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Abstract
Pancreatic-cancer-patient tumor specimens were initially established subcutaneously in SCID-
NOD mice immediately after surgery. The patient tumors were then harvested from SCID-NOD
mice and passaged orthotopically in transgenic nude mice ubiquitously expressing RFP. The
primary patient tumors acquired RFP-expressing stroma. The RFP-expressing stroma included
cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs). Further passage
to transgenic nude mice ubiquitously expressing GFP resulted in tumors and metastasis that
acquired GFP stroma in addition to their RFP stroma, including CAFs and TAMs and blood
vessels. The RFP stroma persisted in the tumors growing in the GFP mouse. Further passage to
transgenic nude mice ubiquitously expressing CFP resulted in tumors and metastasis acquiring
CFP stroma in addition to persisting RFP and GFP stroma including RFP- and GFP-expressing
CAFs and TAMs and blood vessels. This model can be used to image primary and metastatic
progression of patient pancreatic tumors to visually target stroma as well as cancer cells and
individualize therapy.
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INTRODUCTION
The athymic, T-cell-deficient, nude mouse has made a very important contribution to cancer
research in that it enabled the systemic serial transplantation of human tumors and cell lines
[Rygaard and Povlsen, 1969]. Our laboratory pioneered surgical orthotopic implantation
(SOI) metastatic nude-mouse models using patient tumor specimens in the early 1990’s [Fu
et al., 1991, 1992]. These orthotopic mouse models of patient tumors are more patient-like
than ectopic subcutaneous models [Rygaard and Povlsen, 1969; Fiebig et al., 1984; Fiebig et
al., 1987; Steel 1982; Novak et al., 1978; Pickard et al., 1975; Selby et al., 1980; Sharkey
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and Fogh, 1984; Giovanella et al., 1978; Bailey et al., 1980; Rubio-Viqueira et al., 2006;
Embuscado et al., 2005; Talmadge et al., 2007; Hwang et al., 2003; Yokoi et al., 2005;
Garber 2007; Bertotti et al., 2011]. However, these models are limited with regard to
studying the tumor microenvironment. In our initial development of SOI nude mouse
models of patient tumors, we achieved take rates of 65% for colon cancer [Fu et al., 1991]
and 100% for pancreatic cancer. Subsequently, the NOD-SCID mouse, was developed
[Shultz et al., 1995]. This mouse is deficient in T-, B- and NK cells and allows for higher
take rates of patient tumors including 87% for colorectal cancer liver metastasis [Bertotti et
al., 2011]. Patient pancreatic tumors can be transplanted to NOD-SCID mice in our
laboratory at a frequency approaching 100% (data not shown).

The use of fluorescent proteins for imaging in vivo was pioneered by out laboratory and has
been particularly useful to study tumor growth and progression [Hoffman and Yang, 2006a,
2006b]. With the use of multiple colored fluorescent proteins, we developed imaging of the
tumor microenvironment (TME) by color-coding cancer and stromal cells [Yang et al.,
2003, 2004, 2009]. We have previously demonstrated the essential role of tumor-associated
host cells in tumor progression and metastasis [Bouvet et al., 2006].

The present study utilizes a pallet of multicolored fluorescent proteins to image the
recruitment over time of stromal cells including cancer-associated fibroblasts (CAFs) and
tumor-associated macrophages (TAMs) by pancreatic-cancer-patient tumors grown
orthotopically in nude mice. This study allows for the first time the visualization and
persistence of the TME of patient tumors in mouse models.

MATERIALS AND METHODS
Specimen collection

All patients provided informed consent and samples were procured and the study was
conducted under the approval of the Institutional Review Board of MD Anderson Cancer
Center.

GFP, RFP and CFP mice
Transgenic nude C57/B6-GFP, RFP, and CFP mice were obtained from AntiCancer, Inc.
(San Diego, CA). These transgenic nude mice express the fluorescent protein gene under the
control of the chicken β-actin promoter and cytomegalovirus enhancer. Most of the tissues
from these transgenic mice, with the exception of erythrocytes and hair, fluoresce under
proper excitation light [Yang et al., 2009; Tran Cao et al., 2009; Yamauchi et al., 2006].

Animal care
The transgenic nude mice were bred and maintained in a HEPA-filtered environment at
AntiCancer, Inc. with cages, food, water and bedding sterilized by autoclaving. All surgical
procedures and imaging were performed with the animals anesthetized by intramuscular
injection of a ketamine mixture. All animal studies were conducted in accordance with the
principles of and procedures outlined in the NIH guide for the care and use of laboratory
animals under assurance number A3873-1.

