3D is a 3 × 3 affine transformation matrix, and the parameters T3D =
(tx, ty, tz) are the refined estimates of the 3-D translation between the image pair.

Step 2: Joint Registration of Multiple Image Tiles

The pair-wise transformation estimates from the previous step  are not guaranteed to be
globally consistent. The joint registration procedure performs a second round of refinements
to achieve a globally consistent set of transformations. To illustrate the importance of this
issue, consider the 4-image montage in Figure 3A. The blue box highlights one tile that we
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chose to treat as the “anchor” image, meaning that all other images are mapped to the
coordinate frame represented by this image. This montage was constructed by pair-wise
registration of 3 other images to the anchor image. The regions highlighted by the red
ellipses highlight the inconsistency that arises from this procedure. The blurred details in
these regions show alignment errors. Such errors have a magnified impact as one attempts
larger montages, since even modest pair-wise registration errors can add up into a large-
scale drift across the montage that can distort the geometry of the region being imaged.
Furthermore, it is possible for some pair-wise registration operations to fail, although
individual images are registered successfully with other images. This problem is best
described in the language of graph (network) theory. If each image in the montage is
represented as a node in a network, and each successful pair-wise registration is represented
as a link, then the set of all successful pair-wise image registrations produces a graph that is
not fully connected. In this language, pair-wise registrations on overlapping image pairs
results in a connected graph that is turned into a fully connected graph by the joint
registration procedure so that a transformation exists between every two images in the
graph. After joint registration, any image can be chosen as the anchor image for montage
synthesis.

Several algorithms have been proposed for joint registration. Common approaches are to
cascade the parameters of successful pair-wise transformations from any chosen image to
the reference image, since the affine transformation model is closed under composition
(Choe & Cohen, 2005, Gracias & Santos-Victor, 1999), and to build spanning trees for
certain cost functions (Chow et al., 2006, Beck et al 2000, Thevenaz & Unser, 2007). These
approaches are simple but lack global consistency—the corresponding points from a pair of
non-reference images can map to different locations in the montage if they are outside the
reference image, since only correspondences in the reference image space are constrained.
Can and colleagues (2002) described an algorithm with global consistency for registration of
2-D retinal images. In this work, we extended this method to handle 3-D confocal images.

The joint registration algorithm treats each image in turn as the “anchor image,” which
defines the coordinate reference space, and estimates the set of transformations that map all
other images to this reference space. Without loss of generality, let the 3-D anchor image be
denoted I0, and the other images denoted {Ii}i=1⋯N. For every image pair (Im, In) with a
pair-wise transformation, a set of point-wise correspondences denoted

 is hypothesized, where {pi } is a set of sampled points from image
Im. The joint registration problem is formulated as the minimization of a squared error
between hypothesized and actual point correspondences, as quantified by the following
objective function:

where PD contains image pairs that registered successfully with the anchor, and PI contains
the remaining successfully registered pairs. The first term of this objective function
constrains the transformations mapping directly to the anchor, whereas the second term
ensures global consistency for mapping images that do not overlap with the anchor image.
Minimizing the above objective function is a linear problem amenable to efficient
computation. We simply set the derivative of E(θ1,0,⋯,θN,0 ) with respect to the
transformation parameters to zero, and solve for the optimal parameters. Importantly, since
no montage image is explicitly generated during processing, this operation can be performed
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on datasets containing any number of images using a standard laboratory computer equipped
with sufficient memory for registering 2 images. Figure 3B shows greatly improved results
produced by joint registration with global consistency for the same dataset as shown in
Figure 3A.

