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Neurobiology of Disease

Mitochondrial Dynamics and Bioenergetic Dysfunction Is
Associated with Synaptic Alterations in Mutant SOD1 Motor
Neurons
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Mutations in Cu,Zn superoxide dismutase (SOD1) cause familial amyotrophic lateral sclerosis (FALS), a rapidly fatal motor neuron disease.
Mutant SOD1 has pleiotropic toxic effects on motor neurons, among which mitochondrial dysfunction has been proposed as one of the contrib-
uting factors in motor neuron demise. Mitochondria are highly dynamic in neurons; they are constantly reshaped by fusion and move along
neurites to localize at sites of high-energy utilization, such as synapses. The finding of abnormal mitochondria accumulation in neuromuscular
junctions, where the SOD1-FALS degenerative process is though to initiate, suggests that impaired mitochondrial dynamics in motor neurons
may be involved in pathogenesis. We addressed this hypothesis by live imaging microscopy of photo-switchable fluorescent mitoDendra
in transgenic rat motor neurons expressing mutant or wild-type human SOD1. We demonstrate that mutant SOD1 motor neurons have
impaired mitochondrial fusion in axons and cell bodies. Mitochondria also display selective impairment of retrograde axonal transport,
with reduced frequency and velocity of movements. Fusion and transport defects are associated with smaller mitochondrial size, de-
creased mitochondrial density, and defective mitochondrial membrane potential. Furthermore, mislocalization of mitochondria at
synapses among motor neurons, in vitro, correlates with abnormal synaptic number, structure, and function. Dynamics abnormalities
are specific to mutant SOD1 motor neuron mitochondria, since they are absent in wild-type SOD1 motor neurons, they do not involve
other organelles, and they are not found in cortical neurons. Together, these results suggest that impaired mitochondrial dynamics may

contribute to the selective degeneration of motor neurons in SOD1-FALS.

Introduction

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegen-
erative disease affecting motor neurons. The disease begins in
mid-life and is rapidly progressive, leading to paralysis and death
within a few years of onset (Rowland and Shneider, 2001). While
the majority of the cases of ALS are sporadic with unknown eti-
ology, ~10% are inherited (familial ALS, FALS), of which ~20%
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have mutations in the Cu,Zn superoxide dismutase gene (SODI)
(Rosen et al., 1994).

There are several, interconnected, pathogenic pathways lead-
ing to SOD1-FALS, since mutant SOD1 has a multitude of patho-
genic effects in neurons and in surrounding cells, such as
astrocytes and microglia (Ilieva et al., 2009). Among the sev-
eral proposed mechanisms of toxicity, which include protein
aggregation, neuroinflammation, excitotoxicity, oxidative stress,
growth factor deficiency, glial pathology, cytoskeletal alteration,
and axonal transport abnormalities (Rothstein, 2009), mito-
chondrial defects are thought to play a contributing role
(Magrané and Manfredi, 2009; Shi et al., 2010). The toxic effects
of mutant SOD1 on mitochondria occur at multiple levels, affect-
ing their bioenergetics (Mattiazzi et al., 2002; Damiano et al.,
2006), their channel properties (Israelson et al., 2010), protein
import (Lietal., 2010), and the balance of anti- and proapoptotic
proteins (Pedrini et al., 2010). In neurons, mitochondria form a
highly dynamic and interconnected network that undergoes
transport and remodeling by fusion and fission (Chan et al.,
2006). Therefore, in mutant SOD1 neurons mitochondrial
impairment may also be linked to defects in their dynamics
(Magrané and Manfredi, 2009).

A potential consequence of dynamics impairment in neurons
is the failure to provide healthy mitochondria to synaptic termi-
nals and other sites of high-energy consumption. SOD1-FALS
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originates as a distal axonopathy, where neuromuscular junc-
tions (NMJs) are the first regions of the motor neurons to degen-
erate (Frey et al., 2000; Fischer et al., 2004; Schaefer et al., 2005).
Abnormal mitochondria at the NMJs of mutant SOD1 mice ap-
pear early on in the course of the disease, and correlate with the
beginning of denervation (Vande Velde et al., 2004; Gould et al.,
2006), suggesting that a defect in the maintenance of functional
mitochondria may be participating in the pathogenic process.

To address the effects of mutant SOD1 on mitochondrial dy-
namics we investigated motor neurons derived from animal
models of SOD1-FALS (G93A mutant and wild-type SOD1) us-
ing time-lapse confocal microscopy and the photo-switchable
fluorescent protein, Dendra (Gurskaya et al., 2006), targeted to
mitochondria (mitoDendra). Dendra naturally fluoresces green,
but has the distinctive property of changing to red when photo-
activated with 488 nm light. This photoconversion is irreversible,
nontoxic, and stable, which makes Dendra an ideal tool for real-
time and long-term imaging.

We demonstrated in this study that mitochondrial fusion was
decreased and axonal transport impaired in G93A mutant SOD1
motor neurons. These abnormalities correlated with reduced mi-
tochondrial size and density along axons, and with impaired mi-
tochondrial bioenergetics. Changes in mitochondrial dynamics
and morphology affected motor neurons, but not cortical neu-
rons. Furthermore, we found that axonal transport defects were
specific to mitochondria, since transport of other organelles was
intact. Finally, we showed that mitochondrial defects were asso-
ciated with functional and morphological abnormalities in the
synaptic structures that are formed in vitro among motor neu-
rons, suggesting that these defects may play a role in motor neu-
ron synaptic degeneration.

Materials and Methods

Materials. Live imaging experiments were performed in Lab-Tek 4-well
chambered glass slides (Nalge Nunc International). The following anti-
bodies were used: cytochrome ¢ (BD Pharmingen), MnSOD (Stressgen),
SOD1 (Calbiochem), B-actin (Sigma), SV2 (Developmental Studies Hy-
bridoma Bank), synapsin I (Sigma), and secondary Cy2-, Cy3-, Cy5- and
HRP-conjugated IgG (Jackson Immunochemicals). Fluorescent dyes
MitoTracker Red CMXROS and tetramethyl rhodamine methyl ester
(TMRM) were from Invitrogen.

In the pTurbo-mitoDendra expression vector, Dendra coding region
substituted the GFP at the Agel and NotI sites of the pTurboGFP-mito
(Evrogen). In the amyloid precursor protein (APP695)-Dendra expres-
sion vector, APP695 cDNA was cloned into pTurbo-DendraV-N using
HindIIT and Agel sites. All constructs were verified by sequencing.

