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Abstract
In order to allow spatial and temporal control of carbohydrate-specific bacterial adhesion, it has become our goal to synthesise

azobenzene mannosides as photoswitchable inhibitors of type 1 fimbriae-mediated adhesion of E. coli. An azobenzene mannobio-

side 2 was prepared and its photochromic properties were investigated. The E→Z isomerisation was found to be highly effective,

yielding a long-lived (Z)-isomer. Both isomers, E and Z, show excellent water solubility and were tested as inhibitors of mannoside-

specific bacterial adhesion in solution. Their inhibitory potency was found to be equal and almost two orders of magnitude higher

than that of the standard inhibitor methyl mannoside. These findings could be rationalised on the basis of computer-aided docking

studies. The properties of the new azobenzene mannobioside have qualified this glycoside to be eventually employed on solid

support, in order to fabricate photoswitchable adhesive surfaces.
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Introduction
Adhesion of bacteria to surfaces can be a severe problem both

in vivo and in vitro. Hence, inhibition of bacterial adhesion by

powerful antagonists is highly desirable, however, ideally on

demand, that is, in a specific and spatially as well as temporally

resolved way. Often bacterial adhesion depends on the inter-

action of adhesive organelles called fimbriae. They project from

the surface of bacteria and contain lectin domains to attach to

certain carbohydrate ligands of a glycosylated surface such as

the glycocalyx of eukaryotic target cells (Figure 1A) [1-4]. This

offers the possibility to inhibit bacterial adhesion by designed
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Figure 1: The α-(1→3)-linked mannobioside α-D-Man-(1→3)-D-Man 1 (B) is a potent disaccharide ligand for the bacterial lectin FimH and can thus
inhibit type 1 fimbriae-mediated bacterial adhesion to glycosylated surfaces (A). Introduction of an azobenzene aglycone moiety turns glycoside 1 into
a putative photoswitchable antagonist 2 of mannose-specific bacterial adhesion, displaying an (E)-, as well as a (Z)-form (C). In a future perspective
azobenzene glycosides such as 2 can be further functionalised to be attached to oligofunctional core molecules or immobilised on surfaces (D).

antagonists of the respective carbohydrate-specific bacterial

lectins [5]. In order to expand the scope of carbohydrate-based

antiadhesives, it has become our goal to make photoswitchable

ligands of bacterial lectins to allow blocking of bacterial adhe-

sion in a photocontrolled manner.

One of the best-known fimbriae are the type 1 fimbriae of

uropathogenic E. coli (UPEC), which comprise the α-D-

mannosyl-specific lectin FimH at the tip of the fimbrial shaft.

FimH antagonists are currently considered as new therapeutics

for the treatment of urinary tract infections [6]. The carbo-

hydrate specificity of FimH has been investigated in great detail

[7] and its structure is well-known from several X-ray studies

[8-11]. It has turned out that the 1,3-linked mannobioside α-D-

Man-(1→3)-D-Man (1, Figure 1B) is an ideal disaccharide

ligand for FimH [3,12]. All other isomeric mannobiosides do

not bind favourably to FimH. Therefore, we have designed the

respective azobenzene mannobioside 2 (Figure 1C) in order to

make a photoswitchable FimH antagonist available. Photoirra-

diation of azobenzene glycosides at ~365 nm effects E→Z

isomerisation of the N=N double bond, and thermal relaxation

or irradiation at ~450 nm leads to Z→E back isomerisation

[13,14]. In the case that the E→Z isomerisation process is high-

yielding and the lifetime of the (Z)-form of the azobenzene

glycoside is long enough, it can be employed in bacterial adhe-

sion assays independently from the more stable (E)-isomer.

Eventually, this type of azobenzene mannobioside can be

further functionalised to be attached to various supports such as

oligofunctional core molecules [15] or surfaces, to achieve

switchable adhesive surfaces in continuation of our work on

glycoarrays [16-18] (Figure 1D).

In this account, we describe the synthesis of the azobenzene

mannobioside 2 as well as of mannoside 6, investigation of their

photochromic properties, and testing of mannobioside 2 as an

inhibitor of type 1 fimbriae-mediated bacterial adhesion. Inter-

pretation of the test results was supported by computer-aided

docking studies.

Results
Synthesis of azobenzene mannobioside 2
For the preparation of azobenzene mannobioside 2, the azoben-

zene mannoside 6 was prepared first. Thus, mannosylation of

the hydroxy-functionalised azobenzene 4 by using the mannosyl
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Scheme 1: Synthesis of azobenzene mannoside 6 and azobenzene mannobioside 2 by glycosylation.

trichlororacetimidate 3 [19] led to the respective azobenzene

α-mannosides 5 in 81% yield (Scheme 1). Treatment of 5 under

Zemplén conditions [20] furnished the deprotected mannoside 6

in a basically quantitative reaction. Then, a standard protecting-

group strategy was employed to allow the synthesis of the 3-OH

unprotected mannoside 10, which is a key intermediate serving

as the glycosyl acceptor in the following disaccharide synthesis.

First, regioselective protection of the primary 6-hydroxy group

in 6 was accomplished by using TBDMS chloride in pyridine to

yield 7. Then, triethylorthoacetate was employed to make the

orthoester 8, which, without intermediate purification steps,

could be carried on in a sequence of silyl ether-deprotection

leading to the intermediate 9, acetylation of the 4- and

6-hydroxy groups, and then acid-mediated regioselective ring

opening of the 2,3-orthoester in the same pot to yield the free

3-OH azobenzene mannoside 10 in an overall yield of 43%.