Self-diagnosis—In the rare instances when keypoint features are too sparse for the GDB-
ICP registration, the pair-wise algorithm can produce an incorrect transformation. It is
impractical to validate every pair-wise transformation visually. To automate this process, the
joint registration accepts pair-wise transformations with the NC value (eq 1) below a
threshold value T that is determined adaptively for every image set using a robust error scale
estimator. For this, we adopt the Minimum Unbiased Scale Estimator (MUSE) that
automatically adjusts its estimate of error scale by determining the approximate fraction,
which can be less than 50%, of pairs with an acceptable error (Miller & Stewart, 1996). The
errors are assumed to be positive with a zero-mean normal distribution. The input to MUSE
is the set of errors {NC(Im,In)} for image pairs {(Im,In)}. The threshold T is set to nσ, where
σ is the scale estimated by MUSE and n = 4 for all our experiments. All pairs with
NC(Im,In) < T are included in the joint registration. It is crucial that pair-wise registration
has this self-diagnostic capability, i.e. being able to reject almost all incorrect
transformations, so that the errors of correctly registered pairs form a clear cluster far apart
from the errors of mis-registered pairs. This leads to correct error scale estimation to include
only the correct transformations, and all of them, in the joint registration.

Applications of the jointly estimated transformations—Once computed, the set of
spatial transformations can be used to relate any two images in the set spatially regardless of
their distance within the specimen. This is an enabling capability. For a start, it can be used
to compute long-range distance measurements. Another application is 3-D montage
synthesis. For this, any one image can be chosen as the anchor and all other images are
transformed to the image space of the anchor image. For each non-anchor image, the
coordinates of the 8 corner points are transformed to the anchor space so that the final size
of the montage can be determined. To generate the image of the montage, the intensity value
of each pixel in the montage is computed as the average intensity value of images that
overlap at the given pixel. The memory consumption for montage synthesis scales with the
size of the final montage – rapidly falling costs of computer memory make this very
practical. The spatial transformations generated by our method can also be reused to
compute “object mosaics”, i.e., mosaics of automated image segmentations conducted over
each image tile. Second, it is possible to compute cytovascular maps of tissue on a much
larger scale than was possible earlier (Bjornsson et al., 2008). Finally, it is possible to merge
quantitative measurements from each tile. This can be used to perform large-scale data
mining operations to identify patterns in brain tissue that occur over significant distances
compared to the size of a single cell.

IV. Workflow Using Registration and Montage Synthesis Programs
The executable files used for pairwise registration, joint registration, and montage synthesis
and the workflow for their use is depicted in Figure 4. For detailed instructions on the use of
each file, including all optional switches for each executable, see the instructions included in
the supplementary material and available online at http://www.farsight-toolkit.org/wiki/
Registration_page. A brief explanation of the workflow required to go from acquired images
to a final synthesized montage follows.

Given a set of images, the first step is to perform registrations of each pair of images using
register_pair.exe. This executable takes two images for input, a “from” image and a “to”
image; it does not matter which image in a pair is designated as “to” or “from”. This
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executable produces an XML file which contains the pairwise transformation data for the
pair of images. The name of this file follows the syntax
“<fromfilename>_to_<tofilename>_transform.xml” where <fromfilename> and
<tofilename> are the names of the “from” image and “to” image, respectively, that the user
designates.

Once all pairwise transformations are generated, the user then must generate the joint
transformation using register_joint.exe. The input for this program is a plain text file that
lists, one per line, the names of all the pairwise transformation XML files generated by
register_pair.exe. The output is a file named joint_transforms.xml which contains the joint
registration data for all the image pairs, and at this point the user is finished with registration
of image data and can use this to generate a montage.