Animal models. Transgenic rats expressing human mutant G93A
SOD1 or wild-type (WT) SOD1 were on a Sprague Dawley genetic back-
ground (Chan et al,, 1998; Howland et al., 2002). All experiments were
performed on neurons derived from at least three independent isola-
tions. Each isolation consisted of motor neurons prepared by mixing all
littermate embryos with the same genotype (transgenic or non-
transgenic) from one pregnant rat. Genotyping was performed by PCR
using the following pair of primers for human SOD1 transgene: IMR 113
(5'-catcagccctaatccatctga) and IMR 114 (5'-cgegactaacaatcaaagtga). All
experiments were approved by the Weill Cornell Medical College Insti-
tutional Animal Care and Use Committee.

Primary motor neuron cultures. Purified motor neurons were prepared
from E14.5 rat embryo spinal cords, and cultured as previously described
(Estévez et al., 1998). Embryos were kept at 4°C in Hybernate E medium
(BrainBits) supplemented with B27 (Invitrogen), while genotype analy-
sis was performed. Motor neurons (7500-10,000 per chamber; 5000 per
coverslip) were plated onto polyornithine- and laminin-coated surfaces
(3 mg/ml each). Transgenic and non-transgenic control embryos were
from the same litters. Motor neurons were transfected after 5-7 days in
vitro (div) with 1 ug of cDNA and 1 ul of Lipofectamine 2000 (Invitro-
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gen); medium was changed after 4—6 h. Imaging was performed 24-36 h
later.

Primary cortical neuron cultures. Primary rat cortical neuron cultures
were prepared as described previously (Magrané et al., 2004), and plated
onto polyornithine- and laminin-coated surfaces (3 and 5 pug/ml, respec-
tively). Cortical neurons were transfected with mitoDendra after 7 div,
and imaged 24-36 h later. For live imaging studies, axons were identified
according to morphological criteria (long neurites, constant thin diam-
eter, no branching, perpendicular emergence from the cell body).

Live-cell imaging. The confocal microscope and live imaging station
used were previously described (Magrané et al., 2009). The 488 nm laser
intensity was kept <0.5 mW to prevent spontaneous photoactivation of
Dendra. A 63X oil-immersion lens, and a pinhole of 2.89 AU (optical
slice <2 wm) were applied for mitochondrial imaging; pinhole opening
was set to 5.78 AU (optical slice < 4 wm) for membrane-bound organelle
(MBO) imaging. Images were collected every 5 s for 5-7 min. Imaged
axonal segments were defined as proximal (starting within 20 wm from
the cell body) or distal (ending within 20 wm from the axon terminal).

Photoactivation of mitoDendra and analysis of mitochondrial fate. Pho-
toactivation of mitochondria was achieved in half of the motor neuron
soma by exposing mitoDendra to 3050 iterations using the 488 nm laser
(7.5 mW). The entire thickness of the half soma was photoconverted by
moving the laser to the first, mid, and last z-positions (1.6 wm intervals).

To study fusion and motility of mitochondria in the motor neuron
somas both intact and photoconverted mitochondria pools were simul-
taneously imaged using 488 (0.25 mW) and 543 nm (0.5 mW) excitation,
respectively. Frames were acquired prior (—1 min) and after photoacti-
vation (0, 10, 40, 70, and 100 min). Single optical z-sections were used for
the analysis, and the same thresholds were applied over time for each
channel. Regions of interest (ROIs) were drawn for both photoactivated
and non-photoactivated areas. Colocalization and Integrated Morpho-
metric Analysis applications were from MetaMorph software (Universal
Imaging Co.).

Colocalization (fusion rate) was measured within the photoactivated area,
and expressed as percentage of the area of red overlapping green fluorescent
mitochondria. Analysis of motility was performed on the green and red
channels independently. First, the transport of non-photoactivated (green
fluorescent) mitochondria over the photoactivated area (no green mito-
chondria present) was measured by quantifying the number of pixels ap-
pearing over time relative to the total amount of mitochondria present
before photoactivation (t = —1). Similarly, the transport of photoactivated
(red fluorescent) mitochondria over the non-photoactivated area (no red
mitochondria present) was analyzed, and the appearance of pixels relative to
the total amount of pixels (green and red) present in each time point was
measured.

Analyses of organellar transport dynamics. A mitochondrion was de-
fined as mobile if it changed its position in at least three consecutive
frames (taken at 5 s intervals). Transport of mitochondria and MBOs
along neuronal processes was analyzed using MetaMorph software, as
described previously (Magrané et al., 2009). Briefly, we generated kymo-
graphs (a graph of position vs time) and studied several transport param-
eters for anterograde or retrograde moving mitochondria, in proximal
and distal regions of the motor axons. Distance was defined as the dis-
tance (in micrometers) traveled by a mitochondrion in either direction
from origin to end of the moving event (i.e., distance traveled between
two pauses); only distances longer than 3 wm were analyzed. Persistence
of movement was the duration (in seconds) of a moving event. Velocity
of mitochondria and MBOs was measured during sustained movement
along the axon. Pauses were defined as absence of movement for more
than three consecutive frames in mitochondria that were previously
moving during the recording. The frequency of pauses was expressed as
the ratio number of pauses/number of moving events; fusion events were
not considered as pauses. Duration of pauses (in seconds) was also mea-
sured. Fusion events were identified when two mitochondria merged and
became a single one for >3 consecutive frames; data were plotted as the
ratio frequency of fusion/moving mitochondria.

Analyses of mitochondrial morphology in neurites and mitochondrial
density in somas. Proximal and distal segments of axons (see above for
definition) were imaged. Criteria for the analysis of mitochondrial length
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and density were as previously described (Magrané et al., 2009). Mito-
chondrial distribution in neurites was expressed as the number of mito-
chondria per 50 wm of neurite segments. Mitochondrial distribution in
distal axons was also measured by binning data into 25 um segments. To
study density of mitochondria in the motor neuron somas, ROIs in single
optical z-sections were defined; threshold was set to twice the back-
ground fluorescence. Mitochondrial density was determined by measur-
ing the percentage of thresholded area in the defined ROI using
MetaMorph.

Analyses of synaptic structure and function. Neuron-to-neuron syn-
apses were identified by fixing 9 div motor neurons in 3% PFA and
immunolabeling them with antibodies against the presynaptic proteins
SV2 and synapsin I. A 63X oil-immersion lens, standard pinhole of 1 and
optical intervals of 0.5 wm were used for confocal imaging; 16-bit, non-
saturated, images were acquired. Threshold was set to twice the fluores-
cence intensity of regions of the neuritic shaft devoid of synapses
(background). The number and size of the thresholded puncta were
determined by using the integrated morphometric analysis feature in
MetaMorph. To study the relative distribution of mitochondria around
synaptic puncta, cells were labeled with 250 nm MitoTracker Red
CMXROS for 10 min at 37°C, followed by several washes with medium,
fixation, and immunolabeling of synaptic proteins as described above.
Circular ROIs with a radius of 1 wm from the synaptic puncta were
placed around each identified puncta; mitochondria occupying at least
half of the radius of an ROI were considered to be localized in that ROL

Synaptic function was assed in living motor neurons at 9 div by fol-
lowing the endocytosis of the fixable, activity-dependent fluorescent
nerve terminal probe AM4-65 (Biotium). Briefly, cells were incubated for
90 s at room temperature with 4 um AM4-65, which was prepared in high
potassium Ringer’s solution (containing, in mm: 119 NaCl, 70 KCl, 2
CaCl,, 2 MgCl,, HEPES, pH 7.4 5, and 30 glucose) to depolarize the
neurons. Motor neurons were washed twice for 4 min in low potassium
(2.5 mM) Ringer’s solution containing 1 uMm tetrodotoxin (TTX), and
then fixed as described above.