Thus, the required protecting group pattern was obtained in a

highly efficient way, based on the regioselective opening of

orthoacetates to yield a vicinal arrangement of equatorial OH

and axial O-acetyl groups [21,22]. The acetylation pattern was
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Table 1: Characterisation of the (E)- and (Z)-isomers of azobenzene glycosides 6 and 2.

azobenzene
glycoside

E/Za

(GS)
E/Za

(PSS)
H-1 (ppm)
(E)-isomer

H-1 (ppm)
(Z)-isomer

UV–vis
absorption

maxima (nm)
λmax(E), λmax(Z)

half-life, τ1/2 (h)

6 99:1 3:97 5.54b 5.34b 347, 440c 89
2 95:5 4:96 5.65d 5.52d 339, 429e 178.5

aaccording to the integration ratio of H-1(E) and H-1(Z) in the 1H NMR spectrum;
b10 mM concentration in DMSO-d6;
c50 µM concentration in DMSO;
d8 mM concentration in D2O;
e65 µM concentration in H2O.

clearly confirmed by 1H NMR spectroscopy showing the

expected downfield shift for the H-3 signal resonating at

4.32 ppm (H-2: 5.30 ppm, H-4: 5.17 ppm).

Next, glycosylation of the key intermediate 10 by using the

mannosyl donor 3 gave the desired mannobioside 11 in 76%

yield. Finally, removal of the O-acetyl groups according to

Zemplén led to the unprotected 1,3-linked target mannobioside

α-D-Man-(1→3)-D-Man (2).

With the two azobenzene glycosides 6 and 2 at hand, their solu-

bility and photochromic properties were then investigated and

compared. Mannoside 6 showed only poor solubility in most

organic solvents, except for DMSO. Unfortunately, it was also

not soluble in water, or in water/DMSO mixtures, which would

allow biological testing. Mannobioside 2, on the other hand,

showed good solubility in polar organic solvents as well as in

pure water. Thus, it was amenable to biological testing in

aqueous buffer.

E→Z photoisomerisation of azobenzene mannoside 6 was

studied in DMSO, while isomerisation of azobenzene manno-

bioside 2 was performed in water. Photoirradiation was carried

out in the dark at room temperature by employing a 365 nm

LED. Photostationary states (PSS) were reached after

10 minutes of irradiation for both compounds. E→Z isomerisa-

tion was observed by both 1H NMR and UV–vis spectroscopy.

The E/Z ratios of the ground state (GS) as well as of the

photostationary state were determined on the basis of the

integration of the anomeric H-1 protons in the 1H NMR spec-

trum. Half-life were determined by UV–vis spectroscopic

observation of the thermal Z→E relaxation process (Supporting

Information File 1). The respective data are collected in

Table 1.

Fortunately, the mannobioside 2 is ideally suited for biological

testing as it is soluble in water and aqueous buffer, respectively.

Photoirradiation of the (E)-isomer leads to almost quantitative

isomerisation, and the life time of the resulting (Z)-isomer is

long enough to test this isomer independently from the more

stable (E)-form.

Biological testing of azobenzene mannobio-
side 2
As a test system for mannose-specific bacterial adhesion, fluo-

rescent GFP-transfected E. coli bacteria (pPKL1162) [23] were

employed and tested on a mannan-coated polystyrene microtiter

plate surface. In this setup the amount of bacterial adhesion

correlates with fluorescence intensity and can be quantified by

using a standard microtiter plate reader. For inhibition of

bacterial adhesion, two sets of serially diluted solutions of 2

were prepared to inhibit adhesion of fluorescing E. coli to the

mannan surface. In one case, a stock solution of (E)-2 was seri-

ally diluted, in the second case, this stock solution of (E)-2 was

irradiated for 15 minutes to obtain the pure (Z)-2 isomer for

subsequent serial dilution. The effect of both isomers as inhibi-

tors of mannose-specific bacterial adhesion was then measured

in a concentration-dependent way. From the testing results

sigmoidal inhibition curves were obtained (Supporting Informa-

tion File 1) from which IC50 values for every individual inhib-

itor were deduced. The IC50 value reflects the concentration at

which a compound inhibits 50% of bacterial adhesion to a

mannan-coated surface. The determined IC50 values were refer-

enced to the inhibitory potency of methyl α-D-mannoside

(MeMan) and p-nitrophenyl α-D-mannoside (pNPMan), res-

pectively, each tested on the same plate. Thus, relative inhib-

itory potencies (RIP values) were obtained, which allow com-

parison of inhibitory potencies of different inhibitors, even

when they were not tested in the same experiment. The testing

results collected in Table 2 show that the inhibitory power of

mannobioside 2 is roughly the same, regardless of whether its

(E)- or (Z)-form was employed. Inspection of their relative

inhibitory potencies reveals that both isomers of 2 are equally

potent inhibitors of type 1 fimbriae-mediated bacterial

adhesion, similar to the power of the well-known mannoside

pNPMan.
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Table 2: Inhibition of adhesion of E. coli to a mannan-coated surface. The inhibitory potencies of (E)- and (Z)-2 are compared to the standard inhibi-
tors MeMan and pNPMan. a

MeMan pNPMan (E)-2 (Z)-2

IC50 ± SD (mM)
5.205 ± 0.416 0.064 ± 0.018 0.073 ± 0.001

0.073 ± 0.003 0.078 ± 0.006 0.084 ± 0.002

RIP (MeMan) ± SD IP ≡ 1 81 ± 25 71 ± 1
RIP (pNPMan) ± SD IP ≡ 1 0.94 ± 0.07 0.87 ± 0.02

aAverage values from duplicate results; SD: standard deviation (from one assay); RIP: relative inhibitory potency referenced to either MeMan or
pNPMan, each tested on the same microtiter plate.

