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Abstract
Combinatorial sequence optimization for protein design requires libraries of discrete side-chain
conformations. The discreteness of these libraries is problematic, particularly for long, polar side
chains, since favorable interactions can be missed. Previously, an approach to loop remodeling
where protein backbone movement is directed by side-chain rotamers predicted to form
interactions previously observed in native complexes (termed “motifs”) was described. Here, we
show how such motif libraries can be incorporated into combinatorial sequence optimization
protocols and improve native complex recapitulation. Guided by the motif rotamer searches, we
made improvements to the underlying energy function, increasing recapitulation of native
interactions. To further test the methods, we carried out a comprehensive experimental scan of
amino acid preferences in the I-AniI protein–DNA interface and found that many positions
tolerated multiple amino acids. This sequence plasticity is not observed in the computational
results because of the fixed-backbone approximation of the model. We improved modeling of this
diversity by introducing DNA flexibility and reducing the convergence of the simulated annealing
algorithm that drives the design process. In addition to serving as a benchmark, this extensive
experimental data set provides insight into the types of interactions essential to maintain the
function of this potential gene therapy reagent.
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Introduction
Advances in structural modeling algorithms for protein–DNA complexes lay the
groundwork for functional predictions of these classes of interactions and engineering
efforts. For example, accurate determination of binding specificity preferences for native
complexes1,2 and estimations of the contributions of individual amino acids to the energetics
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of an interface3 can promote a better understanding of protein–DNA complexes and
facilitate the next step: the computational refactoring of these properties for the development
of tools for numerous biotechnology applications. 4,5 Improved computational methods have
the capability to address the limitations of sampling size and significant experimental effort
that constrain traditional combinatorial screening approaches6–8 for engineering novel
protein–DNA interactions. Currently, the main focus of protein–DNA interface engineering
efforts is the reprogramming of DNA substrate specificity to alter binding or cleavage
locations in a genome.9 Promising platforms for generation of genome-specific cleavage
reagents are zinc-finger nucleases,10 TALE nucleases,11 and homing endonucleases or
meganucleases. 12 While there are a number of diverse experimental protocols to
accomplish this engineering goal,6–8 the utilization of computational methods has been
shown to complement and improve the efficiency of the experimental methods by guiding
library design or providing a starting place for directed evolution.13–15

The ROSETTA macromolecular modeling and design suite16 has been used for developing
homing endonucleases with novel specificities.9,17–19 ROSETTA depends on a physically
based energy function working in conjunction with a simulated annealing sampling
algorithm to identify mutations in a protein that are likely to drive the formation of
favorable, sequence-specific protein–DNA interactions. 20 The general method for protein
design with a fixed protein and DNA backbone involves a search of protein sequence and
rotameric space to identify the predicted lowest-energy set of amino acid identities and
conformations. Redesign for a specific DNA sequence change consists of substitution of the
nucleotide type in the crystal structure DNA followed by redesign and repacking (search of
rotameric, but not sequence space) of the amino acids surrounding this nucleotide change. A
recent improvement to the ROSETTA modeling of protein–DNA interactions was the
incorporation of backbone flexibility on both sides of the interface, improving specificity
predictions.1 Backbone flexibility provides a way to further diversify design results over the
standard, fixed-backbone approximation available in release versions of ROSETTA. While
the use of ROSETTA has resulted in a number of endonucleases with successfully altered
specificities, 9,17–19 consistent recapitulation of experimental data has proven
challenging,17,19 suggesting that many potentially successful designs are being overlooked
by current algorithms.

In this work, we developed methods for exploring energetically relevant sequence diversity
in order to produce designs enriched in amino acids making native-like interactions with the
DNA bases. These new methods are potentially valuable for guiding design of libraries for
experimental engineering methods, and their success was evaluated by comparison to a
newly collected experimental data set. The Research Collaboratory for Structural
Bioinformatics (RCSB) Protein Data Bank (PDB)21 contains within it a wealth of
information in the form of the distances and geometries of protein–DNA interactions
(“motifs”) present in native complexes (Fig. 1). This information was incorporated into the
ROSETTA design process. Previously, motifs had been used to direct protein backbone
sampling,22,23 and in this new implementation, they are used to bias both sampling and
energetics of amino acid rotameric states in the context of a fixed protein backbone.
Comparisons of designs with and without these native interactions helped guide energy
function improvements. New protocols for increased diversity generation included
differential energetic and sequence-space biasing for rotamers capable of forming canonical
motif contacts, simulations with flexible DNA,1 and reducing the convergence of the
simulated annealing algorithm. The resulting predictions were analyzed in the context of
sequence recovery benchmarks and a newly generated comprehensive experimental data set
that identified the tolerated sequence variation at 44 positions in one protein–DNA interface.
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Results
Improving sequence recovery with motifs

A library of canonical amino acid–base interactions, referred to as motifs, was collected
from protein–DNA complexes available in the PDB (Fig. 1). Rotameric conformations of
amino acid side chains capable of forming interactions seen in that motif library were
identified through a newly developed search process (Fig. 2). This process scores the
rotamers based on the distance between a canonical base placed in the motif-forming
location and the closest base of the same type in the crystal structure. The rotamers that can
form motif interactions, identified by a small distance between the canonical base and the
crystal structure base, are added, with an energetic bonus, to the rotamer set used by the
standard, fixed-backbone ROSETTA design protocol. The size of the rotamer library used in
standard design calculations is limited due to computational considerations, and this search
process allows assessment of many more rotamers than could normally be included. While
only a small fraction of the screened rotamers are added to the rotamer library—the
procedure is limited to 100 extra rotamers of each amino acid type at each position—the
incorporation of these interaction-biased side chains provides a way to increase exploration
in areas of sequence and rotameric space that are most likely to result in the formation of
native-like contacts.

In order to analyze the effect on design of adding these motif-biased rotamers and determine
the optimal bonus value for them, we carried out calculations for a set of 112 protein–DNA
co-crystal structures. This set was divided into a training set of 48 proteins and a test set of
64 proteins for assessing the validity of protocol optimizations found to improve results for
the training set. The sequence recovery for this test set, analyzed by two metrics (“weighted”
and “unweighted” recovery), is shown in Fig. 3a for a range of motif bonus values. The
addition of motif rotamers was found to improve the sequence recovery for both recovery
metrics, across multiple variants of the ROSETTA energy function (Fig. 3a). Examining
sequence recovery as a function of the motif bonus term revealed that low bonuses generally
give the best results. Values of −1.25 or −2.50 ROSETTA energy units (REUs; most closely
correlated with kilocalories per mole24), depending on the other scoring parameters and the
recovery metric, resulted in optimal recovery. Higher bonus values have reduced recovery
due to the incorporation of motif rotamers without regard to other energy function terms.
The motif bonus resulting in the highest sequence recovery for the weighted metric was
slightly less than that for the unweighted metric. The unweighted metric counts every
designed position equally and is thus subject to a bias favoring incorporation of the amino
acid types most commonly found in protein–DNA interfaces (such as those types in the
motif library). The weighted metric is an average over the recoveries for each amino acid
type and free from biases in the amino acid composition of the interface positions.
Accordingly, the very high motif bonus values were less detrimental to unweighted
recovery, which benefited from biases toward abundant amino acid types, than to the
weighted metric.