Analyses of mitochondrial membrane potential (AWm). The potentio-
metric fluorescent dye TMRM was used to assess changes in AWm.
Briefly, motor neurons (8 div) were loaded with 5 nm TMRM at 37°C.
Confocal imaging of TMRM fluorescence was performed using low 543
nm excitation (0.02 mW intensity) to keep fluorescent values within a
nonsaturated range (0—4095 units). A 63X oil-immersion lens and a
pinhole of 2.89 AU were used. Images (12-bit) were taken. Average flu-
orescence in each mitochondrion was determined after thresholding of
the images. The threshold was set to twice the fluorescence from the
neuritic shaft in areas devoid of mitochondria to provide adequate back-
ground subtraction.

Western blot analysis. Cortices were dissected and cortical neurons
were pelleted from individual rat embryos. The ventral part of spinal
cords was dissected away, cords from embryos with the same genotype
(non-transgenic or transgenic) were pooled after genotyping, and an
enriched motor neuron fraction (purity >80%) was obtained by density
centrifugation (bovine serum albumin gradient followed by OptiPrep
gradient) as previously described (Bishop et al., 2009). Cells pellets were
solubilized, electrophoresed in 12% SDS polyacrylamide gels, and im-
munoblotted for the indicated proteins, as described previously
(Magrané et al., 2004). Band intensities were quantified by densitometry
using Image] software.

Electron microscopy. Primary motor neurons growing on glass cover-
slips were fixed at 9 div with a modified Karmovsky’s solution of 2.5%
glutaraldehyde, 4% paraformaldehyde and 0.02% picric acid in 0.1 M
sodium cacodylate buffer at pH 7.2. After a secondary fixation in 1%
osmium tetroxide and 1.5% potassium ferricyanide, samples were dehy-
drated through a graded ethanol series, and embedded in an Epon analog
resin. After polymerization, the coverslip glass was etched away with
hydrofluoric acid. Ultrathin sections were cut using a Diatome diamond
knife on a Leica Ultracut S ultramicrotome. Sections were collected on
copper grids and further contrasted with lead citrate, and viewed on a
JSM 100 CX-II electron microscope (JEOL USA) operated at 80 kV.
Images were recorded on Kodak 4489 Electron Image film then digitized
on an Epson Expression1600 Pro scanner at 900 dpi for publication.
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Statistical analyses. Data were expressed as the mean = SE. Differences
between two groups were measured by the Student’s two-tailed, un-
paired ¢ test, with significance set at p < 0.05. When these two groups
were followed over time, an ANOVA with repeated measurements fol-
lowed by Fisher post hoc test was used, and significance set at p < 0.05.

Results

MitoDendra, a fluorescent protein for live imaging of
mitochondrial dynamics

To develop appropriate imaging tools for live imaging of mito-
chondrial fusion and transport in motor neurons, the photo-
switchable fluorescent protein Dendra (Gurskaya et al., 2006)
was targeted to the mitochondrial matrix (mitoDendra) by add-
ing a cleavable N-terminal presequence derived from subunit
VIII of cytochrome ¢ oxidase (COX VIII). A linker peptide was
introduced between the presequence and Dendra to improve fu-
sion protein cleavage (Fig. 1 A). MitoDendra was transfected into
primary embryonic rat neurons, and the mitochondrial localiza-
tion of mitoDendra was confirmed by immunostaining and co-
localization with the mitochondrial proteins MnSOD and
cytochrome ¢ (Fig. 1 B).

First, we determined the optimal confocal microscopy imag-
ing conditions to visualize and photoactivate mitoDendra in liv-
ing neurons. Low-power 488 nm laser excitation (<0.5 mW) did
not cause changes in the morphology of the transfected neurons
or their mitochondria (data not shown). Furthermore, there was
no photoconversion to red (Fig. 1C, left), even after repetitive
imaging for extended periods of time (250 times over 2 h, data not
shown). However, exposure to 10—30 iterations at higher 488 nm
laser intensity (2.5 mW) was sufficient to completely and irre-
versibly photoconvert mitoDendra from green to red fluores-
cence at a defined ROI (Fig. 1C, right).

Then, we demonstrated the effectiveness of mitoDendra in
studying the dynamics of mitochondria in primary neurons by
time-lapse in vivo imaging (Fig. 1 D). The ability to generate two
differentially labeled (green or red) populations of mitochondria
within the same neuron by photoconversion of mitoDendra, al-
lowed for detection of mitochondrial fusion events. In the exam-
ple shown in Figure 1D, the neuronal mitochondrial network
underwent extensive fusion, as demonstrated by the mixing of
red and green fluorescence (Fig. 1 D). We also determined that
repetitive imaging did not cause photobleaching of mitoDendra
fluorescence (Fig. 1 D).

Impaired mitochondria fusion in G93A SOD1 motor neurons
Mitochondrial fusion is thought to be essential for neuronal sur-
vival, since genetic defects of components of the fusion machin-
ery, such as Opal and Mfn2, result in neurodegeneration (Chen
and Chan, 2006; Chen et al., 2007). To determine whether mito-
chondrial fusion is affected by mutant SOD1 we analyzed the
reshaping of mitochondrial network in the soma and axons of
motor neurons.

Primary motor neurons from the spinal cords of transgenic
rat E14.5 embryos expressing either WT or G93A mutant SOD1,
and respective non-transgenic embryos, were isolated and trans-
fected with mitoDendra after 5-7 days in vitro (div) for mito-
chondrial imaging.