The principal program for synthesizing the final montage is mosaic_images.exe. This
program takes the output joint transformation XML file from register_joint.exe, and the
filename for an anchor image, as inputs. The anchor image is any of the original images in
the set choice of image by the user is arbitrary and does not affect the results of the
algorithm. There are several outputs from this program: an XML file containing information
necessary for constructing the montage, such as the name of the anchor image and the
transformations involved; a 2-dimensional flattened projection of the montage; and a
directory containing tif files corresponding to the slices of the 3D montage. Due to the
potentially large size of the synthesized 3-dimensional montage, the default behavior of this
program is not to generate that file; however by setting a switch (see instructions in the
supplementary file), a 3-dimensional tif file for the entire montage may be generated.
Mosaic_images.exe is designed to output only grayscale images. For multi-channel images,
as often are generated using confocal microscopy, the user may choose to generate a
montage including all channels fused or a montage of a specific channel if selected. To
generate a color montage to better differentiate information in different channels, for
example, the image in Figure 5, the user may use available software, such as ImageJ (http://
rsbweb.nih.gov/ij/), or our utility programs multi_channels_2D.exe and
multi_channels_3D.exe. Both the utility programs take a file that lists, one per line, the
montage files for single channels and their RGB components (see instructions in the
supplementary file) and the name for the output file.

In order for register_pair.exe to function, it must be able to call the Generalized Dual-
Bootstrap Iterative-Closest Point program. This can be accomplished either by placing the
file gdbicp.exe in the same folder as the other programs for montage synthesis, or by
designating the path to the file using a switch during execution of register_pair.exe (see the
instructions in the supplementary material). Default image output is in tif format; viewing 3-
dimensional tif files however requires a special image viewer such as Irfanview (http://
www.irfanview.com/) or ImageJ (http://rsbweb.nih.gov/ij/)- opening a 3-dimensional tif in
other image viewers (such as Photoshop) may only open the top image plane, or fail
altogether.

For large numbers of image pairs, it quickly becomes tedious to manually run
register_pair.exe for all possible image pairs; even when the correct image pairings are
known a priori, it can be tedious to run this program sequentially. Since these programs are
run from a command prompt, the user is highly encouraged to write a script that will batch
process the entire image set. For convenience a Python script is included on the download
page at http://www.farsight-toolkit.org/wiki/Registration_page for those users that do not
have programming experience; this script requires an installation of Python to be usable.
Finally, the images comprising Dataset #1 (below), and the final synthesized montage, are
included for download from http://farsight-toolkit.org/data/Montage_synthesis/ and http://
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farsight-toolkit.org/data/Original_images_files/. Readers may use these files to verify that
their downloads of our executable files are functioning correctly. The images and final
synthesized montage for Datasets #2 and #3 are also available upon request from the
authors.

V. Experimental Results
All the experiments were run fully automatically without any manual intervention or
parameter optimization. As a visual confirmation, we generated and inspected 3-D montages
(Figures 5 - 7) for 3 large data sets containing at least 50 images from various parts of the
brain, and they were essentially seamless. Table II provides summary information for these
3 sample datasets collected in two different laboratories.

Dataset #1 (Figure 5) contains 62 images of the rat entorhinal cortex collected in Dr. Barnes’
laboratory, whereas Dataset #2 (Figure 6) contains 64 images of the rat cerebral cortex
collected in Dr. Bjornsson’s laboratory. Dataset #3 (Figure 7) contains 56 confocal stacks
from the rat hippocampus, acquired in Dr. Barnes’ laboratory. All images were collected
using a confocal microscope and have not been included in any prior publications. All
datasets contain several thousand possible image pairs. For Dataset #1, 62 overlapping
confocal images were obtained from sections of rat brain sectioned horizontally and stained
with the fluorescent nuclear dye To-Pro-3 iodide (Invitrogen) and the fluorescent secondary
antibody Alexa Fluor 488 (Invitrogen) following initial labeling with a primary antibody
against NeuN. In Figure 5, the cell nuclei are displayed in blue, and the NeuN signal is
displayed in green. Spatial co-localization of green and blue signal appears turquoise and
indicates the locations of neurons, and shows the neuronal cell layers clearly. For Dataset
#2, 64 overlapping confocal images were collected from a 100 μm coronal section of a rat
brain, labeled with antibodies targeting astrocytes (anti-GFAP), microglia (anti-Iba1) and
blood vessels (anti-EBA) and stained to show cell nuclei (CyQuant) and Nissl substance in
neurons (NeuroTrace 530/615). Dataset #3 contains confocal stacks acquired from tissue
stained with To-Pro-3 iodide (Invitrogen) to visualize cellular nuclei and Cyanine-3 (Perkin
Elmer) complexed to a riboprobe specific for mRNA for the immediate early gene Arc.
Additional confocal images, not listed in the tables, were used for Figure 11.