In order to support the interpretation of the obtained test results,

binding of (E)-2 and (Z)-2 to the bacterial lectin FimH was

investigated by computer-aided docking studies to get an idea

of their interactions with the carbohydrate-recognition domain

(CRD) of the lectin.

Docking of azobenzene mannobioside 2 into
the carbohydrate binding site of FimH
To visualise complexation of the (E)- and (Z)-isomers of

azobenzene mannobioside 2 within the CRD of FimH FlexX

[24-26], flexible docking and consensus scoring [27,28], as

implemented in Sybyl 6.9 [29], was employed. Docking was

based on two different X-ray structures of FimH. They differ in

the conformation of the so-called tyrosine gate at the entrance

of the CRD, formed by the side chains of Y48 and Y137. One

structure is crystallised in an “open-gate” conformation [9],

another in the “closed-gate” conformation [10]. Affinity of any

FimH ligand is improved when it exerts favourable interactions

with the tyrosine gate of FimH. Thus, this substructure is an

important feature of the rim of the carbohydrate binding site of

this lectin.

Before minimisation of the ligands, the bond angle of the N=N

double bond of the azobenzene moiety was manually set as

180° for (E)-2 and as 90° for (Z)-2 [30]. Then docking was

performed holding the FimH CRD fixed whereas the ligands

were allowed to change their conformations under the influ-

ence of the force field. A FlexX scoring value has been attri-

buted to each of the 30 obtained conformations (Table 3). This

value correlates with the binding affinity of the ligand for the

FimH CRD, more negative values suggesting higher binding

affinity than less negative ones.

Docking gave very similar results for both isomers of manno-

bioside 2, (E)-2 and (Z)-2. Scoring values based on the open-

Table 3: FlexX scoring values for the (E)- and the (Z)-isomer of 2
based on two different crystal structures in comparison to MeMan and
pNPMan.

Ligand “open-gate” structure
[9]

“closed-gate” structure
[10]

MeMan −22.5 −23.3
pNPMan −24.9 −27.4

(E)-2 −28.8 −20.4
(Z)-2 −28.7 −21.6

gate structure of FimH are almost equal (−28.8 and −28.7), and

also the scoring values obtained with the closed-gate structure

do not differ significantly (−20.4 and −21.6). Interestingly, the

predictions for pNPMan and also MeMan are the opposite,

suggesting better binding to the closed-gate conformation of

FimH, as described earlier [31]. Representative snapshots as

depicted in Figure 2 show that both isomers have the terminal

mannoside complexed within the CRD of the lectin, as

expected, and furthermore, that in both cases the azobenzene

moiety exerts effective interactions with the tyrosine gate

involving both benzene rings.

Regardless of whether the (E)- or the (Z)-form of 2 is

complexed with FimH, favourable π–π interactions can be

formed between the azobenzene moiety and the tyrosine gate at

the entrance of the CRD, though in different ways. The only

difference that is seen is that, apparently, the interactions of

mannobioside 2 with the open-gate conformation of FimH are

advantageous over those with the closed-gate form. From the

bioassay in solution phase it can certainly not be decided, which

conformation the bacterial lectin adopts to interact with com-

pound 2; however, our test results confirm that both isomers of

the azobenzene mannobioside 2 have the same power as inhibi-

tors of FimH-mediated bacterial adhesion.
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Figure 2: Connolly [32,33] descriptions of the FimH CRD with the docked azobenzene mannobioside 2. Top: (E)-isomer (A, closed-gate; B, open-gate
conformation). Bottom: (Z)-isomer (C, closed-gate; D, open-gate conformation).

Discussion
The azobenzene mannobioside 2 was selected as a photoswitch-

able inhibitor of the bacterial lectin FimH based on earlier find-

ings about the inhibitory potency of several mannobiosides

[34,35]. Its synthesis was straightforward and high-yielding. It

has very convenient photochromic properties as the E→Z

isomerisation is almost quantitative and the resulting (Z)-isomer

is especially long-lived. Both isomers are very well water-

soluble and could be independently tested as inhibitors of

mannose-specific bacterial adhesion and showed an equal and

high inhibitory potency in the range of the well-known high-

affinity inhibitor p-nitrophenyl α-D-mannoside (pNPMan). This

result can be rationalised by computer docking, showing that

regardless of the configuration of the N=N double bond of the

azobenzene moiety in 2, favourable interactions can be formed

with the tyrosine gate of the FimH CRD. While the terminal

mannoside portion is complexed in the carbohydrate binding

site, the first mannoside does not add significantly to the

affinity and this is in accordance with other studies on the com-

plexation of oligosaccharides by FimH [11]. However, this

mannose ring acts as a spacer moiety, sticking out straight from

the CRD and placing the azobenzene portion in an orientation

that allows flexible interactions with the tyrosine gate at the

entrance of the carbohydrate binding site of the lectin.