Optimization of the ROSETTA energy function
We next used the motif-biased design results to guide optimization of the ROSETTA energy
function, improving sequence recovery significantly over “Standard” scoring. The complete
set of modifications to the energy function resulted in a high unweighted recovery of 50.7%
with motifs added, an increase of 20% over the initial “Standard” recovery of 29.6% with no
motif rotamers or optimization (Fig. 3a and Table S1). The recovery pattern and the
magnitude of the differences in recovery observed for this test set are similar to those
changes seen for the training set, over the same iterations of the energy function (Fig. S1).

Thyme et al. Page 3

J Mol Biol. Author manuscript; available in PMC 2013 June 08.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Of these scoring improvements, many were implemented specifically for modeling of
protein–DNA interactions, such as increase in the stringency of the hydrogen-bonding
model and correction of the ROSETTA phosphorous desolvation25 parameter (Fig. 3a).1

The combination of this corrected solvation model and the increased hydrogen bond
stringency provides over 8% of the total 20% improvement in unweighted recovery. The
change having the next largest effect was the replacement of the database-derived, residue-
pair potential (the fa_pair term) with a simple, short-range explicit electrostatics term. 1

Recoveries with only this “Electrostatics” modification are shown in Fig. 3a. Both the
electrostatics model and the motif bonus favor charged interactions—charged residues are
overrepresented in the motif library due to their abundance at protein–DNA interfaces—thus
a higher motif weight is less beneficial in the presence of the electrostatics model (Fig. 3a,
comparing “Phosphorous Desolvation” to “Electrostatics”). The “Final” optimized scoring
function garners further improvements in recovery of over 4% unweighted (1.7% weighted).
This finalized scoring function is a composite of several smaller improvements, the
individual effects of which are detailed in the supplement (Figs. S2–S5). These changes are
(1) a modification to the solvation model (lk_ball), introduced by Yanover and Bradley,1 in
which desolvation contributions for polar atoms are dependent on the relative orientation of
the desolvating atom; (2) the modification of desolvation parameters for atom types found in
asparagine, glutamine, lysine, and arginine amino acids; (3) an increased weight of the
attractive (fa_atr) scoring term; (4) an increased positive charge for the lysine NH3 group as
a proxy for an inability in ROSETTA to differentially weight hydrogen-bonding types; and
(5) an optimization of the amino-acid-specific reference energies.

This optimization of the ROSETTA energy function was guided in part by analyzing the
biases in the sequence recovery results. Examining the ratio of the number of times an
amino acid was designed to the number of times it is found in the initial population reveals
amino acid types that are underrepresented and overrepresented by the design process. All
modifications to the desolvation terms, as well as the increased positive charge of lysine,
were prompted by a low recovery of those amino acid types and a corresponding low
representation of these types in the designs completed using the energy function with only
the electrostatics term added. The sequence recoveries and amino acid ratios leading to and
resulting from each modification are detailed in Figs. S2–S5. Optimization of the amino-
acid-specific reference energies, representing the average energy of the residue in the
unfolded state, was also guided by looking for biases in the distribution of designed amino
acids.

In addition to correcting biases in amino acid composition, a comparison between designs
completed with and without motifs highlighted the energy terms most in need of
optimization. The sequence recoveries of designs with a bonus on motifs were higher than
those without the added motif rotamers. Determination of those energy terms that were
offset by the motif bonus helped guide our energy function optimization. If a motif rotamer
of the native amino acid type is incorporated in a design and more closely matches the wild-
type rotamer than an incorrectly designed rotamer without a motif bonus, the differences in
energy terms between the motif rotamer and the incorrect rotamer can illuminate what terms
are responsible for favoring the incorrect rotamer. This analysis was completed over the
entire set of 112 designed interfaces, and the results for the “Phosphorous Desolvation” and
“Final (“Optimized”)” weight sets are shown in Fig. 3b. Energy differences with a positive
value are the ones being offset by the motif bonus for the more correct rotamer choice. For
the starting energy function, the two energy terms that are positively shifted are the solvation
(fa_sol) and rotamer probability26 (fa_dun). The final energy function indicates that the
design failures associated with a solvation penalty were significantly corrected by a
combination of the modifications to desolvation terms and the addition of the orientation-
dependent solvation model. Ways to correct the remaining penalty associated with the
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rotamer probability term are currently under study. These findings correlate with the shift
toward a preference for lower motif weights in concert with higher sequence recovery as the
energy function was optimized. This result indicates that more successful motif-like
interactions were being made without the aid of such significant motif favoring as energy
function improvements were incorporated.

Sequence optimality of a wild-type endonuclease
A designed amino acid that does not match the native sequence is not necessarily a failure of
the computational methods. Depending on the physiological role of a DNA-binding protein,
the wild-type amino acid may not be the most energetically favorable. Some regions of a
protein–DNA interface may require low specificity and hence few direct nucleotide contacts
in order to accommodate multiple DNA bases—such as transcription factors that must bind
to multiple promoters.27 While some protein positions in an interface require the wild-type
amino acid for activity or binding, other positions can tolerate multiple amino acid types.
Without knowing the role and importance of each amino acid in an interface, it is
insufficient to use sequence recovery of native interfaces as the sole metric for determining
the success of the computational methods. A straightforward way to address this question is
to make and characterize protein mutations and to see if they are tolerated or disallowed as
computationally predicted. This experiment was carried out for one protein in the
benchmark set, the homing endonuclease I-AniI. Full randomization of each of 44 positions
in the interface of the homing endonuclease I-AniI and screening of all single-position
libraries for activity against the wild-type target site was completed using a bacterial
directed evolution system. 28 Sequencing ~20 protein mutants for each library (Table S2)
after activity selection showed which positions tolerated only the wild-type amino acid and
which positions could accept a number of amino acids.