In the soma, it was difficult to follow the fate of individual
mitochondria, because of the high density of the mitochondrial
network, which does not allow for single mitochondria resolu-
tion. Therefore, taking advantage of the biophysical properties of
mitoDendra, we photoconverted subpopulations of mitochon-
dria in motor neuron cell bodies from green to red fluorescence,
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mitoDendra

Study of mitochondrial dynamics in motor neurons using the photoactivatable fluorescent protein Dendra. A, Schematic representation of the mitoDendra construct used to label

mitochondria. Restrictions sites are indicated. B, Costaining with MnSOD and cytochrome ¢ confirms the mitochondrial localization pattern of mitoDendra in a transfected neuron. Scale bar, 2 um.
€, There was no photoconversion of Dendra during live imaging at low laser intensity (see absence of red fluorescence before photoactivation). Upon photoactivation of mitochondriain a ROI, green
and red fluorescence were imaged simultaneously. Scale bar, 10 m. D, Time-lapse microscopy of two-colored mitoDendra-labeled mitochondria in the soma of a living neuron after photoactivation
of a subpopulation of mitochondria (£ = 0 min). Frames were acquired every 30 s for a total recording time of 105 min (the panels show selected frames at 15 min intervals). Fusion events of
mitochondria were identified by the appearance of yellow color, which resulted from merging green and red mitochondria. Examples of fusion are indicated by arrows at 15 min after photoactivation
of mitoDendra. Images from single z-sections are shown. Numbers refer to time in minutes. Scale bar, 5 m.

and followed their fate by time-lapse confocal microscopy. As a
result of the mixing of green and red fluorescence by fusion,
yellow mitochondria were detectable in the merged time-lapse
images of non-transgenic neurons 40 min after photoconversion
and increased over time (Fig. 2 A, top). However, in G93A SOD1
motor neuron somas, yellow fluorescence was not apparent until
100 min after photoactivation (Fig. 2 A, bottom). Quantification
of the fusion rates (colocalization of red over green fluorescence)
demonstrated a linear increase (correlation coefficient, r = 0.99)
in the amount of colocalization over time, in both control and
mutant SOD1 somas, but the rate of fusion was slower (p = 0.013
by ANOVA with repeated measurements; n = 7-8) in G93A
motor neuron somas (Fig. 2 B).

In the motor axons, identified by morphological criteria,
fusion events involving individual mitochondria could be vi-
sualized during time-lapse recordings without applying photo-
activation (Fig. 2C, insets). Quantification of fusion events
involving mobile mitochondria revealed that G93A SOD1, but
not WT SOD1, axons had less mitochondrial fusion than non-
transgenic controls (p = 0.03 by Student’s ¢ test; n = 16-28). The
fusion impairment affected anterograde (p = 0.02 by Student’s ¢

test; n = 12-26), but not retrograde, moving axonal mitochon-
dria (Fig. 2C).

Together these results indicate that in G93A SOD1 motor
neurons there is a defect of mitochondrial dynamics, which in-
volves fusion and affects both axons and cell bodies.

Defective transport of mitochondria in G93A SOD1

motor neurons

Mitochondrial fusion defects in neurons can be accompanied by
impaired mitochondrial motility, although whether the two defects
are mechanistically linked or if they can develop independently is still
unclear (Misko et al., 2010). Therefore, we investigated mitochon-
drial transport dynamics in mutant SOD1 motor neurons. The abil-
ity to discriminate between different populations of mitochondria
within the same cell using mitoDendra photoactivation was used to
study mitochondrial transport in the motor neuron somas. We fol-
lowed the transport of green mitochondria into the photoconverted
(red) areas (Fig. 2 D) and, vice versa, the transport of red mitochon-
dria into the non-photoconverted (green) areas (data not shown)
over time. We found that the rate of transport of both green (Fig. 2 E)
and red (Fig. 2 F) mitochondria within the cell soma was reduced in
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Figure 2.  Impaired mitochondrial fusion in the soma and motor axons of G93A SOD1 motor neurons. A, Cell bodies from non-transgenic control and G93A SOD1 motor neurons containing
mitoDendra-labeled mitochondria before (—1 min) and after (0 min) photoactivation. Subsets of mitochondria (green and red fluorescence) were followed over time (10, 40, 70, and 100 min) by
live imaging microscopy. Note that the appearance of yellow fluorescence, as a result of the mixing between green and red mitochondria (i.e., fusion, indicated by arrows), was delayed in mutant
SOD1 motor neurons. Scale bar, 10 .um. B, Fusion rates were obtained in single optical z-sections by measuring the colocalization (in percentage) of red over green fluorescent mitochondria at the
indicated time points. The correlation coefficient (r) for each group is indicated. n (somas) = 8 non-transgenic, and 7 G93A. *p << 0.05 by ANOVA with repeated measurements. C, In the inset,
example of a time-lapse recording of axonal mitochondria (numbers indicate time in minutes) showing a fusion event (arrow). Scale bar, 5 wm. The graph shows the analysis of fusion (% of fusion
events of total moving mitochondria) in control and G93A SOD1 motor axons. n (axons) = 24 non-transgenic, 28 WT and 16 G93A axonal segments. *p << 0.05 versus non-transgenic. D, Time-lapse
microscopy of mitochondrial transport in the soma of non-transgenic and G93A SODT motor neurons. All mitochondria in a ROl of the soma were photoconverted, while only non-photoconverted
(green fluorescent) mitochondria were followed over time. Note a decrease of mobile mitochondria toward the ROl in mutant SOD1 motor neurons compared with controls. Scale bar, 10 wm. E,
Analysis of the transport of green mitochondria over the photoactivated area (no green mitochondria present). The correlation coefficient (r) for each group is indicated. n (somas) = 8 non-
transgenic, and 7 G93A. *p << 0.05 by ANOVA with repeated measurements. F, Analysis of the transport of red mitochondria over the non-photoactivated area (no red mitochondria present). The
correlation coefficient (r) for each group is indicated. n (somas) = 8 non-transgenic, and 7 G93A. *p << 0.05 by ANOVA with repeated measurements. All data obtained from 3—5 independent
experiments. The error bars represent = SE. Non-tg, Non-transgenic.
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Figure 3.  Mitochondrial dynamics abnormalities in mutant SOD1 motor neuron axons. A, Representative kymographs of mitoDendra-labeled mitochondria recorded in distal axons from
non-transgenic, WT SOD1, and G93A SOD1 motor neurons (MN) at 5 s intervals for 5 min showed reduced motility in mutant motor neurons. Color in the image was inverted (negative image) for
clarity. Scale bars, 10 um (horizontal), and 1 min (vertical). B, Analysis of mitochondrial transport by direction of movement (anterograde and retrograde) and axonal regions (proximal and distal).
Fewer mitochondria moved retrogradely in both proximal and distal axonal segments. n (axons) = 29 non-transgenic, 26 WT and 18 G93A. C, Analysis of the frequency at which mitochondria pause
(expressed as percentage of all moving mitochondria). n (axons) = 29 non-transgenic, 28 WT and 20 G93A axonal segments. D, Duration of pauses was unchanged in G93A SOD1 motor neurons.
n (pauses) = 74 non-transgenic, 85 WT and 23 G93A. E, Analysis of the velocities of mobile mitochondria in each direction. n (moving events) = 355 non-transgenic, 261 WT and 123 G93A. F,
Analysis of the persistence (duration) of movement showed no significant differences in mutant SODT motor neurons. n (moving events) = 128 non-transgenic, 78 WT and 56 G93A. G, Analysis of
the distance traveled (during movement without pause) achieved by mobile mitochondria. n (moving events) = 118 non-transgenic, 105 WT and 59 G93A. H, Analysis of the distance traveled by
mitochondria in axonal regions showed that mitochondrial movement in distal parts was unbalanced, with increased anterograde and decreased retrograde movements. n (moving events) = 118 non-
transgenic, 105 WT and 59 G93A. Data were obtained from 4 -5 independent motor neuron isolations. The error bars represent == SEin all graphs. *p << 0.05 versus non-transgenic. Non-tg, Non-transgenic.