Table II summarizes measurements from the pair-wise registration (Step 1) on all distinct
image pairs for the three datasets. Overall, less than 9% of all the image pairs tested in the
two datasets overlap. The pair-wise registration step correctly and automatically eliminated
99.8% of pairs that do not overlap, and correctly registered 93% that do overlap. If we
consider only images with an overlap greater than 7%, the success rate is 100%. The average
NC errors were very small (< 0.05). Figure 8 shows 3 scatter plots summarizing the results
of pair-wise registration (Step 1). Each data point in these scatter plots corresponds to an
image pair. The NC error is plotted for each data point as a function of the image overlap
(these overlaps are estimated from the validated joint registrations (Step 2), that are known
to be accurate and reliable). The horizontal green lines indicate automatically estimated
threshold values – data points below this threshold are declared as successful pair-wise
registrations (indicated in black). Data points with NC error of 1 correspond to image pairs
that overlap but failed to register on a pair-wise basis (indicated in blue). Points with zero
overlap indicate image pairs (indicated in red) that should have failed, but were not declared
as failures by Step 1. Happily, these points were all correctly recognized as failures by the
joint estimation (Step 2). The few points between the threshold line but below NC = 1.0
represent mis-registered image pairs. Happily again, Step 2 correctly rejected these pairs.
The scatter plot for Dataset #3 has an error threshold of 0.15. However, the wider spread of
errors for correctly registered pairs (compared to the other two datasets) can be explained by
the less favorable imaging conditions that resulted in irregular (non-affine) image distortion
for some image pairs.
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We next present visual examples illustrating aspects of our method. Figure 3A shows a 4-
image montage from the upper-left region of Dataset #2 that was constructed based on pair-
wise registration alone. The blue box indicates the image that was used as the anchor. The
regions indicated by the red ellipses show significant alignment errors (largely attributable
to the low overlaps). However, the joint registration results in Figure 3B show negligible
alignment errors. In this example, the only image pair that does not have a transformation is
the two images outlined in blue due to very low overlap. Figure 9 shows the only incorrect
alignment from Dataset #2. Due to the complexity of the images (more channels that are rich
in terms of cues), the second dataset has fewer incorrect alignments compared to the first
dataset that has only two channels containing mostly blob shaped objects.

We next examined our algorithm’s performance on images with deficient staining. While
every histologist strives to produce tissue staining of impeccable quality, the practical reality
is that imperfect staining does occur. Issues such as high background staining (uniform, but
relatively low-level, staining of tissue components not of interest), or physical retention of
staining molecules in aggregates within the tissue leading to a “noisy” image are
commonplace, and for many research questions small amounts of staining imperfections are
acceptable provided the signal of interest is not obscured. A range of imperfections exist for
any given histological staining procedure that do not prevent a human observer from
accurately interpreting the content of the stained image, and would therefore not require a
second attempt at staining. Thus, for many researchers, one measure of quality of an
automated method is its ability to produce an accurate output for input images at the margin
of acceptable image quality produced in the laboratory. During testing of our algorithms,
image sets that varied in background staining across individual confocal stacks were tested.
The inconsistency in the background staining has no effect on initialization in the x – y
plane since the extraction of corners and edges in Step 1 is robust to fluorescence signal
variations. For refinement of the 3-D transformation, normalized cross-correlation is also
designed to be robust under linear illumination changes. This is illustrated in Figure 10. The
nuclear channel is displayed in blue and the neuronal channel in green. The confocal stack in
panel A contains higher background staining when compared to the adjacent stack in panel
B. The arrows indicate the corresponding areas in the two image stacks. Panel C shows a
close-up of the montage of the neuronal channel. It demonstrates accurate alignment using
the neuronal channels with neurons from A in green and neurons from B in red. When the
two images are well aligned, the neurons in the overlap area correctly appear yellow, as seen
here.