The experimental data revealed that the wild-type amino acid type is not highly favored over
other possibilities at many positions in the interface (Fig. 4). The calculated experimental
recovery, an average over all wild-type recovery frequencies, is 31%. Only a few positions
show very high preservation of the wild-type amino acid. In the N-terminal domain, only
four arginine residues are preserved, certainly contributing significant binding energy (R59,
R61, R70, and R72). In the C-terminal domain, preserved residues include the position
Arg243, stabilizing the position of a C-terminal DNA-contacting loop through interactions
with the protein backbone, and interacting amino acids Lys202 and Tyr154, likely key
contributors to formation of the catalytic complex.18 The importance of these three C-
terminal residues for cleavage of this particular target DNA is underscored by their complete
conservation in homologues of I-AniI predicted to cleave a very similar target DNA
sequence, even in those with sequence identity of less than 50%.29 The other aromatic
residue positions on both sides of the interface display higher conservation in this data set
than the majority of positions, with the exception of Tyr192. While these aromatics did not
always show a high recovery of the exact native amino acid type, they all displayed a
tendency to remain an aromatic. The frequency of recovering the wild-type amino acid at
each position is visually presented on the IAniI structure (2qoj30) using a gradient from red
to blue; positions that come back as wild type are colored red, and the positions with very
little wild type observed in the sequencing results are blue (Fig. 5). The significant number
of positions displaying little or no preference indicates that many amino acid substitutions in
the I-AniI interface are functionally neutral, at least in the context of this selection system.
The ability of the interface to accommodate such neutral drift—the accumulation of non-
deleterious mutations with adaptive potential—has been implicated as a mechanism for the
acquisition of new substrate specificities.29,31,32 This neutral drift facilitates enzyme
adaptations by reducing the number of mutations necessary to acquire new functions in the
face of evolutionary pressure and is particularly important for the endonuclease family of
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proteins. These DNA-cleaving enzymes are parasitic elements, catalyzing transfer of their
own gene, and their interface flexibility allows for their continued propagation by
facilitating cleavage of a wide range of target sites that are themselves subject to genetic
drift.

Numerous positions show very low levels of wild-type amino acid in the sequencing results
(at or below 5% or 1 of 20 sequences), and understanding how differences in frequency
correlate with differences in enzyme activity is important for utilizing this data set. When
there is strong selective pressure, the position converged almost completely to the preferred
sequence, such as in the case of the magnesium-binding catalytic residue Glu148 that was
randomized as a control for the experiment (Figs. 4 and 5). This assay of activity is also
sensitive to small differences in activity, as is demonstrated by the data collected for position
Lys200. K200R and K200N were previously tested mutants, since they were both observed
in homologues of I-AniI and shown to have levels of activity very similar to wild type.29

Both mutants were found to be slightly more active than the wild-type enzyme, and in this
current assay, both of them were found in the selected pool with higher frequencies than the
wild-type lysine (0.55 for Arg, 0.09 for Asn, and 0.05 for Lys). Given the extremely high
activity of both mutants, it was challenging to resolve whether one was more active than the
other with previously published enzymatic cleavage assays.29 However, arginine was by far
the most common amino acid observed at position 200 in an alignment of homologous
enzymes29 (Fig. S6), matching the data here showing that it is observed more frequently
than any other amino acid in the selected pool (Fig. 4). While the amino acid frequencies at
this particular position match those observed in a multiple sequence alignment of
endonucleases predicted to cut a very similar site to I-AniI, the majority of the positions
observed experimentally to have high flexibility are significantly less variable in the
alignment (Fig. S6). The conditions of the bacterial selection system differ from natural
evolution, likely resulting in this divergence between the alignment and the results observed
from the described experiments. In particular, the bacterial system is selecting only for
activity on the wild-type I-AniI, not for specificity against competing target sites or lack of
specificity at areas facilitating new specificity acquisition, and artificial selections allow for
full randomization at any interface position, whereas natural evolution generally traverses a
pathway constrained by single nucleotide substitutions in the starting codon.

Two methods for sequence diversity generation
The high sequence diversity tolerated at many positions in the I-AniI interface points to the
need for computational protocols that generate multiple, energetically reasonable solutions
rather than a single design. Algorithms that produce only a lowest-energy solution are
constrained by sampling and the quality of the energy function guiding the design process.
Methods are needed to generate diverse structures, thus enabling new local minima to be
found. Diversity in design is valuable for comparison to experimental data, as library-
screening experiments rarely produce a single best protein sequence for a given target and
instead provide several solutions. Multiple low-energy solutions can also be screened
concurrently in directed evolution experiments.

Two methods, DNA backbone flexibility and reducing the convergence of the simulated
annealing algorithm (“the packer”16) used by the ROSETTA, were developed and assessed
in the context of a computational benchmark and experimental data. The DNA flexibility
consisted of a 3-base-pair pocket of movement surrounding the target design base pair (Fig.
6a, “DNA-Rebuild”), and the convergence of the packer was reduced by increasing the low
temperature of the simulated annealing procedure and removal of the quenching step that
drives the packer to identify the sequence with the lowest possible energy (“HighTemp-
Packer”). Out of the full set of 112 proteins, a complete set of interface designs was
collected with both of these new protocols for 78 that were compatible with the DNA-
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Rebuild methods in their current state. All data were collected with the “Optimized” energy
function. No motif rotamers were added for these computational experiments. A total of 56
designs were completed for every design pocket (DNA base pair and surrounding protein
positions) that was previously designed a single time with the standard design protocols. The
frequencies of amino acids observed at each designable position were calculated over these
56 designs and compared to frequencies from 56 designs completed with the standard
method.

The results of both protocols on the two sequence recovery metrics revealed that the
diversity produced often contains the wild-type amino acid, even if it is not the most
frequently observed type at a particular position. If the top two amino acids by frequency
were considered when calculating recovery, the chance of correctly identifying the wild type
is increased over 12% for both recovery metrics (Fig. 6b). However, while the sequence
variation is much less for the 56 design runs with the standard protocol, recovery with this
original method also improves by 8% when the top two amino acids are counted, achieving
a high of only about 2% lower than the two new methods. Looking at the top three most
frequent amino acids drastically increases the recovery gap between the original method and
these new methods that generate significant sequence diversity. The HighTemp-Packer
achieves a highest unweighted recovery of 66.4%, a 7% improvement over taking only the
top two amino acids. The DNA-Rebuild performs slightly less well, achieving only 64.3%
unweighted recovery, but still significantly outperforms the original method that only shows
a 2% gain to 58.9% unweighted recovery. Computational results that produce possible
amino acid choices rather than a single lowest-energy choice are essential for building
libraries to guide experimental engineering projects. However, the success of building
libraries based on this expanded sequence pool requires that the added information increases
the chance of finding a native-like or low-energy state rather than simply diluting the good
sequences with inaccurately produced diversity. The result that both of these new protocols
significantly improved sequence recovery when the second or third highest frequency amino
acids were added to the recovery calculation argues that both protocols could add valuable
diversity to a designed library. Comparisons to experimental data conducted in the next
section further explore the merits and limitations of both methods.