Establishment of tumorgraft model (F1) of pancreatic cancer patient tumors
Pancreas cancer patient tumor tissue was obtained at surgery and cut into 3-mm3 fragments
and transplanted subcutaneously in NOD/SCID mice.
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Orthotopic tumorgraft (F2) of pancreatic cancer patient tumors in transgenic RFP nude
mice

The F1 tumors from NOD/SCID mice were harvested and cut into 3-mm3 fragments and
transplanted orthotopically in six-week-old transgenic nude RFP mice (F2 model).

Orthotopic tumorgraft (F3) of pancreatic cancer patient tumors in transgenic GFP nude
mice

The F2 tumors were harvested from the RFP nude mice and were cut into 3-mm3 fragments
and transplanted orthotopically in six-week-old transgenic nude GFP mice (F3 model).

Orthotopic tumorgraft (F4) of pancreatic cancer patient tumors in transgenic CFP nude
mice

The F3 tumors were harvested from the GFP nude mice and cut into 3-mm3 fragments and
transplanted orthotopically in six-week-old transgenic nude CFP mice (F4 model).

Tumor imaging
The OV100 variable magnification small animal imaging system [Yamauchi et al., 2006],
the IV100 scanning laser microscope [Yang et al., 2007], the FV1000 confocal microscope
[Uchugonova et al., 2011], and the MVX10 long-working distance fluorescence dissecting
microscope [Kimura et al., 2010], all from Olympus Corp. (Tokyo, Japan), were used in this
study.

RESULTS AND DISCUSSION
Engraftment of patient tumors (F1) in NOD/SCID mouse

A flow diagram of experimental protocols is shown (Fig. 1A). Human pancreatic-cancer
patient tumors were initially transplanted subcutaneously in NOD/SCID mice. Tumors were
detected by day-30. Tumors were harvested from the NOD/SCID mouse and cut into 3-mm3

fragments.

RFP host stromal cells infiltrate orthotopic pancreatic cancer tumorgraft (F2)
The harvested human pancreatic cancer patient tumors from the NOD/SCID mice were
transplanted orthotopically in six-week-old transgenic RFP nude mice (F2 model). After 28
days, tumors were observed using the OV100 (Fig. 1B). The RFP stromal cells from the
RFP host mouse formed a capsule around the F2 tumor (Fig. 1B) and infiltrated into the
central part of the tumor as well (Fig. 1C). RFP-expressing TAMs could be visualized in the
tumor.

GFP host stromal cells infiltrate the orthotopic pancreatic cancer tumorgrafts to form a 2-
color stroma model (F3)

The F2 tumor was harvested at day-30, cut into 3-mm3 pieces and transplanted
orthotopically in six-week-old transgenic GFP nude mice (F3 model). After 14 days, tumors
were observed with the OV100 (Fig. 1E). The F2 tumor spread on the host GFP pancreas
(Fig. 1F). After 56 days, tumors were removed from the GFP nude mice. The human
pancreatic-cancer-patient tumors contained both RFP and GFP stromal cells (Fig. 1G). The
RFP stromal cells were still persisting after passage in the F3 tumorgraft. Under confocal
microscopy with the FV1000, RFP and GFP stromal cells were clearly visualized in the
tumor (Fig. 1H). GFP and RFP CAFs and TAMs were visualized including the central part
of the tumor (Fig. 1H-J).
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CFP host stromal cells infiltrate orthotopic pancreatic cancer tumorgrafts to form a 3-color
stroma model (F4)

F3 tumors were harvested at day-56 and transplanted orthotopically in six-week-old nude
CFP mice (F4 model). After 28 days, F4 tumors were observed with the MVX10 long-
working-distance fluorescence microscope (Fig. 2A, B). The excised F4 tumor was also
observed with the FV1000 confocal microscope (Fig. 2C-F). RFP-, GFP-, and CFP-
expressing stromal cells were observed in the human pancreatic cancer patient tumor (Fig.
2C). The RFP stroma persisted after two passages and GFP stroma after one passage in the
F4 model in CFP mice. RFP TAMs and CAFs (Fig. 2D, F) and GFP blood vessels (Fig. 2D,
E) still persisted in the human pancreatic cancer patient tumor after 2 and 1 passages,
respectively (Fig. 2F).

We have demonstrated a new mouse model of cancer-patient tumors whereby stromal
elements can be imaged using a pallet of multi-color fluorescent proteins. The fluorescent
stroma persisted for at least two passages in the tumors growing in the transgenic mice
indicating the intimacy of cancer cells and stroma. The survival of stroma after
transplantation was previously suggested [Duda et al., 2004]. The results of the present
study suggest the serial transplantability of stroma. For example from the RFP mouse,
TAMs and SAFs persisted from F2 to F4, suggesting they may be proliferating along with
the cancer cells in the tumor. From the GFP mouse, TAMs and CAFs and blood vessels
were found in the tumor and persisted to F4. The CFP mouse contributed mostly CAFs to
the tumor. The fluorescent stroma allow the entire tumor to be imaged as well. Both
standard and novel cancer- and stroma-targeting agents can be tested in this model and can
be used for individualized therapy of cancer patients.