Apparently, the affinity of 2 to the open-gate form of FimH is

higher than to the closed-gate conformation, a finding that

differs from many other docked FimH ligands. Here, the higher

affinity for the open-gate FimH can be explained by strong π–π

stacking of the first aromatic ring of the azobenzene unit with

the tyrosine gate.

As both isomers of 2 interact equally well with FimH, they

can’t be used to switch type 1 fimbriae-mediated bacterial adhe-

sion in solution. On the other hand, the obtained results support

the idea to immobilise the azobenzene mannobioside on a solid

support to photocontrol the adhesive properties of the resulting

surface. In this approach the azobenzene N=N double bond can

be used as a hinge region to bend down the terminal mannose

moiety of the compound, which is critical for specific bacterial
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adhesion. Thus, upon E→Z isomerisation, the ligand will no

longer be available for the interaction with the FimH-termi-

nated type 1 fimbriae that mediate adhesion. In this approach,

the second mannose moiety of the mannobioside is important

both to mediate hydrophilicity and to intensify the steric effect

that photoswitching has on the exposition of the terminal

mannoside.

Conclusion
The azobenzene mannosides presented herein resemble a struc-

ture quite similar to biaryl mannosides, which have been intro-

duced lately and shown to be of medical relevance as FimH

antagonists [6]. Thus, our novel “sweet switches” [15] appear to

be highly promising FimH ligands, with the additional feature

of a photoswitchable moiety. The biomedicinal potential of

azobenzene glycosides seems even higher when their favour-

able physiological properties are considered, such as low

toxicity [36] and receptor specificity of the azobenzene aglycon

[37]. It will be our next goal to employ derivatives of azoben-

zene mannobioside 2  for immobilisation to test the

photoswitching of adhesion on surfaces.

Experimental
Materials and general methods
p-Hydroxyazobenzene was purchased from Sigma Aldrich and

used without further purification. Moisture-sensitive reactions

were carried out under nitrogen in dry glassware. Thin-layer

chromatography was performed on silica-gel plates (GF 254,

Merck). Detection was effected by UV and/or charring with

10% sulfuric acid in EtOH followed by heat treatment at

~180 °C. Flash chromatography was performed on silica gel 60

(Merck, 230–400 mesh, particle size 0.040–0.063 mm) by using

distilled solvents. Optical rotations were measured with a

Perkin-Elmer 241 polarimeter (sodium D-line: 589 nm, length

of cell: 1 dm) in the solvents indicated. 1H and 13C NMR

spectra were recorded on Bruker DRX-500 and AV-600 spec-

trometers at 300 K. Chemical shifts are reported relative to

internal tetramethylsilane (δ = 0.00 ppm) or D2O (δ =

4.76 ppm). Full assignment of the peaks was achieved with the

aid of 2D NMR techniques (1H/1H COSY and 1H/13C HSQC).

IR spectra were measured with a Perkin Elmer FT-IR Paragon

1000 (ATR) spectrometer. ESI mass spectra were recorded on

an Esquire-LC instrument from Bruker Daltonics. MALDI-TOF

mass spectra were recorded on a Bruker Biflex III instrument

with 19 kV acceleration voltage, and 2,5-dihydroxybenzoic acid

(DHB) was used as the matrix. UV–vis absorption spectra were

performed on Perkin-Elmer Lambda-241 or Varian Cary-5000

at a temperature of 18 ± 1 °C. Photoirradiaton was carried out

by using a LED (emitting 365 nm light) from the Nichia

Corporation (NC4U133A) with a FWHM of 9 nm and an

optical power output (Po) ~ 1 W.

For NMR assignments the following numbering was used:

(E)-p-(Phenylazo)phenyl 2,3,4,6-tetra-O-acetyl-α-D-

mannopyranoside (5). To a solution of the mannosyl donor 3

(5.00 g, 10.2 mmol) and p-hydroxyazobenzene (4, 2.01 g,

10.2 mmol) in dry CH2Cl2 (100 mL) BF3·etherate (1.88 mL,

15.2 mmol) was added at 0 °C under N2 atmosphere, and the

reaction mixture was stirred at this temperature for 15 min.