Computational recapitulation of experimental data
Comparison of the experimental data with the previously described computational protocols
indicates that neither of the new protocols stands out as superior and that each method has
different strengths (Fig. 7 and Figs. S7 and S8). Both protocols better recapitulate the
experimental data than the “Standard” design method (Table 133). The amino acid
frequencies observed at some positions better matched the frequencies from the DNA-
Rebuild simulations, and others better matched the results of protocol utilizing the
HighTemp-Packer. Both computational protocols result in higher sequence convergence, for
wild-type amino acids as well as incorrect amino acid types, than the experimental selection.
The two different methods of diversity generation are able to drive escape from the
converged energy well for different positions in the interface, indicating that they can each
overcome different types of protocol limitations (Fig. 7 and Figs. S7 and S8). For example,
positions Ala68 and Ala70 are converged in the DNA-Rebuild simulations, likely due to the
conformation of the protein backbone structure. The HighTemp-Packer method was able to
generate significant diversity at both these positions that better matched the experimental
data. Some positions near the DNA backbone benefited more from the DNA-Rebuild
simulation. Positions 37 and 172 show very high convergence in the HighTemp-Packer
results, and the experimental data indicate that there should be minimal amino acid
preferences here. Both these positions are directly interacting with the DNA backbone in the

Thyme et al. Page 7

J Mol Biol. Author manuscript; available in PMC 2013 June 08.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



crystal structure of the complex, and the DNA-Rebuild method was able to reproduce this
experimental variation by allowing DNA backbone movement.

The failures of the DNA-Rebuild method are focused on the (+) half of the DNA target site.
The interactions with this DNA half-site are implicated in the formation of the catalytic
complex;18 thus, it is likely that preservation of the DNA conformation observed in the
crystal structure is essential for maintaining activity. Many crystallized protein–DNA
complexes contain DNA that is perturbed away from canonical B-form, presumably with a
functional purpose. The current implementation of DNA energetics and rebuilding is not yet
adequate for capturing the subtleties of these more strained DNA conformations. The DNA-
Rebuild method results in low recovery at several I-AniI positions making (+) half-site
interactions that do not show significant variation in the experimental data. For example,
position Cys150 is maintained as a cysteine or a serine in the experimental data, and the
HighTemp-Packer simulation almost exactly produces the frequencies observed
experimentally for these two amino acids. The DNA-Rebuild simulation allows numerous
amino acids to be incorporated at this position, as the DNA moves away from the crystal
structure conformation. The experimental data for position 150 indicates that maintaining
the conformation of the bases in this area is likely critical to catalysis. Additionally, the two
most conserved residues in the (+) half-site, Lys202 and Tyr154, are lost in most of the
DNA-Rebuild simulations. Figure 7 shows that the DNA is rebuilt in such a way that it
moves away from the crystal structure conformation. This nonnative DNA conformation
allows alternative amino acids to be designed in this area. It is likely that contributions of the
DNA conformational state to catalysis in I-AniI are the cause of these inaccurate
computational rebuilds. A loss in recovery with the DNA-Rebuild method for other proteins
in the benchmark set may similarly be attributable to discrepancies between real and
modeled DNA conformational preferences, providing an avenue for improvement of
ROSETTA's modeling of DNA flexibility.

Escaping energetic minima with motif-based sequence constraints
Both of the new protocols for diversity generation fail to recover the experimentally
preferred amino acid at some I-AniI positions. One of the essential arginine residues in the
N-terminal domain, position 61, is highly conserved as the wild-type amino acid and is not
observed as arginine with any protocol. Position 24 is a lysine in the native enzyme, and the
enzyme tolerates a lysine or a histidine. Neither the DNA-Rebuild nor the HighTemp-Packer
recapitulates either of these two possibilities. The previously discussed position 200 is
known to be highly active as a lysine (native), asparagine, or arginine, yet none of these
amino acids are observed in the computational results.

In order to understand the factors responsible for these mis-designed residues in I-AniI, as
well as others in the full sequence recovery set, a modification was made to the previously
described protocol for design with motif rotamers. This modified protocol forces amino acid
types at each designable protein position to all of the types seen in motifs selected for that
position. For example, if both arginine and lysine motifs passed the search procedure for a
particular position, the protocol would produce a set of designs with the lysine amino acid
type fixed, but not any particular rotamer, at that position, as well as a set with the arginine
amino acid type fixed. This sequence constraint can result in sampling of higher-energy
alternative structures that better match the wild-type protein sequence, and energetic
analysis of these forced amino acids has the potential to reveal why those positions are
incorrectly designed without the constraint. In addition, this protocol can be used to generate
diverse sequences, revealing many potential native-like interactions instead of only the
lowest energy one, for seeding experimental libraries.
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The motif-based sequence constraint method revealed that there is a motif found for every
one of the described I-AniI failures. When position 24 is forced to be a lysine, a motif
rotamer is incorporated into the design with a very similar conformation to the native lysine
(Fig. 8a). The competing low-energy glutamine type is never seen in the experimental
interface screen. The difference in total energy between the designs with the lysine and the
glutamine is only 0.6 REUs, and when compared to all forced motifs, the design with the
forced lysine is the second lowest in energy. The dominant energy term disfavoring arginine
at position 61 (Fig. 8b) is the probability of the amino acid given the backbone conformation
(p_aa_pp), having a value of 2.46 REUs for the arginine that is forced with the sequence
constraint protocol and −0.92 REUs for the lower-energy glutamine type. At position 200,
all three of the known, high-activity amino acid types (lysine, arginine, and asparagine) are
found to be motifs (Fig. 8c). However, none of these types is designed with the standard
motif protocols due to a competing alternative design that incorporates a valine at position
200 and a lysine at the nearby position 194 (Fig. 8d).

It was first necessary to determine which interface positions are likely to be the most
important for wild-type activity in the absence of experimental data in order to test this
motif-biased sequence constraint protocol on proteins other than I-AniI. Given the
comprehensive and computationally intensive nature of this protocol, it was additionally
necessary to limit its use to a subset of designs. The training set was analyzed to determine
the residues that are true failures of the design protocol using a set of metrics described in
Materials and Methods. These mis-designed positions are characterized as failures because
they are likely important amino acids, as they are amino acids with significant interaction
energy, which are designed to a chemically very different amino acid type. The protocol
identified 284 of the 3421 designed protein positions from the training set to be failures,
which was further reduced to 252 when additional computational constraints due to protein
size were taken into account. These design failures were subjected to the described protocol
in which the motif residue types are forced at each designable position. This procedure
revealed that, for 108 of the 252 positions, a motif of the same type as the wild-type amino
acid is not even available (Fig. 8e). For the 144 of these positions where the wild-type amino
acid is present in themotifs selected for that position, the number of times that the design
actually contains the motif rotamer when the amino acid type is fixed as wild type was
found to range from 68 to 107, depending on the motif scoring bonus. The rotameric state of
the amino acid making the motif contact was additionally assessed.