The new models described in this report offer many opportunities. For example, cell lines
can be established from the tumors with fluorescent stroma and the role of stroma in cell line
establishment can be imaged longitudinally.

The stromal cells of each fluorescent color can be isolated by fluorescent-activated cell
sorting (FACS) to further characterize them.

Since the stroma carry genes for fluorescent proteins, it may be possible to observe gene
transfer from stromal cells to the cancer cells. We have previously taken advantage of
differential fluorescent protein expression in cancer cells to demonstrate gene transfer
between cancer cells in vivo [Tome et al., 2009; Glinsky et al., 2006].

It should also be possible to determine if some of the fluorescent stromal cells are derived
from tissue-specific stem cells or mesenchymal stem cells.

One of the most exciting opportunities directly inspired by observations in the current study
enabled by the availability of the color-coded panel of hosts, would be the analysis of the
role, requirements, and contribution of host stroma to metastatic initiation and progression.
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Figure 1.
A. Flow diagram of the experimental protocol. B. Orthotopic tumorgraft model (F2) of
human pancreatic-cancer-patient tumor transplanted to RFP transgenic nude mouse. Yellow
arrow indicate host RFP nude mouse pancreas. Blue arrow indicates tumor with infiltrating
RFP stroma (Bar = 10 mm). Image taken with the Olympus OV100. C. Human pancreatic
tumor excised from RFP nude mouse with RFP stroma. The image is of a cross-section of
the tumor. Blue arrow indicates RFP stroma (Bar = 10 mm). Image taken with the Olympus
OV100. D. Visualization of RFP tumor-associated macrophages (TAMs) in the human
pancreatic cancer patient tumor (F2). High magnification image taken with the Olympus
FV1000 confocal microscope. Yellow arrows indicate RFP TAMs (Bar = 50 μm). E.
Orthotopic tumorgraft model (F3) of human pancreatic-cancer-patient tumor growing in
transgenic GFP nude mice for 14 days. Red arrow indicates host GFP nude mouse pancreas.
Blue arrow indicates human pancreatic tumor with RFP stroma (Bar = 10 mm). Image taken
with the Olympus OV100. F. Pancreatic tumor growing in GFP-host model for 56 days. Red
arrow indicates host GFP nude mouse pancreas. Blue arrow indicates human pancreatic
tumor with RFP + GFP stroma (Bar = 10 mm). Image taken with the Olympus OV100. G.
Excised tumor with RFP and GFP stroma. The image is of a cross-section of the tumor.
Yellow arrow indicates RFP stroma. Green arrow indicates GFP stroma (Bar = 10 mm).
Image taken with the Olympus FV1000. H. Human pancreatic-cancer-patient tumor (F3)
with RFP and GFP stromal cells. Images were taken with the Olympus FV1000. Green
arrows indicate GFP stromal cells from GFP mouse. Red arrows indicate RFP stromal cells
from RFP mouse. (Bar = 50 μm) I. Human pancreatic-cancer-patient tumor with RFP
stromal cells and GFP tumor-associated macrophages (TAMs). (Bar = 100 μm). Image
taken with the Olympus FV1000. J. High magnification image of Fig. 1I. RFP stromal cells
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and GFP-TAMs are readily observed. (Bar = 30 μm). Image taken with the Olympus
FV1000.
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Figure 2.
A. Human pancreatic-cancer-patient tumor growing in CFP-host (F4). White arrow indicates
host CFP nude mouse pancreas. Blue arrow indicates tumor. Image was taken with the
MVX10 microscope (Bar = 10 mm). B. Human pancreatic-cancer-patient tumor (F4) (blue
arrow) with RFP, GFP, and CFP stromal cells. Red arrow indicate CFP pancreas. Image was
taken with the MVX10 (Bar = 10 mm). C. RFP, GFP and CFP stromal cells were observed.
Red arrow indicates RFP stromal cells. Green arrows indicate GFP stromal cells. White
arrows indicate CFP stromal cells (Bar = 100 μm). Image taken with the FV1000 confocal
microscope. D. RFP TAMs (red arrow) and GFP blood vessel (green arrow) were observed
in the F4 tumor (Bar = 100 μm). Image taken with the FV1000 confocal microscope. E.
GFP blood vessels (green arrows) in the F4 tumor. (Bar = 100 μm). Image was taken with
the FV1000 confocal microscope. F. RFP CAFs (yellow arrow) and GFP TAMs (green
arrows) in the F4 tumor. White arrow indicates CFP CAFs. (Bar = 30 μm). Image was taken
with the FV1000 confocal microscope.
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