G93A motor neurons, compared with non-transgenic controls To quantify fast axonal transport of individual mitochondria
(p = 0.011 and p = 0.039, respectively, by Student’s ¢ test at  in the axons of motor neurons we generated kymographs from
100 min; p = 0.025 and p = 0.032, respectively, by ANOVA  time-lapse recordings. Kymographs provide graphical represen-
with repeated measurements; n = 7—8). tations of spatial position over time, where the y-axis represents
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time and the x-axis, distance. A decrease in the number of diag-
onal traces indicated a reduction in the number of moving mito-
chondria in G93A axons (Fig. 3A). Mitochondrial motility,
defined as the proportion of mitochondria moving in any direc-
tion during the time of the recording (5 min), was decreased in
G93A SOD1 motor neurons (17.23 £ 2.29%) compared with
non-transgenic controls (29.01 = 2.36%; P = 0.0008 by Student’s
t test; n = 18-29), while the number of stationary mitochondria
in G93A SODI1 motor neurons was increased (82.77 = 2.29%
mutant SOD1 vs 70.99 % 2.36% non-transgenic controls; P =
0.0008 by Student’s ¢ test), consistently with the decreased motil-
ity. Motility in WT SOD1 motor neurons was not significantly
different from non-transgenic controls.

To study whether mitochondrial transport abnormalities
were widespread along the motor axons or limited to specific
axonal regions, we defined two regions: proximal (starting within
20 pm from the cell body and spanning 152 * 34 um; n = 45
axons), and distal (ending within 20 wm from the axon terminal
and spanning 156 * 41 um; n = 36). By focusing the analysis on
proximal or distal segments of the motor neuron axons and on
the direction of the movement, we identified a selective decrease
of retrograde transport, in both proximal and distal regions of
G93A SOD1 (P = 0.013 and 0.017, respectively, by Student’s ¢
test; n = 6—17), but not in WT SOD1 motor neurons (Fig. 3B),
compared with non-transgenic controls.

To further characterize the effects of mutant SOD1 on mito-
chondrial transport, we analyzed the frequency and duration of
pauses, the velocity of transport, the distance traveled between
pauses, and the persistence (duration) of movement. We ob-
served that mitochondria paused more often in the retrograde
direction in mutant SOD1 motor neurons (Fig. 3C; p = 0.016 by
Student’s t test; n = 18 —27 axons), while there were no significant
differences in the duration of the pauses (Fig. 3D). Moreover, the
velocities in the retrograde direction were reduced in mutant

motor neurons (Fig. 3E; p = 0.04 by Student’s t test; n = 123-355
moving events). Since there were no significant differences in the
persistence of movement of mitochondria (Fig. 3F), the distance
traveled by mobile mitochondria was shorter in G93A motor
neurons (Fig. 3G; p = 0.048 by Student’s f test; n = 56-128
moving events). Finally, we observed an imbalance in the dis-
tance traveled by mitochondria in distal segments of G93A SOD1
axons: retrograde distances were shorter (p = 0.033 by Student’s
ttest; n = 59—118 moving events), whereas anterograde distances
were longer (Fig. 3H; p = 0.013 by Student’s ¢ test; n = 59-118
moving events).

To determine whether fast axonal transport defects affected
other cargos, we labeled MBOs with amyloid precursor pro-
tein (APP)-Dendra (Fig. 4A) (Koo et al., 1990; Kaether et al.,
2000). Kymographs of APPDendra-labeled MBOs demon-
strated higher motility of these vesicles (Fig. 4B) compared
with mitochondria (70 * 4.0% of MBOs in control motor
neurons moved within the time-frame of the recording, com-
pared with ~30% of mitochondria). Unlike mitochondria, the
anterograde and retrograde motility of MBOs was unchanged
in proximal and distant segments of G93A SOD1 motor neu-
rons (Fig. 4C). Velocity of MBO transport was also unaffected
(Fig. 4D), in both directions and axonal segments. These re-
sults suggest that in motor neurons the fast axonal transport of
mitochondria, but not that of other fast moving organelles,
such as MBOs, is affected by mutant SODI.

Reduced mitochondrial length and density in G93A SOD1
motor neurons

A logical consequence of impaired mitochondrial transport and
fusion could be the disruption of normal mitochondrial mor-
phology and distribution along axonal processes. Therefore, to
first assess mitochondrial morphology we measured the size of
mitochondria in proximal and distal regions of motor neuron
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axons. Mitochondrial average length was reduced in the distal
segments of G93A SODI1 motor neuron axons, but not in WT
SOD1 (Fig. 54, B), compared with non-transgenic controls (p =
0.05 '°by Student’s ¢ test; # = 192-331 mitochondria). Further-
more, while at 5 div mitochondria in the proximal segments of
G93A SOD1 motor axons were of normal size (Fig. 5B), at 10 div

their length had significantly decreased compared with controls
(3.33 = 0.24 um mutant SOD1 vs 4.03 £ 0.24 wm non-
transgenic controls; P = 0.04 by Student’s ¢ test; n = 113-138),
suggesting that these abnormalities progress from distal to prox-
imal segments as the neurons age in culture. No significant de-
crease in mitochondrial length was detected in dendrites of
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mitochondrial distribution in defined 25
pm segments did not reveal significant dif-
ferences among groups at the axonal termi-
nals (Fig. 5F).

We then analyzed mitochondrial
“density,” expressed as the sum of all the
mitochondrial lengths in 50 wm axonal
segments. Mitochondrial density was re-
duced in the distal segments of G93A

SOD1 axons, but not WT SODI1, com-

pared with non-transgenic controls (Fig.
5G, p = 0.027 by Student’s t test; n =
23-29 axons). However, no differences
were observed between control and mu-
tant SOD1 when measuring the density of
mitochondria in the motor neuron cell
bodies (data not shown).