For essentially all of the 144 designed positions where a wild-type motif is available, an
alternative design sequence that lacked the wild-type amino acid at that position was found
to have a lower energy. These designs with the total lowest-energy scores were analyzed to
determine the motif status of the mis-designed position. Even for the lowest motif scoring
bonus, over half of the positions had a motif rotamer incorporated at the failed position. The
components of the energy function were again dissected for each failed protein position by
comparing each component from the lowest-energy design and from the design with the
forced wild-type amino acid, restricting to positions in which the motif rotamer from the
forced wild-type simulation was similar to the native rotamer (Fig. 8f). The results were
significantly different from the previous analyses of this type, as the repulsive score (fa_rep)
was found to be responsible for the majority of the energy differences between the forced
wild-type amino acid and the alternative low-energy designed rotamer. The rotamer
probability term is no longer a major component of these differences. These results suggest
that the energy function is favoring side chains that are less tightly packed, alleviating the
clashes recognized in the high repulsive score.
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Visual assessment of design failures suggests future improvements
Human intuition is a valuable tool for assessments of protein interactions.34 Visual analysis
of the designs in the training set was used as an additional metric guiding the process of
energy function improvement. A large number of the true failures, as determined by analysis
described in earlier sections and in Materials and Methods, were visually evaluated in order
to gain ideas for the necessary next steps in computational method optimization. While there
are many reasons that a design procedure may result in a nonnative amino acid at a protein
position, visual analysis of these designs revealed recurrent themes. Four representative
design examples are shown in Fig. 9a–d. Of these four examples, one is included to
demonstrate how not all mis-designs of the wild-type sequence should be considered failures
(Fig. 9a), one was corrected with the HighTemp-Packer sampling strategy described in this
work (Fig. 9b), and the remaining two are the result of the fixed-backbone approximation
and not optimizing the starting crystal structure in the ROSETTA energy function prior to
design (Fig. 9c and d).

For the three representative cases (Fig. 9b–d) where the redesigned sequence is clearly
suboptimal to the wild-type sequence, small movements of the backbone of the protein and
DNA prior to design would most likely correct the failures. The histidine that was
redesigned to an alanine (Fig. 9b) was lost because of an excessively high penalty from the
rotamer probability term. The energetic contribution of the rotamer probability is dependent
on the backbone structure; thus, subtle movement of the protein backbone would likely
correct this failure. For the remaining two cases (Fig. 9c and d), the residues being
incorrectly designed are all making interactions with the surrounding protein residues. It is
possible that these positions provide protein structural stability and thus binding-site pre-
organization for these interfaces.35 The atoms making the primary protein–protein
interactions are clashing, as determined by MolProbity,36–38 and constrained on multiple
sides by the backbone of the protein or DNA, thus prohibiting repacking and instead
favoring redesign to relieve repulsion (Fig. 9e and f). The findings for these two examples
match the results of the motif-based sequence constraint protocol that the repulsive term was
the major source of the higher energy of the designs containing the forced wild-type amino
acid type (Fig. 8f). Optimizing the crystal structures in the ROSETTA energy function prior
to design is one potential solution to this issue, although this protocol would need to be
thoroughly assessed to ensure that it was not generating a bias in the designed sequences for
the wild-type amino acids. One way to avoid this artificially generated bias would be to
optimize the structures with a different energy function from an external program.

Discussion
In this work, a number of optimizations to ROSETTA have been thoroughly characterized,
including energy function improvements and new protocols for sampling diverse design
sequences. Limitations of the computation were illuminated, some of which were addressed
and others of which still need to be corrected, and a series of methods and analysis tools
were developed to increase the ease of such future endeavors. The question of reliability of
sequence recovery as a sole metric for energy function improvement was explored in the
context of a particularly well-studied enzyme scaffold. Recapitulation of experimental data
is a more relevant metric of protein sequence redesign success than sequence recovery, as it
removes the biases of potentially overtraining for recovery of the amino acid states observed
in crystal structures and is a more direct measure of the functional effect of allowing a
protein sequence to vary. There are many factors contributing to the activity and specificity
of DNA-binding or DNA-cleaving proteins, such as the transition between the bound and
unbound states and the role of neighboring DNA in the formation of the active complex. A
crystal structure reveals one state of the interaction complex, and a computational design
tool meant to predict sequence changes required to confer certain activities should be
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assessed with corresponding experimental data, rather than recapitulation of this single,
fixed state. Utilizing this combination of experimental and computational benchmarks has
revealed several avenues for continuing improvements of the design methodologies.
Additionally, the extensive experimental scan completed in this work provides a better
understanding of a class of enzymes being actively engineered as gene therapy reagents, and
knowledge on the mutability of each position in this particular enzyme will inform future
specificity redesign projects.

The ROSETTA force field integrates physicochemical energy terms and database-derived
potentials in order to guide sampling and selection of low-energy amino acid sequences.
Similarly, the incorporation of interaction-biased motif rotamers into the standard design
process provides a way to integrate the information available in the PDB with the energetic
guidance of the ROSETTA force field. The collection of motifs can be considered as a step
toward formulating a recognition code39,40 for protein–DNA interactions. The interactions
in protein–DNA interfaces are complex and shaped by the local environment, suggesting
that the information contained in motifs is best utilized in combination with a tool for
assessing the likelihood of a given motif in the context of the entire interaction complex.
The method described in this work builds on a previous approach in which the motif
interaction is held constant as the protein backbone is remodeled to stabilize the desired
contact.22,23 Temiz and Camacho have recently described an alternative computational
method for investigating this recognition code that combines homology modeling and
molecular dynamics simulations to predict changes in binding affinity for zinc-finger
mutants. 41 One significant advantage of this approach over the current ROSETTA methods
is that explicit waters were simulated at the interface, allowing for improved modeling of
water-mediated interface contacts. The incorporation of explicit water into the ROSETTA
protein–DNA interface design calculations is currently under study.

While the addition of the motif rotamers improved the results of the ROSETTA design
protocol, the optimization of the force field resulted in an even more significant
improvement. Indeed, as the force field was iteratively improved, the optimal value for the
motif bonus term decreased, suggesting that the new and modified energy terms were able to
preferentially reward native-like protein–DNA interactions. While encouraging, these
improvements—when applied in the context of the standard, fixed-backbone design
simulation—did not enable successful recapitulation of the variability seen in our I-AniI
experimental data set. To explore the potential role of DNA backbone flexibility, we
integrated a recently described method1 for generating diverse DNA conformations into our
design protocols. Most other programs for protein–DNA interface design, such as FoldX,42

use a fixed-backbone model of the DNA. While preliminary DNA minimization was
available in older versions of ROSETTA,2 this new implementation of DNA flexibility is
significantly more flexible and provides for greater DNA backbone movement (due to the
fact that Monte Carlo fragment rebuilding simulations sample a much larger conformational
space than gradient-based minimization initiated at crystal structure conformations). Both
this new method of sequence diversity generation and the HighTemp-Packer method,
defined by an increase in the final temperature used by the simulated annealing algorithm,
improve recapitulation of the experimental data set over standard ROSETTA methods (Fig.
7).