Then, stirring was continued at rt for about 6 h, and then the

reaction was quenched by the addition of satd. aq. NaHCO3

solution (50 mL). The phases were separated, the aqueous phase

was extracted with CH2Cl2 (2 × 150 mL), and the combined

organic phases were dried over MgSO4. This was filtered, and

the filtrate was concentrated under reduced pressure. Purifica-

tion of the crude product by column chromatography (cyclo-

hexane/ethyl acetate, 3:1) gave the title glycoside 5 as an orange

crystalline solid (4.33 g, 8.19 mmol, 81%). Mp 53–55 °C; Rf

0.35 (cyclohexane/ethyl acetate 2:1); [α]20
D +0.86 (c 0.9,

DMSO); 1H NMR (500 MHz, CDCl3) δ 7.92 (d, J = 9.0 Hz,

2H, H-9, H-11), 7.89 (d, J = 8.5 Hz, 2H, H-14, H-18),

7.53–7.45 (m, 3H, H-15, H-16, H-17), 7.23 (d, J = 9.0 Hz, 2H,

H-8, H-12), 5.62 (d, J1,2 = 1.8 Hz, 1H, H-1), 5.58 (dd, J2,3 =

3.6 Hz, J3,4 = 10.1, 1H, H-3), 5.49 (dd, J1,2 = 1.8 Hz, J2,3 =

3.6 Hz, 1H, H-2), 5.39 (dd~t, J3,4 = J4,5 = 10.0 Hz, 1H, H-4),

4.30 (dd, J5,6a = 5.4 Hz, J6a,6b = 12.0 Hz, 1H, H-6a), 4.14–4.07

(m, 2H, H-5, H-6b), 2.21, 2.06, 2.05, 2.03 (each s, each 3H, 4

OAc); 13C NMR (125 MHz, CDCl3) δ 170.5, 169.9, 169.9,

169.7 (4 C=O), 157.6 (C-7), 152.6 (C-13), 148.4 (C-10), 130.8

(C-16), 128.9 (C-15, C-17), 124.6 (C-9, C-11), 123.1 (C-14,

18), 116.8 (C-8, C-12), 95.7 (C-1), 69.4 (C-5), 69.3 (C-2), 68.8

(C-3), 65.9 (C-4), 62.1 (C-6), 20.9, 20.7, 20.7, 20.6 (4 COCH3);

IR (ATR) : 2929, 1743, 1598, 1496, 1366, 1209, 1029 cm−1;

ESIMS (m/z): [M + Na]+ calcd for C26H28N2O10, 551.5; found,

551.1.

(E)-p-(Phenylazo)phenyl α-D-mannopyranoside (6). To a

solution of the acetyl-protected glycoside 5 (600 mg,

1.14 mmol) in dry MeOH (6 mL), a catalytic amount of solid

NaOMe was added under N2 atmosphere, and the reaction mix-

ture was stirred for 5 h at rt. Then it was neutralized with

Amberlite IR 120 ion-exchange resin and filtered. The filtrate

was evaporated under reduced pressure to yield the deprotected
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mannoside 6 as a pale yellow solid (393 mg, 1.09 mmol, 96%).

Mp 183–185 °C; Rf 0.34 (ethyl acetate/MeOH 4:1); [α]20
D

+1.40 (c 1.0, DMSO); 1H NMR (500 MHz, DMSO-d6) δ 7.86

(d, J = 8.7 Hz, 2H, H-9, H-11), 7.82 (d, J = 7.7 Hz, 2H, H-14,

H-18), 7.53–7.45 (m, 3H, H-15, H-16, H-17), 7.26 (d, J =

8.7 Hz, 2H, H-8, H-12), 5.53 (bs, 1H, H-1), 3.89 (dd~bs, 1H,

H-2), 3.73 (dd, J3,4 = 9.2 Hz, J3,2 = 3.0 Hz, 1H, H-3), 3.58–3.47

(m, 3H, H-6a, H-4, H-6b), 3.38 (mc, 1H, H-5); 13C NMR

(125 MHz, DMSO-d6) δ 158.9 (C-7), 155.5 (C-13), 151.9

(C-10), 130.9 (C-16), 129.4 (C-15, C-17), 124.3 (C-9, C-11),

122.3 (C-14, C-18), 117.1 (C-8, C-12), 98.7 (C-1), 75.2 (C-5),

70.6 (C-3), 69.9 (C-2), 66.6 (C-4), 60.9 (C-6); UV, λmax:

347 nm; ε = 25907 ± 529 L × mol−1 × cm−1; IR (ATR) : 3337,

2920, 1599, 1584, 1496, 1227 cm−1; MALDI-TOFMS (m/z):

[M + H]+ calcd for 361.36; found, 361.21; anal. calcd for

C18H20N2O6: C, 59.99; H, 5.59; N, 7.77; found: C, 61.07; H,

5.80; N, 8.07.

NMR spectroscopic data for (Z)-6. 1H NMR (500 MHz,

DMSO-d6) δ 7.32 (t, J = 7.8 Hz, 2H, H-15, H-17), 7.18 (t, J =

7.4 Hz, 1H, H-16), 6.97 (d, J = 8.9 Hz, 2H, H-9, H-11), 6.82

(dd, J = 8.2 Hz, J = 6.7 Hz, 4H, H-8, H-12, H-14, H-18), 5.32

(d, J1,2 = 1.6 Hz, 1H, H-1), 3.77 (dd, J2,3 = 3.1 Hz, J1,2 =

1.9 Hz, 1H, H-2), 3.62 (dd, J3,4 = 9.3 Hz, J3,2 = 3.3 Hz, 1H,

H-3), 3.52 (dd, J5,6a = 2.1 Hz, J6a,6b= 11.8 Hz, 1H, H-6a),

3.48–3.36 (m, 2H, H-4, H-6b), 3.31 (ddd, J4,5 = 9.4 Hz, J5,6a =

5.8 Hz, J5,6b = 2.1 Hz, 1H, H-5); 13C NMR (125 MHz, DMSO-

d6) δ 155.4 (C-7), 153.8 (C-13), 147.3 (C-10), 129.1 (C-15,

C-17), 127.0 (C-16), 122.5 (C-8, C-12), 119.4 (C-14, C-18),

116.7 (C-9, C-11), 98.7 (C-1), 74.8 (C-5), 70.3 (C-3), 69.7

(C-2), 66.3 (C-4), 60.7 (C-6); UV, λmax: 440 nm, ε = 2635 ± 76

L × mol−1 × cm−1.