These results suggest that mutant
SOD1 may cause an imbalance in the dis-

tribution of mitochondria along the ax-
ons, which appears first at the periphery of
the motor neurons. Although the overall
number of mitochondria was unchanged
in mutant SOD1 and control axons, there
was a decrease of mitochondrial density,
as measured by mass, in the mutants due
to smaller average mitochondrial size.

Mitochondrial dynamics and

‘ morphology are not altered in
G93A SOD1 cortical neurons

To investigate whether abnormalities in
mitochondrial dynamics and morphology
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kymographs from proximal segments of non-transgenic and G93A SOD1 cortical neurons at 8 div. Color in the image was inverted
(negative image) for clarity. Scale bars, 10 .em (horizontal), and 1 min (vertical). B, Analysis of the frequency of movement from
time-lapse recordings (5 s intervals for 5 min) of mitoDendra-labeled mitochondria in proximal and distal axonal segments of
non-transgenic controls and G93A SOD1 cortical neurons. No significant differences were found in mobile or stationary mitochon-
driain mutant SOD1 cortical neurons, compared with controls. n (axons) = 16 control and 31 G93A SOD1.Data from 4independent
cortical neuron isolations. The error bars represent = SE. ¢, Images of mitoDendra-labeled mitochondria in distal axonal segments
of non-transgenic and G93A SOD1 cortical neurons at 8 div. Scale bar, 10 wm. D, Analysis of mitochondrial length in axons of
cortical neurons revealed no significant abnormalities in G93A SOD1 neurons. n (mitochondria) = 298 control and 324 G93A. Data
from 4 independent cortical neuron isolations. The error bars represent == SE. E, Analysis of human SOD1 protein levels in cortical
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protein. F, Densitometricanalysis of relative human SOD1 expression protein levels in purified cortical neurons and motor neurons.

Data obtained from 3 independent neuron isolations. The error bars represent == SE.

mutant SOD1 motor neurons (Fig. 5C), indicating that mito-
chondrial morphological abnormalities were limited to motor
axons.

Second, to assess mitochondrial distribution in motor neuron
axons we measured the average number of mitochondria con-
tained in proximal and distal axonal segments. Despite the
alterations in retrograde transport, there were no significant
differences, either in proximal or distal segments, in the number
of mitochondria among mutant SOD1, WT, and non-transgenic
control axons (Fig. 5D). We confirmed this lack of changes in
mitochondrial distribution in G93A SOD1 motor neurons by
labeling mitochondria with MitoTracker and cytochrome ¢ anti-
bodies (data not shown). Moreover, the distribution of mito-
chondria at the axon terminals, assessed by fluorescence (Fig. 5E,
top) and electron microscopy (Fig. 5E, bottom) did not appear
altered in G93A SOD1 motor neurons. Further quantification of

are specific to motor neurons or they
affect other neuronal types, we studied
cortical neurons from G93A SOD1 and
control rat embryos at 8 div. Kymographs
revealed a similar motility pattern for mi-
tochondria in both non-transgenic con-
trols and G93A SOD1 cortical neurons
(Fig. 6 A). After analysis of time-lapse re-
cordings, no significant differences in the
frequency of mitochondrial movement
were found in either proximal or distal
segments of the axons (Fig. 6B), and in
either anterograde or retrograde direc-
tions (data not shown).

The average mitochondrial length in both proximal and distal
axonal segments was also unchanged in G93A SOD1 cortical neu-
rons at 8 div (Fig. 6C,D), and no differences in the number of
mitochondria and mitochondrial density were found (data not
shown).

To exclude that abnormalities developed in cortical neurons
at later time points, we analyzed mitochondrial frequency of
transport and morphological parameters in proximal and distal
segments of neurons at 15 div, and confirmed that there were no
changes in G93A SOD1, compared with non-transgenic controls
(data not shown).

We then compared SOD1 expression levels in purified cortical
neurons and spinal motor neurons by Western blot (Fig. 6 E). The
relative amount of G93A SOD1 in purified cortical neurons was
higher than in motor neurons (Fig. 6 F), excluding that the lack of
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mitochondrial abnormalities in cortical neurons was related to
lower mutant protein load.

Accumulation of dysfunctional mitochondria in distal
regions of mutant SOD1 motor neurons

Abnormalities of mitochondrial fusion and transport in mutant
SOD1 motor neurons could be linked, either as a cause or as a
consequence, to mitochondrial functional impairment. Thus, to
explore whether there is a functional correlate to the abnormali-
ties in mitochondrial dynamics and morphology in G93A SOD1
motor axons we investigated mitochondrial membrane potential
(AW). Motor neurons were loaded with the potentiometric fluo-
rescent dye TMRM (5 nM) and the intensity of fluorescence was
used as a relative measure of AW (Vives-Bauza et al., 2008). We
observed reduced average TMRM intensity in the mitochondria
in distal segments of mutant SOD1 motor neurons (Fig. 74, p =
0.001 by Student’s ¢ test; n = 97—145), suggesting that bioenergetic
dysfunction in distal motor axon segments may be correlated with
reduced size and impaired dynamics of mitochondria. There was a
slight but statistically significant increase of TMRM intensity of mu-
tant SOD1 mitochondria in proximal segments (Fig. 74, p = 0.022
by Student’s ¢ test; # = 110—140). The reasons for this increase are
not clear, but it could be due to the increase of the ratio of stationary
over retrograde moving mitochondria, which are thought to have
lower AW than stationary ones, in neurons (Miller and Sheetz,
2004).

Next, TMRM-labeled mitochondria were imaged by time-
lapse microscopy, and kymographs were obtained to simultane-
ously assess mitochondrial transport and AW. For each genotype,
the average TMRM intensities measured for mobile or stationary
mitochondria were expressed relative to the average TMRM in-
tensity of all mitochondria analyzed (set at 1). The kymographs
confirmed the reduced motility of mitochondria in distal regions
of mutant SOD1 motor neurons (Fig. 7B). Anterograde-moving
mitochondria in mutant SOD1 motor neurons had lower AW
than anterograde-moving mitochondria in controls (p = 0.0017
by Student’s ¢ test; n = 30-37), and were similar to retrograde-
moving mitochondria in both mutant and control neurons (Fig.
7C). This finding has potential pathogenic significance, because it
suggests that the pool of upcoming mitochondria destined to
replace or fuse with distal aging mitochondria in mutant SOD1
motor axons may be functionally impaired.