Next, we tested our algorithm on Dataset #3 that was taken under less ideal conditions.
During image acquisition for Dataset #3, immersion oil that was contaminated with water
was inadvertently used, and the last few collected confocal stacks show spatial distortions
between optical slices within each stack. As one moves from one optical slice to the next,
neuronal nuclei can be seen to shift in the x – y plane large distances relative to the small
thickness (0.7 microns) of the optical slices (Figure 7A). This effect is not uniform between
optical slices of a stack or within any individual optical slice; for instance, if one compares
the left side of the three optical slices in panel A to the right side, one can see that the x – y
shifts are greater for the left compared to the right. Thus there is no systematic
transformation of the pixel information in the x – y plane. Despite this distortion of
individual confocal stacks, the montage synthesis was successful (Figure 7C). Since this
distortion is better appreciated when the user can move down through the z planes, a tif
image containing the 3 planes indicated in Figure 7 (named Figure7Asupp.tif) has been
included in the supplementary materials which can be opened in Irfanview or ImageJ.

The algorithm was also effective at aligning images of very different magnifications. Figures
11A & B are example images showing the microglia at an electrode insertion site. A single
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shank device was implanted into the neocortex of an adult Sprague-Dawley rat. Two
maximum intensity projection micrographs from the same sample show reactive astrocyte
distribution one week after device insertion. The dark hole within the center of the
projection is indicative of the insertion site. The 3D confocal images were collected on a
Leica TCS SP5 scanning confocal microscope. Two separate images were taken using a 20×
objective (0.9NA) with a zoom of 1.0 and 2.5 equaling a final magnification of 20× and 50×.
The transformation was accurately estimated in the x-y plane because the SIFT descriptors
of the Lowe key points are scale-invariant. This property allows correct matching across
scales. As seen from the seamless 2-color montage in Figure 11C, where the 50× image
(displayed in red) is transformed to the space of the 20× image (displayed in green). The
overlapping region appearing yellow shows accurate alignment of the two images,
especially as evident in the processes of the microglia.

Overall, the methods described here are quite practical to use on common laboratory
computers (Windows, Apple, Linux). Using a personal computer with a 2.94GHz Intel CPU
and 12 GB of RAM, an image pair from Dataset #1 took about 15 seconds and a pair from
Dataset #2 took about 60 seconds to register. For both datasets, the joint registration took a
total of 10 seconds. If only considering the 4-neighbor adjacent pairs, the Dataset #1 and
Dataset #2 took 40 and 130 minutes, respectively.

VI. Discussion and Conclusions
This work grew out of a real need to investigate problems in neuroscience that require
analysis of fine sub-cellular details over extended tissue regions at the same time, problems
that can only be addressed by step-and-repeat 3-D microscopy, and not by lower-resolution
methods such as magnetic resonance imaging. Such questions include how neurons are
organized into a layered architecture within the cerebral cortex; which neuronal populations
form activated neural circuits during specific behaviors; how to map networks of gene
expression involved in learning and memory; and how to characterize the cellular patterns of
response to tissue injury following electrode or neuroprosthetic device implantation, as a
function of distance from the implantation site. While these motivating problems are in the
field of neurobiology, the innate generality of our algorithm design makes it useful to
microscopists in other disciplines as well. These needs exist despite the advances over the
past decade in microscopy instrumentation.