In contrast to protein sequences generated by computational design, the primary function of
the amino acids in a protein–DNA interface is not always the stabilization of the lowest-
energy state or the tightest possible binding. There also may be a range of binding affinities
tolerated for maintaining interface functionality. The wild-type amino acid sequence may
not always be the most energetically optimal sequence position at the designed position (Fig.
9a). It is challenging to determine whether the seemingly native-like interactions in the
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design are really compatible with the activity of the protein–DNA complex. Native
complexes are evolved for many functions other than tight binding. The only way to fully
assess the viability of the mis-designed amino acids is through experimental
characterization. There are several positions in the I-AniI interface where the wild-type
amino acid is not the most optimal (Fig. 4). For example, position 18 has a significant
preference for tryptophan over the wild-type tyrosine, and the previously discussed position
200 shows high experimental recovery of arginine instead of the wild-type lysine. In these
two cases, the preferred amino acid likely confers an increased selective advantage through
tighter substrate binding or catalytic complex formation. While these positions are
somewhat tolerant of substitutions, they differ from the many highly tolerant positions in the
I-AniI interface in that they display a significant preference for a particular amino acid type,
rather than allowing all amino acid types equally. A successful computational design tool
would capture these nonnative energetic preferences while predicting a lack of preference at
the most flexible positions. While it is currently challenging to determine which classes of
interface mutations are systematically mis-predicted due to the limited size of our
experimental data set, we expect that recent work combining next-generation sequencing
technology with protein selection43 will revolutionize studies of this sort that attempt to
correlate protein mutations with functional characteristics.

The goal of our work is to develop protocols with clear utility for future design projects.
Minimizing the starting structure into the native energy well to alleviate predicted clashes in
starting structures (Fig. 9) is likely to artificially enhance sequence recovery by biasing
toward the wild-type state. Without proper benchmarks, preferably experimental data, it
would be challenging to ensure that this over-optimization of the native state was not biasing
the results. In light of the experimental data collected for I-AniI that revealed that a number
of interface positions tolerated multiple amino acid types, it is likely that the relatively high
sequence recovery of 50% is due to an over-optimization for the native sequence in the
context of the rigid, fixed-backbone sequence design simulations. While native sequence
recovery has proven to be a powerful metric for optimization of protein design scoring
functions, its use as the sole benchmark for protein design sampling algorithms would likely
penalize the greater exploration of backbone diversity necessary for successful design
toward novel DNA target sites. The experimental data are even an underestimate of the
acceptable sequence diversity, since only one position is being allowed to change at a time.
Varying multiple positions simultaneously would likely show even less conservation of the
wild-type sequence due to correlated changes. Computational protocols producing 100%
recovery of the wild-type sequences would almost certainly be useless for design purposes.
Instead, it would be best to perfectly recover the amino acids forming essential interactions
in the protein–DNA interface and have low recovery and multiple solutions generated for
the more malleable positions.

Developing a way to perturb the starting crystal structure on both the protein and the DNA
side, without biasing toward the native energy minima, will be important for correcting the
failures identified from the sequence recovery benchmarks (Fig. 9). There are a number of
possible methods to potentially adapt to provide an alternative method of DNA movement
that is less extreme than the fragment insertion protocol tested here.24,44 Both the loss in
recovery when using the DNA-Rebuild method and the comparisons to experimental data
indicate that less conformational freedom of the DNA is likely to produce higher sequence
recovery. However, DNA movement is essential for design of new DNA sequences and for
predictions of energetics and specificity involving indirect readout;45,46 thus, it is important
to develop a reliable method for accomplishing this goal. Adding protein backbone
flexibility will also be necessary for improving recapitulation of experimental data and
generating diverse designed sequences.47,48 Flexible loop regions of protein–DNA
interfaces could benefit from combining the motif-based approach described here with the
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previously published method that rebuilds protein backbones to accommodate rotamers that
can form motif interactions.22 The results of the simulations completed with the HighTemp-
Packer showed promising recapitulation of the variation observed in experimental data.
However, the loss of some of the strong motif-like interactions of I-AniI when using this
approach suggests that incorporation of the motif information could further enhance the
method. One potential way to increase the ease of utilizing the motif information, especially
for systems other than protein–DNA interfaces, is to incorporate the data about distances
and angles of interactions into a knowledge-based contact potential scoring function.49 For
current design applications, we suggest an approach that combines subtler DNA backbone
optimization with the HighTemp-Packer and motif rotamers. We hope that these proposed
improvements, in conjunction with the newly developed methodologies and analysis tools,
will accelerate the progress of future design projects.

Materials and Methods
Computational tools

All protocols were implemented within the ROSETTA molecular modeling package and
will be available for free academic use through the ROSETTA Commons. They are
currently available to institutions participating in ROSETTA Commons (or upon request),
and the code revision numbers are 44353 for trunk ROSETTA and 44354 for the version
with the energy function optimized here and the DNA-Rebuild method (source/workspaces/
blab/mini). The energy function was similarly optimized for trunk ROSETTA; however, the
orientation-dependent desolvation is not available, and the reference energies differed (Fig.
S9). These two code versions and energy functions will be integrated in a future release of
Rosetta. The executables currently available in both code versions are dna_motif_collector
for the generation of motif libraries and motif_dna_packer_design for designing with a motif
bias. The flexible DNA simulations are currently limited to the workspaces branch, and the
executable that rebuilds the DNA and designs with motifs is called
dna_fragment_rebuild_with_motifs. The designs completed with an increased temperature
for the low temperature of the simulated annealing algorithm and removal of the final
quenching step for the packer are based in the motif_dna_packer_design but require the
modification of two lines prior to compilation. These changes are detailed in Supplementary
Data. An additional executable, failure_analyzer, for analysis of the design data (failure
identification, energy differences between designs) is available in a later revision (source/
workspaces/blab/mini, revision 45873). Many parameters of all methods are modifiable via
the command line, and all currently available options are discussed in Supplementary
Methods. Other data available upon request include, but is not limited to, the final list of
PDB codes used to generate the library, the complete motif library either in a single file or in
the form of two-residue PDB files, and python analysis scripts (also available in /source/
workspaces/sthyme/scripts).

Structural data for training and test sets
A set of 112 largely nonredundant, crystallized protein–DNA complexes all with a
resolution of lower than 2.5 Å was downloaded from the RCSB PDB.21 This set split into
one group of 48 complexes and another group of 64 complexes; the group containing 48
PDBs was used for training the energy function, and the group containing 64 PDBs was
used for testing and analyzing improvements identified from the training procedure. All
PDBs were downloaded as the biological assemblies, and several required small
modifications for compatibility with the subsequent Rosetta protocols and analysis scripts.