Fewer and smaller synaptic puncta in G93A SOD1 motor
neurons

Since neuronal mitochondria are often localized in proximity of
synapses to provide the necessary energy and calcium buffering,
we hypothesized that impaired mitochondrial transport in mu-
tant SOD1 motor neurons could be associated with synaptic ab-
normalities. To investigate mitochondrial localization at synaptic
sites we looked at the synaptic contacts that are spontaneously
formed among motor neurons in vitro, and used these structures
as reference sites, where to study mitochondrial localization. We
labeled the neuron-to-neuron synapses with antibodies against
the presynaptic proteins SV2 and synapsin I, and measured both
the number and the size of synaptic puncta. G93A SOD1 motor
neurons presented a markedly decreased number of SV2- and
synapsin I-positive puncta (p = 0.05 "' and p = 0.000004 by
Student’s t test for SV2 and synapsin I labeling, respectively;
n = 21-27 axons) and smaller puncta sizes (p = 0.0006 and
p = 0.00011 by Student’s t test for SV2 and synapsin I labeling,
respectively; n = 190-385 puncta) compared with controls
(Fig. 8A-C).
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Figure7.  Impairment of mitochondrial bioenergetics in mutant SOD1 motor neuron axons.

A, Average TMRM fluorescence intensity (mitochondrial membrane potential) of all mitochon-
dria in proximal and distal segments of non-transgenic and G93A SOD1 motor neurons (8 div).
n (mitochondria) = 285 control and 207 G93A. B, Representative kymographs of TMRM-
labeled mitochondria from distal axonal segments of control and mutant SOD1 motor neurons,
used to correlate membrane potential and mitochondrial transport. Scale bars, 10 um (hori-
zontal), and 1 min (vertical). C, TMRM intensity measured as the integrated fluorescence in each
mitochondrion/area in pixels and expressed as a proportion of average potential in all mito-
chondria. n (axons) = 12 control and 10 G93A. Data from 3 independent motor neuron isola-
tions. The error bars represent = SE. *p << 0.05.

To determine whether abnormal mitochondrial distribution
was associated with the observed synaptic abnormalities, we mea-
sured the colocalization of mitochondria and SV2-labeled puncta
(Fig. 8 D). Two parameters were used for the measurements: the
first was the probability of finding a mitochondrion localized
within 1 um from the puncta; the second was the mitochondrial
density at the puncta, defined as the sum of all the mitochondrial
lengths within 5 um from each puncta. Both the probability of
mitochondria-puncta colocalization (Fig. 8E) and the puncta
mitochondrial density (Fig. 8 F) were reduced in the axons of
G93A SOD1 motor neurons (p = 0.018 and p = 0.010 by Stu-
dent’s t test, respectively; n = 20—22 axons).
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Figure 8.  Synaptic abnormalities in G93A SODT motor neurons. A, Representative images of synaptic structures labeled with
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axons. Scale bar, 5 m. E, Analysis of the number of synaptic puncta having mitochondria within a 1 m distance (frequency of
mitochondrial localization) revealed that fewer puncta in G93A motor neurons contained mitochondria, compared with non-
transgenic motor neurons. n (axons) = 20 control and 20 mutant SOD1. *p > 0.005. F, Quantification of synaptic mitochondrial
density identified a decrease in the mass (wm) of mitochondria at occupied synapses from mutant SOD1 motor neurons. n
(axons) = 22 control and 22 mutant SOD1. *p > 0.005. G, Representative images of functional synaptic clusters labeled with
AM4-65 in control and mutant SOD1 motor axons. Arrowheads indicate active synapses. Scale bar, 5 wm. H, Analysis of puncta
density indicated fewer functional synapses in G93A SOD1 motor neurons. n (axons) = 29 control and 20 mutant SOD1. *p >
0.005. Data from 3 independent motor neuron isolations. The error bars represent == SE.

To focus on functional synapses and to investigate differences in

J. Neurosci., January 4, 2012 - 32(1):229-242 + 239

Discussion

We used time-lapse confocal microscopy
and mitoDendra labeling to investigate
mitochondrial dynamics in motor neu-
rons from transgenic rats expressing ALS-
linked G93A mutant or WT SOD1. We
identified abnormalities involved in fun-
damental aspects of mitochondrial biol-
ogy, such as fusion and transport, in
mutant, but notin WT, SOD1 motor neu-
rons. In association with these defects, mi-
tochondria in axons had decreased size
and density, and impaired bioenergetics.
Moreover, abnormal mitochondrial dis-
tribution in mutant SOD1 motor neurons
correlated with neuron-to-neuron synap-
tic dysfunction.

Mitochondrial fusion is a process that
appears to be necessary for the mainte-
nance of healthy mitochondria and to en-
sure neuronal viability (Chen and Chan,
2006; Chen et al., 2007). By time-lapse mi-
croscopy of individual motor neurons, we
showed decreased mitochondrial fusion
in cell bodies and axons of mutant SOD1
motor neurons. Defective fusion may
derive from impaired transport, if mito-
chondria are not brought in close proxim-
ity then fusion cannot be initiated. On the
other hand, it is possible that defective
fusion is a primary pathogenic event, lead-
ing to defective mitochondrial morphology
and function, which then results in trans-
port defects. In favor of this interpreta-
tion, ablation of Mfn2 gene in neurons has
been shown to cause mitochondrial hyper-
fragmentation and impaired transport (Chen
etal., 2007).

The apparent transport defects af-
fected mitochondria but not MBOs,
which were normally trafficked along mo-
tor neuron axons. This indicates that mu-
tant SOD1 does not impair fast axonal
transport globally, but selectively targets
specific organelles. Furthermore, mito-
chondrial abnormalities appeared to spare
dendritic processes of motor neurons as well
as cortical neuron axons, suggesting that
motor neuron axons are highly susceptible
to mitochondrial damage induced by mu-

synaptic function, we used the dye AM4-65. AM4-65 is loaded into
synaptic vesicles at functional synapses under synaptic activation
(Cochilla et al., 1999). We analyzed axonal segments from mutant
SOD1 and control motor neurons after incubation with AM4-65
under depolarizing conditions. Quantification of the density of
AM4-65 puncta revealed a reduction in the number of synaptic
puncta in G93A SOD1 motor neurons (p = 0.000007 by Student’s ¢
test; n = 2029 axons; Fig. 8G,H ), which indicates that the synaptic
morphological changes correlated with synaptic dysfunction.
These findings suggest the possibility that alack of appropriate
supply of functional mitochondria is involved in causing synaptic
abnormalities in mutant SOD1 motor neuron axons.