(E)-p-(Phenylazo)phenyl 6-O-tert-butyldimethylsilyl-α-D-

mannopyranoside (7). To a solution of the azobenzene

mannoside 6 (3.00 g, 8.33 mmol) in pyridine (30.0 mL) tert-

butyldimethylchlorosilane (1.38 g, 9.17 mmol) was added and

the reaction mixture was stirred at rt for 18 h, after which TLC

showed complete consumption of the starting material. The

reaction was quenched with MeOH (2.0 mL) and further diluted

with ethyl acetate (150 mL). Then it was washed with satd. aq.

NaHCO3 solution (30 mL) and the aqueous phase extracted

with ethyl acetate (2 × 50 mL). The combined organic phases

were dried over MgSO4 and filtered, and the filtrate concen-

trated under reduced pressure to obtain the crude product. Puri-

fication by flash column chromatography (CH2Cl2/MeOH 3:7)

gave the title compound as a dark orange solid (3.16 g,

6.66 mmol, 80%). Mp 74 °C; Rf 0.59 (CH2Cl2/MeOH 7:1);

[α]20
D +73 (c 0.97, MeOH); 1H NMR (500 MHz, MeOH-d4) δ

7.94–7.88 (m, 4H, H-9, H-11, H-14, H-18), 7.57–7.49 (m, 3H,

H-15, H-16, H-17), 7.30 (d, J = 9.0 Hz, 2H, H-8, H-12), 5.62 (d,

J1,2 = 1.7 Hz, 1H, H-1), 4.08 (dd, J1,2 = 1.8 Hz, J2,3 = 3.4 Hz,

1H, H-2), 3.98 (dd, J5,6a = 1.8 Hz, J6a,6b = 11.2 Hz, 1H, H-6a),

3.94 (dd, J2,3 = 3.5 Hz, J3,4 = 9.1 Hz, 1H, H-3), 3.82 (dd, J5,6b

= 6.5 Hz, J6a,6b = 11.3 Hz, 1H, H-6b), 3.71 (t, J = 9.4 Hz, 1H,

H-4), 3.65 (mc, 1H, H-5), 0.83 (s, 9H, tert-butyl), 0.04, 0.05

(each s, each 3H, 2 Si-CH3) ppm; 13C NMR (125 MHz, MeOH-

d4) δ 160.4 (C-7), 154.1 (C-13), 149.18 (C-10), 131.8 (C-16),

130.2 (C-15), 125.5 (C-17), 123.6 (C-9), 118.2 (C-11), 100.0

(C-1), 76.2 (C-5), 72.3 (C-2), 71.7 (C-3), 68.6 (C-4), 64.4 (C-6),

26.4 (C(CH3)3), 19.1 (C(CH3)3), −5.13 (2 Si-CH3) ppm; IR

(ATR) : 3337, 2928, 1599, 1498, 1229, 1006, 685 cm−1;

ESIMS (m/z): [M + Na]+ calcd for C24H34N2O6Si, 497.1;

found, 497.2;.

(E)-p-(Phenylazo)phenyl 6-O-tert-butyldimethylsilyl-2,3-O-

(ethylorthoacetyl)-α-D-mannopyranoside (8). To a solution

of mannoside 7 (500 mg, 1.05 mmol) in toluene (8.0 mL),

triethylorthoacetate (773 µL, 4.22 mmol) and a catalytic amount

of p-toluenesulfonic acid were added at rt, and the reaction mix-

ture was stirred for 3.5 h, after which TLC showed complete

consumption of the starting material. Then, it was neutralised

with triethylamine (100 µL), and the solution was diluted with

water (10 mL). It was extracted with toluene (2 × 20 mL), and

the extract was concentrated under reduced pressure to get

crude 8 (600 mg) as a red viscous syrup, which was used in the

next reaction step without further purification.

(E)-p-(Phenylazo)phenyl 2,3-O-(ethylorthoacetyl)-α-D-

mannopyranoside (9). The crude intermediate 8 (600 mg) was

dissolved in CH2Cl2 (6.0 mL), tetrabutylammonium fluoride

(1 M solution in THF, 1.68 mL) was added, and the reaction

mixture was stirred at rt for 4 h, after which TLC showed

complete consumption of the starting material. Then, it was

concentrated under reduced pressure to obtain crude 9 as a dark

red viscous syrup (594 mg), which was used in the next reac-

tion step without further purification.

(E ) -p - (Phenylazo)phenyl  2 ,4 ,6 - tr i -O -acety l -α -D-

mannopyranoside (10). The crude orthoester-protected

mannoside 9 (594 mg) was dissolved in pyridine (2.5 mL), and

acetic anhydride (1.26 mL) was added for O-acetylation. The

reaction mixture was stirred at rt for 3 h. Then, pyridine was

removed under reduced pressure, and the residue was dissolved

in ethyl acetate (20 mL) and washed with satd. aq. NaHCO3

solution (10 mL). The aqueous phase was extracted with ethyl

acetate (2 × 25 mL), the combined organic phases were dried

over Na2SO4 and filtered, and the filtrate concentrated was

under reduced pressure to obtain a syrupy intermediate. It was

dissolved in 80% acetic acid (2.5 mL), and the mixture was

stirred at rt for 1.5 h to effect regioselective cleavage of the

orthoester. Then, ethyl acetate (50 mL) was added and the
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organic layer was washed with water (5 mL) and dried over