Training set: 1a1f, 1a3q, 1az0, 1bc8, 1bdt, 1bl0, 1ckq, 1d02, 1dc1, 1e3o, 1f4k, 1gd2, 1gu4,
1hcq, 1iaw, 1ig7, 1ign, 1j1v, 1jnm, 1lmb, 1lq1, 1m5x, 1mjo, 1mnm, 1mnn, 1nkp, 1ozj,
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1pp7, 1puf, 1r4o, 1r71, 1r7m, 1skn, 1tc3, 1ubc, 1w0u, 1wte, 1zs4, 2bam, 2d5v, 2ex5, 2ezv,
2fl3, 2h27, 2hdd, 2oaa, 2qoj, 3pvi.

Test set: 1a1h, 1a73, 1aay, 1am9, 1b3t, 1b94, 1dfm, 1dmu, 1dp7, 1egw, 1g2f, 1g9y, 1hcr,
1hwt, 1i3j, 1jey, 1jft, 1k61, 1mey, 1mow, 1mus, 1nvp, 1oe5, 1oup, 1qpi, 1r0o, 1sa3, 1tup,
1xbr, 2bop, 2c9l, 2dgc, 2e52, 2fqz, 2o4a, 2odi,2or1, 2wt7, 2x6v, 2xqc, 2xsd, 2z3x, 3bm3,
3bs1, 3c25, 2co6, 3fc3, 2fdq, 3h0d, 3iag, 3igm, 3jtg, 3jxb, 3jy1, 3lnq, 3m4a, 3mln, 3mqy,
3mx4, 3n7q, 3o9x, 3pvv, 3qqy, 6pax.

Generation of motif library
A motif is defined as the spatial arrangement of six atoms. In the case of a protein–DNA
motif, three of these atoms are located on a DNA base that interacts with a protein residue,
and the other three are derived from that protein residue (Fig. 1). This geometric relationship
is expressed as a translation vector and a set of Euler angles, as previously described.22 The
atoms that define motifs are currently fixed for different amino acid and DNA residues.
Motifs were collected from protein–DNA complexes with a resolution of better than 2.8 Å
that were downloaded from the RCSB PDB on August 9, 2011. The set initially consisted of
1459 complexes, which was reduced to 1375 complexes after removal of PDBs that were
not compatible with Rosetta without manipulation of the PDB files or modification of
Rosetta.

The motif library used for this work includes both major and minor groove interactions, as
well as water-mediated contacts. The collection algorithm is defined by iteration over every
protein residue in each of the protein–DNA complexes and the identification of up to two
DNA bases that have the greatest amount of ROSETTA interaction energy with that protein
residue. This interaction energy between the protein and the DNA residue is defined as a
packing score (combined attractive and repulsive energies), a direct side-chain–side-chain
hydrogen-bonding score, and a water-mediated hydrogen-bonding score, if a theoretical
water can be placed at a canonical location on the DNA base.50 The protein–DNA pair must
have either a packing score of less than −0.5 REUs, a direct hydrogenbonding score of less
than −0.3 REUs, or a water-mediated hydrogen-bonding score of less than −0.3 REUs in
order to count as a motif interaction.

Redundancy in the motif library arises mainly from the inclusion of multiple crystal
structures of the protein– DNA complex or from equivalent monomers of homo-oligomeric
complexes. The amino acid and DNA residue pairs are all placed in the same coordinate
frame, based around the motif atoms of the DNA base, for all interactions involving that
type of DNA residue in order to reduce this redundancy. Any DNA residue that has less than
0.2 RMSD over the heavy atoms with any other DNA residue is eliminated from the motif
library.

Removal of homologous motifs from the motif library
Prior to identifying motif interactions that can be made in a particular protein–DNA
complex, it is necessary to remove motifs derived from that same PDB entry or from one of
a homologous protein. The inclusion of such motifs would result in artificial biases toward
the native sequence. The protocol developed for the removal consists of a BLAST51 run
against the PDB database that identified all structures with an e-value of less than 0.05 to the
starting structure and a python script to parse the output of the BLAST run and to remove
homologous motifs from the library.
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Identification of rotamers forming motif interactions
The utilization of motifs in fixed-backbone protein design requires the identification of
amino acid rotamers that are capable of forming a motif interaction in a given protein–DNA
complex. Backbone-dependent rotamers derived from the Dunbrack rotamer library,26

included with the ROSETTA software, are built at protein positions in a protein–DNA
interface in order to accomplish this goal. Interface positions are identified using a
previously described protocol17 that builds a set of arginine rotamers at each protein position
and checks whether any nucleotide base atom is within 3.8 Å of these arginine side chains.
For this motif search protocol, the level of rotamer sampling was set to include extra
sampling at χ1–4, as well as an additional four half-step deviations from the bin of the
rotamer. Each rotamer is screened against all nearby DNA bases to test whether a motif
interaction can be made, and it must pass several cutoffs to be considered a successful
rotamer. First, a single atom from a canonical DNA base defined by the motif being tested,
currently the C1*, is placed via the defined motif orientation. A distance between this atom
and every nearby C1* in the crystal structure DNA is calculated. Passing a defined distance
cutoff, set to be 2.0 Å for these experiments, allows the rotamer to be subject to further
testing. The next test screens for how parallel a motif-placed canonical base is to the closest
crystal structure base by the calculation of a dot product for vectors perpendicular to the
plane of the six atoms of a placed nucleobase and the crystal structure nucleobase. The dot
product for these experiments was set to be greater than 0.97 to be considered for a final test
of the RMSD over the same six atoms of the nucleobase compared with the nearby crystal
structure nucleobase. For these experiments, the RMSD had to be less than 1.0 in order for
the rotamer to be able to make a successful motif contact. Both the distance and RMSD
cutoffs are automatically reduced for motifs with longer side chains that have many more
rotamers. Cutoffs for arginine are cut twofold, and cutoffs for methionine, lysine, glutamate,
and glutamine are cut by a third. All rotamers passing the cutoffs are then sorted, dependent
on a combined score of the RMSD and dot product (RMSD divided by dot product), and the
lowest scored rotamers are preferentially considered to be successful if the user indicates a
limit on the number of rotamers to be utilized by further design protocols. The default limit
is set to be 100 rotamers of each amino acid type at each protein position being designed,
and this default was maintained in the experiments described here.