tant SOD1. The selective impairment of mitochondrial transport in
spinal motor neurons may relate to a preferential binding of mutant
SOD1 to mitochondria of spinal cord (Liu et al., 2004; Pasinelli et al.,
2004), although the molecular determinants of these interactions
involved in transport defects remain to be further investigated.
Earlier studies of mitochondrial transport in mutant SOD1
models had shown defects in anterograde axonal transport of
mitochondria (De Vos et al.,, 2007). In those studies, non-
transgenic rat cortical neurons were investigated after transient
transfection with exogenous human mutant SOD1, which re-
sulted in impaired mitochondrial transport. In our study, we did
not detect mitochondrial transport or morphological abnormal-
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ities in primary cortical neurons derived from the same strain of
mutant SOD1 transgenic rats used for the spinal motor neuron
studies. The difference between our results and those by De Vos et
al. (2007) may be due to our use of a homologous model system,
where expression levels of the mutant protein were driven by the
same transgenic construct in all tissues. Also, the main direction
of the motility defect was different, since we identified a defect
predominantly in retrograde transport. Our results are consistent
with the finding of Zhang et al. that an aberrant interaction exists
between mutant SOD1 and components of the dynein complex
that are involved in retrograde mitochondrial transport (Zhang
et al., 2007). Furthermore, vesicular axonal retrograde transport
defects have been described in detail in motor neurons expressing
mutant SOD1 by Perlson et al. (2009). MBO axonal transport
defect was also reported in both anterograde and retrograde di-
rections in cortical neurons transiently transfected with mutant
SOD1 (De Vos et al., 2007). We investigated MBOs in spinal cord
motor neurons and did not detect transport abnormalities.
Again, these differences underline the importance of investigat-
ing homogeneous model systems.

There is evidence that argues in favor of a cause-effect rela-
tionship between mitochondrial dynamics impairment and distal
motor neuron degeneration. For instance, such a relationship has
been directly demonstrated in a Drosophila model, where inacti-
vation of the cargo adaptor for fast mitochondrial anterograde
transport, dMiro, resulted in mitochondrial accumulation in the
cell body, NMJ degeneration, and muscle denervation and atro-
phy (Guo et al.,, 2005). Our findings seem consistent with the
hypothesis that mitochondrial transport may be involved in dis-
tal motor neuron degeneration, since in mutant SOD1 motor
axons mitochondrial abnormalities were prominent in the distal
regions. This could be an indication that distal axonal mitochon-
dria suffer from accelerated degeneration, as a consequence of
impaired transport and fusion, possibly because of inadequate
fusion with new mitochondria originated in the soma.

Impaired mitochondrial fusion and transport, and abnormal
morphology correlated with reduced mitochondrial AY in mu-
tant SOD1 motor neurons. The finding that only mitochondria
moving in an anterograde direction had a reduction of AW may
suggest that mitochondria moving toward the distal portions of
the axon were damaged by mutant SOD1, and incapable of pro-
viding for the bioenergetic needs of the axonal terminals and to
reactivate aging mitochondria by fusing with them. These find-
ings agree with the observations that mutant SOD1 axons start
degenerating at their terminals, where damaged mitochondria
accumulate early on in the course of degeneration (Vande Velde
et al., 2004; Gould et al., 2006).

Mitochondrial bioenergetic impairment has been extensively
demonstrated in the mutant SOD1 mouse (for review, see
Magrané and Manfredi, 2009), but the causal relationship be-
tween impaired bioenergetics and defective transport needs to be
further clarified. While it is possible that the two defects originate
independently and proceed in parallel, it might also be that trans-
port defects contribute to the bioenergetic problem. It could be
hypothesized that mitochondria are not effectively regenerated
and fail to maintain sufficient metabolic activity, and eventually
succumb when challenged with heavy workloads, such as buffer-
ing of intracellular Ca** spikes. Dysfunctional mitochondria
that are not efficiently recycled by fusion with healthy mitochon-
dria may become fragmented and targeted for mitophagy (Twig
et al., 2008).

The molecular determinants of impaired mitochondrial dy-
namics in mutant SOD1 motor axons have not yet been charac-
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terized. We observed that mutant SOD1 caused a predominant
effect on retrograde transport of mitochondria, with reduced
motility, increased frequency of pauses, decreased velocity and
decreased distance traveled. The observation that some of these
abnormalities were present predominantly in either proximal or
distal regions of the axons suggests that different players may be
involved in regulating transport of mitochondria in these re-
gions. Furthermore, the balance between competing anterograde
and retrograde forces driving organelle transport (Ally et al.,
2009; Hendricks et al., 2010; Schuster et al., 2011) could be al-
tered, if mutant SOD1 interferes preferentially with the molecu-
lar machinery for anterograde or retrograde transport. Normal
MBO transport seems to exclude abnormalities in microtubule
tracks, which would likely impair the transport of all cargoes and
not mitochondria specifically. In addition to a direct interaction
with the transport machinery, it is possible that SOD1 interferes
with the complex signaling mechanisms regulating mitochon-
drial motility. For example, inactivation of the cargo adaptor
Miro1 by increasing local Ca** concentration has been recently
identified (Liu and Hajnoczky, 2009), suggesting that impaired
mitochondrial Ca** handling in mutant SOD1 motor neurons
(Kawamata and Manfredi, 2010) could contribute to transport
defects. Furthermore, mutant SOD1 may affect mitochondrial
motility by impairing the regulation of molecular motors by cy-
tosolic kinases (De Vos et al., 2000; Morfini et al., 2006; Bosco et
al., 2010).

What are the consequences of mitochondrial mislocaliza-
tion and dysfunction in motor neuron axons? Published re-
ports suggest that mitochondrial Ca®" uptake is impaired in
brain, spinal cord and motor nerve terminals in G93A SOD1
mice (Vila et al., 2003; Damiano et al., 2006). Furthermore, in
presymptomatic mutant mice, an altered response to Ca**
loads in mitochondria within motor neurons involving altered
mitochondrial membrane potential has been described (Nguyen
et al., 2009). Based on these findings and on our observations
of mitochondrial dynamics abnormalities, it is possible that
mitochondrial Ca>* handling is defective at the NMJs of mu-
tant SOD1 mice, resulting in impaired local Ca** homeostasis.
Damaged mitochondria may also be incapable of providing
adequate ATP supplies for synaptic transmission, and may
become the source of toxic free radicals. Although the motor
neuron-to-motor neuron synaptic changes observed in vitro
have unknown pathological significance for ALS, the correla-
tion between abnormal mitochondrial distribution at presyn-
aptic sites and reduction of size, number, and function of
synapses supports the view that mitochondrial dynamics de-
fects may contribute to synaptic abnormalities.

Together, our observations suggest that perturbation of
axonal mitochondrial dynamics may contribute to motor neu-
ron degeneration in familial ALS with SOD1 mutations. Fu-
ture studies will have to clarify the molecular mechanisms
underlying mitochondrial dynamics impairment in mutant
SODI1 motor neurons. They will also need to determine
whether impaired mitochondrial dynamics is a common fac-
tor in other motor neuron diseases, including other familial
forms and sporadic ALS.
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