The net result of our advances is to make automated 3-D registration and mosaic synthesis
accurate, robust, scalable, accessible, and usable for microscopy. By using a combination of
feature- and intensity-based methods, generic features, robust estimation methods, design for
low image overlaps, and globally-consistent alignment, the current method is useful to any
microscopist working with image tiles regardless of the nature of the stained object or tissue.
Highlights of our method include the fully “hands-free” automation without the need for
careful adjustment of parameter settings, the benefit of automatic self-diagnosis of invalid
registrations, and computational efficiency. These features make our approach inherently
scalable for larger datasets.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Illustrating the importance of fully three-dimensional (3-D) registration. Adjacent image
stacks with an equal number of optical slices may still be offset axially relative to the objects
in the tissue. (A) Two adjacent confocal stacks represented by horizontal rectangles, and
hypothetical objects within the confocal image stacks represented by colored ovals.
Arbitrarily registering the stacks using the top or bottom optical slice of the image stack
does not yield an accurate montage. (B) One stack must be shifted along the z axis relative
to the other. In practice, confocal image stacks often contain varying numbers of optical
slices. Panels (C) and (D) are slice 30 from adjacent confocal stacks of rat brain tissue
stained with a fluorescent antibody against the microglial-specific protein Iba-1. However,
they are not the matching slices. For correct alignment, the stack in (D) should be shifted
about 5 slices in the z-direction. Panel (E) shows slice 30 of the correctly aligned montage
produced by our 3-D registration algorithm. Panels (C), (D), and (E) are taken from data set
#2.
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Figure 2.
Illustrating preliminary estimation of the lateral offset for a pair of 5-channel images of the
cortical surface (blue: nuclei, purple: Nissl, Green: microvasculature, yellow: microglia,
red: astrocytes). Panels (A) and (B) show the maximum-intensity projections of the two
adjacent optical stacks with all 5 channels overlaid. Panels (C) and (D) show the generic
landmarks for these images overlaid on the fusion image derived by combining the 5-
channel data into one. The yellow circles indicate corners and the yellow lines indicate the
locations and normal directions of edge points. Panel (E) shows the alignment produced by
the GDB-ICP pair-wise registration of the projection. The transformation computed from
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panels (C) and (D) was applied to the 5-color projections, and used to construct a 2-D
montage of these two projection images. Images in this figure are taken from data set #2.
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Figure 3.
Illustrating the need for joint registration with global consistency. (A) A 4-image montage
based on pair-wise registration. The blue box indicates the reference image for the montage.
Corresponding points between the neighboring images are mapped inconsistently to
different locations, resulting in blurry overlap regions outside the reference image, circled in
red. (B) A montage of the same 4 images constructed with globally consistent joint
registration where points are well aligned even outside the reference image space. The boxes
outline the 4 images that were jointly registered. Images in this figure are from data set #2.
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Figure 4.
Flowchart demonstrating the basic steps, including the inputs and outputs, for performing (in
turn) pairwise registration, joint registration, and montage synthesis. Pairwise registration is
performed multiple times (for each possible image pair) but is only depicted in the flowchart
once; practically the user will perform this step as many times as required for the dataset
before moving on to joint registration.
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Figure 5.
Maximum intensity projection of the montage of Dataset #1 taken from the rat entorhinal
cortex. The montage is 4,756×2,943×58 voxels in size. The blue channel shows the cell
nuclei, and the green channel indicates the neurons. Spatial co-localization of green and blue
signal (turquoise) indicates the locations of neurons. The confocal images were obtained
from sections of rat brain sectioned horizontally and stained with the flurorescent nuclear
dye To-Pro-3 iodide (Invitrogen) and the fluorescent secondary antibody Alexa Fluor 488
(Invitrogen) following initial labeling with a primary antibody against NeuN, which is
expressed specifically in neurons.).
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Figure 6.
Maximum intensity projection of the montage of Dataset #2 taken from the rat cerebral
cortex. The montage is 4,786×13,776×68 voxels in size. The five channels display:
microglia in yellow, astrocytes in red, neurons in purple, vessel laminae in green, and nuclei
in blue. The montage covers an entire strip of cerebral cortex, extending into corpus
callosum and hippocampus.
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Figure 7.
This figure illustrates robustness of montage synthesis in coping with spatial distortion in the
data set. Panel A shows three optical slices (16, 17, and 18) from the confocal stack
collected at location H,05 as marked in panel B. Slice thickness is 0.7 microns. The
immersion oil during collection of this data set was inadvertently contaminated with water,
presumably altering the index of refraction of the immersion medium and resulting in spatial
distortion between optical slices. Moving up and down through the collected image stack
results in a “rippling” effect; the x-y positions of neuronal nuclei appear to jitter back and
forth as one moves through adjacent slices in the z-plane. One can note the right-left shifts in
position of two neuronal nuclei (indicated by yellow arrows) moving from slice 16 to 18.
Panel B shows the relative locations of each confocal image stack collected in the data set;
the three confocal stacks affected by spatial distortions between optical slices are indicated
by yellow crosshatches. Panel C shows the result of automated montage synthesis; despite
irregular distortions in individual optical slices, the algorithms were able to correctly order
the problematic optical stacks into the correct positions in the final montage. Images in this
figure are from dataset #3.
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Figure 8.
Summary of registration and self-diagnosis performance as a function of image overlap. The
NC is plotted for the 3 datasets in Tables I and II. Each data point in these scatter plots
corresponds to an image pair. The horizontal lines indicate automatically estimated
threshold values – data points above this threshold are declared failures by the joint
registration (Step 2). Data points with NC error of 1 correspond to image pairs that overlap
but fail to register. Points with zero overlap indicate image pairs that should have failed. (A)
The scatter plot for Dataset #1 with the error threshold equal to 0.28. (B) The scatter plot for
Dataset #2 with the error threshold equal to 0.16. (C) The scatter plot for Dataset #3 with the
error threshold equal to 0.15. The wider spread of the errors for correctly registered pairs
below the threshold value can be explained by the less favorable imaging conditions that
result in irregular (non-affine) image distortion for some image pairs.
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Figure 9.
The only instance of incorrect alignment from the Dataset #2, that was however, correctly
detected as a registration failure automatically by the joint registration (Step 2). (A, B) The
original images. (C) Registration results displayed by projecting the image in Panel A in red,
and the Panel B in green. The NC error for this image pair is 0.28 pixels (>0.16), and is
correctly recognized as an outlier in the joint registration.
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Figure 10.
Illustrating successful registration of images with problematic staining. The nuclear channel
is in blue and the neuronal channel in green. The confocal stack in A contains higher
background staining when compared to the adjacent stack in B. The arrows indicate the
corresponding areas in the two image stacks. C is a crop of the montage of the neuronal
channel. It demonstrates accurate alignment using the neuronal channels with neurons from
A in green and neurons from B in red. When the two images are well aligned, the neurons in
the overlap area correctly appear yellow, as seen here. Images in this figure are from dataset
#1.
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Figure 11.
An example of accurate alignment of images around an electrode insertion site with very
different magnifications. The dark hole in the center is indicative of the insertion site. The
two separate images were taken using a 20× objective (0.9NA) with a zoom of 1.0 and 2.5
equaling a final magnification of 20× and 50×. (A) The 20× image of size 1,024×1,024×106,
covering a tissue volume of 772×772×85μm3 (B) The 50× image of size 1,024×1,024×148,
covering a tissue volume of 310×310×89μm3. (C) The result of registration. The 50× image
shown in red is transformed to the space of the 20× image shown in green. The insertion site
in yellow shows accurate alignment of the two images.
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Table I

This table lists the abbreviations for jargon used within the text.

Acronym Definition

FARSIGHT Fluorescence Association Rules for Multi-Dimensional Insight

GDB-ICP Generalized Dual-Bootstrap Iterative-Closest-Point

SIFT Scale Invariant Feature Transform

NC Normalized Cross-Correlation

MUSE Minimum Unbiased Scale Estimator
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