MgSO4. It was filtered, and the filtrate was evaporated to obtain

the crude product, which purified by column chromatography

(cyclohexane/ethyl acetate 2:1) to yield the free 3-OH title

mannoside 10 as a bright orange solid (220 mg, 0.453 mmol,

43% over three steps). Mp 144–146 °C; Rf 0.21 (cyclohexane/

ethyl acetate); [α]20
D +70 (c 0.96, CH2Cl2); 1H NMR

(500 MHz, CDCl3) δ 7.92 (d, J = 8.9 Hz, 2H, H-9, H-11), 7.89

(d, J = 7.9 Hz, 2H, H-14, H-18), 7.53–7.44 (m, 3H, H-15, H-16,

H-17), 7.19 (d, J = 8.9 Hz, 2H, H-8, H-12), 5.69 (d, J1,2 =

1.4 Hz, 1H, H-1), 5.30 (dd, J1,2 = 1.7 Hz, J2,3 = 3.8 Hz, 1H,

H-2), 5.17 (t, J = 10.0 Hz, 1H, H-4), 4.32 (m, 2H, H-3, H-6a),

4.11 (dd, J5,6b = 2.2 Hz, J6a,6b = 12.4 Hz, 1H, H-6b), 4.05 (mc,

1H, H-5), 2.23, 2.15, 2.03 (each s, each 3H, 3 OAc), 1.62 (bs,

OH) ppm; 13C NMR (150 MHz, CDCl3) δ 171.3, 170.6, 170.4

(3 COCH3), 157.7 (C-7), 152.6 (C-13), 148.3 (C-10), 130.8

(C-16), 129.1 (C-15, C-17), 124.6 (C-9, C-11), 122.7 (C-14,

C-18), 116.7 (C-8, C-12), 95.42 (C-1), 71.99 (C-2), 69.14 (C-5),

69.04 (C-4), 68.47 (C-3), 62.15 (C-6), 20.97, 20.91, 20.69 (3

COCH3) ppm; IR (ATR) : 3453, 2961, 1737, 1228, 1023,

798 cm−1; ESIMS (m/z): [M + H]+ calcd for C24H26N2O9,

509.1; found, 509.2.

(E)-p-(Phenylazo)phenyl 3-O-(2,3,4,6-tetra-O-acetyl-α-D-

mannopyranosyl)-2,4,6-tri-O-acetyl-α-D-mannopyranoside

(11). The 3-OH unprotected mannoside 10 (50 mg, 103 µmol)

and the mannosyl donor 3 (101 mg, 206 µmol) were dissolved

in dry CH2Cl2 (10 mL), and the mixture was cooled to −10 °C

under N2 atmosphere. To this ice-cooled solution BF3·etherate

(13 µL, 108 µmol) was added and the mixture was stirred at

0 °C for about 30 min. Then, the reaction mixture was allowed

to warm to rt and stirred for another 4 h. The reaction mixture

was then quenched by the addition of a catalytic amount of

solid NaHCO3 and concentrated under reduced pressure to

obtain the crude product as a dark reddish-brown syrup. Purific-

ation by column chromatography (CH2Cl2/ethyl acetate 8:2)

gave the acetyl-protected mannobioside 11 as a pale yellow

solid (64 mg, 78 µmol, 76%). Mp 84–85 °C; Rf 0.57 (CH2Cl2/

ethyl acetate 8:2); [α]20
D +103 (c 0.86, CH2Cl2); 1H NMR

(500 MHz, CDCl3) δ 7.92 (d, J = 9.0 Hz, 2H, H-9, H-11), 7.89

(d, J = 7.1 Hz, 2H, H-14, H-18), 7.46–7.38 (m, 3H, H-15, H-16,

H-17), 7.18 (d, J = 9.0 Hz, 2H, H-8, H-12), 5.65 (d, J1,2 =

1.7 Hz, 1H, H-1), 5.46 (dd, J1,2 = 1.8 Hz, J2,3 = 3.5 Hz, 1H,

H-2), 5.40 (t, J = 10.1 Hz, 1H, H-4′), 5.30 (mc, 1H, H-3′), 5.26

(mc, 1H, H-4), 5.09 (d, J1,2 = 1.7 Hz 1H, H-1′), 5.06 (dd, J1,2 =

1.9 Hz, J2,3 = 2.9 Hz, 1H, H-2′), 4.41 (dd, J2,3 = 3.5 Hz, J3,4 =

9.9 Hz, 1H, H-3), 4.30 (dd, J5,6b = 6.3 Hz, J6a,6b = 12.7 Hz, 1H,

H-6a), 4.24 (dd, J5′,6b′ = 5.8 Hz, J6a′,6b′ = 12.3 Hz, 1H, H-6a′),

4.14–4.10 (m, H-5′, H-6b), 4.08 (dd, J5,6a = 2.4 Hz, J6a,6b =

12.3 Hz, 1H, H-6b), 3.99 (ddd, J4,5 = 10.2 Hz, J5,6a = 2.3 Hz,

J6a,6b = 5.8 Hz, 1H, H-5), 2.20, 2.09, 2.08, 2.03, 2.00, 1.97,

1.94 (each s, each 3H, 7 OAc) ppm; 13C NMR (125 MHz,

CDCl3) δ 170.6, 170.5, 170.4, 170.0, 169.9, 169.8, 169.6 (7

COCH3), 157.4 (C-7), 152.6 (C-13), 148.4 (C-10), 130.8

(C-16), 129.1 (C-15, C-17), 124.6 (C-9, C-11), 122.71 (C-14,

C-18) 116.7 (C-8, C-12), 99.1 (C-1′), 95.6 (C-1), 74.8 (C-3),

70.8 (C-2), 69.9 (C-2′), 69.9, 69.6 (C-5, C-5′), 68.3 (C-4), 67.4

(C-4′), 65.9 (C-3′), 62.5, 62.7 (C-6, C-6′), 20.9, 20.8, 20.7, 20.7,

20.7, 20.6, 20.6 (7 COCH3) ppm; IR (ATR) : 1743, 1213,

1032, 838 cm−1; ESIMS (m/z): [M + Na]+ calcd for

C38H44N2O18, 839.3; found, 839.2.

(E)-p-(Phenylazo)phenyl 3-O-(α-D-mannopyranosyl)-α-D-

mannopyranoside (2). The acetyl-protected disaccharide 11

(50 mg, 61.2 µmol) was dissolved in dry MeOH (2 mL) and a

catalytic amount of solid NaOMe was added under N2 atmos-

phere. The reaction mixture was stirred for 5 h at rt, and then it

was neutralized with Amberlite IR 120 ion-exchange resin. It

was then filtered and thoroughly washed with MeOH (2 ×

20 mL), and the filtrate was evaporated to obtain the crude pro-

duct, which after purification by flash column chromatography

(CH2Cl2/methanol 9:1) gave the final mannobioside 2 as a pale

yellow solid (29.3 mg, 56.1 µmol, 92%). Mp 107–109 °C; Rf

0.08 (CH2Cl2/MeOH 9:1); [α]20
D +18.4 (c 0.48, MeOH);

1H NMR (500 MHz, D2O) δ 7.81 (d, J = 8.2 Hz, 2H, H-9,

H-11), 7.75 (d, J = 7.4 Hz, 2H, H-14, H-18), 7.53–7.49 (m, 3H,

H-15, H-16, H-17), 7.24 (d, J = 8.3 Hz, 2H, H-8, H-12), 5.65 (s,

1H, H-1), 5.16 (s, 1H, H-1′), 4.29 (mc, 1H, H-2), 4.14 (dd, J2,3

= 3.1 Hz, J3,4 = 10.3 Hz, 1H, H-3′), 4.06 (mc, 1H, H-2′),

3.89–3.81 (m, 3H, H-3, H-4, H-4′), 3.79–3.62 (m, 6H, H-6a,

H-6b, H-5, H-5′, H-6a′, H-6b′) ppm; 13C NMR (125 MHz,

D2O) δ 158.2 (C-7), 151.3 (C-13), 148.2 (C-10), 131.4 (C-16),

129.6 (C-15, C-17), 124.4 (C-9, C-11), 122.2 (C-14, C-18),

117.3 (C-8, C-12), 102.4 (C-1′), 97.8 (C-1), 77.9 (C-3′), 73.8

(C-5), 73.5 (C-3), 70.5 (C-4′), 70.1 (C-2′), 69.5 (C-2), 66.9

(C-5′), 65.9 (C-4), 61.1 (C-6), 60.6 (C-6′) ppm; IR (ATR) :

3318, 2927, 1599, 1231, 1007, 685 cm−1; MALDI-TOFMS

(m/z): [M + Na]+ calcd for C24H30N2O11, 545.18; found,

545.17; UV, λmax: 339 nm, ε = 14776 ± 729 L × mol−1 × cm−1;

anal. calcd for C24H30N2O11 × 1.1 H2O: C, 52.11; H, 6.09; N,

5.07; found: C, 52.04; H, 5.79; N, 5.06.

NMR-spectroscopic data for (Z)-2. 1H NMR (500 MHz, D2O)

δ 7.32 (t, J = 7.1 Hz, 2H, H-15, H-17), 7.24 (t, 1H, H-16), 7.00

(dd, J = 1.9 Hz, J = 8.9 Hz, 2H, H-9, H-11), 6.95 (dd, J =

1.9 Hz, J = 8.9 Hz, 2H, H-8, H-12), 6.91 (dd, J = 1.3 Hz, J =

7.8 Hz, 2H, H-14, H-18), 5.52 (s, 1H, H-1), 5.12 (s, 1H, H-1′),

4.22 (mc, 1H, H-2), 4.07 (mc, 1H, H-3′), 4.03 (dd, J1,2 = 1.7 Hz,

J2,3 = 3.2 Hz, 1H, H-2′), 3.85–3.82 (m, 2H, H-3, H-4),

3.79–3.59 (m, 7H, H-4′, H-6a, H-6b, H-5, H-5′, H-6a′, H-6b′)

ppm; 13C NMR (125 MHz, D2O) δ 155.3 (C-7), 153.5 (C-13),

146.9 (C-10), 129.2 (C-15, C-17), 128.2 (C-16), 123.4 (C-8,
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C-12), 120.3 (C-14, C-18), 116.9 (C-9, C-11), 102.4 (C-1′),

97.8 (C-1), 77.8 (C-3′), 73.7 (C-5), 73.4 (C-3), 70.4 (C-4′), 70.1

(C-2′), 69.4 (C-2), 66.8 (C-5′), 65.9 (C-4), 61.0 (C-6), 60.6

(C-6′) ppm; UV, λmax: 429 nm, ε = 1699 ± 68 L × mol−1 ×

cm−1.
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