Motif-biased design
Rotamers identified to make motif interactions with the search procedure described in the
preceding section are incorporated into the standard design procedure by adding them to the
rotamer set being used by the packer. For these experiments, the initial rotamer set included
extra sampling of χ1 and χ2 and three one-third step additional deviation samples for χ1
and χ2 of aromatic residues. The packer provides the core functionality for ROSETTA
design, utilizing a Monte Carlo simulated annealing algorithm, guided by a physically based
atomic-level force field.16 These motif rotamers are flagged and can be given an energy
bonus over other rotamers in the rotamer set. The flag is implemented as a residue patch
called SpecialRotamer, and the energy term special_rot allows for the user to implement
differential bonuses for these rotamers. Alternatively, there are input options that support the
definition of a starting motif bonus and a subsequent number of steps of twofold reduction
of that bonus, producing multiple designs each with a different bias toward inclusion of
these rotamers. The designs completed in this work cover the range of bonuses from −10 to
−1.25. Additional designs where motif rotamers are added with no weight and where motif
rotamers are left out of the rotamer set are produced by default. Identification of protein
positions where mutation of the protein sequence is allowed is described in the section on
collection of motif rotamers, as it occurs by the same method. An additional shell of residues
surrounding these designable residues is allowed to change rotamer conformation, but not
protein sequence.
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For the sequence recovery work, individual design runs were done at every single base pair
in the interface, simulating the approach used for specificity redesign where only a small
group of amino acids are designed simultaneously. Energy function analysis and
optimization was guided by sequence recovery calculations. Two metrics, weighted and
unweighted recovery, were calculated for each set of design calculations. The unweighted
metric counts every designed position equally, and the weighted metric is an average over
the recoveries for each amino acid type and free from biases in the amino acid composition
of the interface positions. The inclusion of the weighted metric during optimization is
necessary to avoid artificial improvements in overall recovery due to biasing the energy
function toward recovery of amino acids that are overrepresented in protein–DNA
interfaces, namely, lysine and arginine, at the expense of the less abundant types. A
previously improved weight set17 that was optimized without consideration of the weighted
metric contains this particular bias (Fig. S3).

Flexible DNA interface design
The use of the flexible DNA interface design protocol was limited to computationally
tractable PDBs that were compatible with the DNA movement portions of the protocol
without any modification or reformatting. This method consists of a previously described1

DNA rebuilding step followed by a motif-biased design run. For each targeted DNA design,
that base pair and the two surrounding base pairs were allowed to move. Unpaired DNA
base pairs, DNA strands containing chain internal chain breaks, or base pairs on the end or
one away from the end of DNA chain were not included because they are not compatible
with the DNA rebuilding portion of the protocol. After each design calculation, the rebuilt
DNA was allowed to minimize prior to the next design iteration (between each round of
lowering the motif bonus).

Rebuild set: 1a1f, 1a1h, 1a3q, 1aay, 1az0, 1bc8, 1bdt, 1bl0, 1ckq, 1d02, 1dc1, 1e3o, 1egw,
1f4k, 1g2f, 1gd2, 1gu4, 1hcq, 1hwt, 1i3j, 1ig7, 1ign, 1j1v, 1jnm, 1lq1, 1m5x, 1mey, 1mnm,
1mnn, 1nkp, 1oe5, 1ozj, 1pp7, 1puf, 1r0o, 1r71, 1r7m, 1sa3, 1skn, 1tc3, 1ubd, 1w0u, 1wte,
1xbr, 1zs4, 2bam, 2c9l, 2d5v, 2e52, 2ex5, 2ezv, 2fl3, 2h27, 2hdd, 2o4a, 2oaa, 2qoj, 2wt7,
2xsd, 2z3x, 3c25, 2co6, 3fc3, 3fdq, 3h0d, 3iag, 3jtg, 3jxb, 3lnq, 3m4a, 3mln, 3mx4, 3n7q,
3o9x, 3pvi, 3pvv, 3qqy, 6pax.

Identification of failed design pockets
The metrics designating an incorrectly designed position as not being a true failure are as
follows: (1) the correct amino acid type being seen for over 25% of the design runs from the
set of designs completed with a varying motif weight, indicating that the wild type is
favorable in the context of a motif bonus; (2) the wild-type amino acid making very little
contact to any protein or DNA residue, as defined by a total ROSETTA interaction energy
with all nearby residues of no more than −2 REUs; (3) the wild-type amino acid being one
of the smallest amino acid types because native protein–DNA interfaces are not always
optimized for the tight binding and high specificity that the computational methods are
programmed to produce and a small amino acid type being redesigned to a larger one with
more contacts is potentially an acceptable change that could increase interface affinity; and
(4) the designed amino acid being chemically related to the wild-type amino acid and likely
to be making a similar contact, such as a glutamate being redesigned to a glutamine. Future
implementations could utilize atom-type-specific analyses for a more accurate assessment of
contact success.

Bacterial screen
A bacterial screen for active variants of I-AniI was completed as previously described,28

albeit with minor modifications. Electrocompetent Escherichia coli cells, the DH12S strain
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from Invitrogen, were transformed with a pCCDb plasmid containing two adjacent copies of
the IAniI LIB4 target site,30 a variant of the wild-type target site containing two activating
substitutions. This pCCDb-containing strain was prepared for the selection using a standard
procedure for electro-competent cell preparation. Each of the 44 libraries, corresponding to
the 44 interface positions, was ligated, and the pCCDb-containing electro-competent cells
were transformed with the purified ligation products. Transformants were recovered in
terrific broth media for a half-hour at 37 °C. The selection procedure was completed for 4 h
in 2 mL liquid culture at 30 °C. Following liquid selection, 1 µL was plated on each of
minimal selection (100 µg/mL carbenicillin, 1 mM IPTG, and 0.02% L-arabinose) and
control (100 µg/mL carbenicillin) plates (1.5% agar, M9 salt, 1% glycerol, 0.8% tryptone,
0.2% thiamine, 1 mM MgSO4, and 1 mM CaCl2) and grown for ca 36 h at 30 °C.
Approximately 20 colonies were picked from each selection plate for each of the 44
positions, grown overnight in 96-well culture plates, and submitted for sequencing as 96-
well-plate glycerol stocks to the GENEWIZ sequencing facility.

Construction of plasmids and libraries
The pCCDb plasmid containing the I-AniI LIB430 target sites was built by phosphorylating
and annealing oligo-nucleotides from Integrated DNA Technologies to form a duplex with
sticky ends compatible with the NheI and SacII restriction sites in the pCCDb vector.28 An
amino acid library was built for each of the 44 protein interface positions, using assembly
PCR52 with oligonucleotides containing an NNS codon (Integrated DNA Technologies) at
the randomized position. These libraries were ligated into pEndo vector28 between the NcoI
and NotI restriction sites and screened for activity in the bacterial selection system. All C-
terminal I-AniI libraries (starting at position 148) were built in the context of the activating
M58 mutations, and all N-terminal mutations (from position 18 to position 72) were built in
the context of M4, which is M5 without the I55V mutation.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Examples of the types of motif interactions included in the motif library. Atoms that define
the motif interaction are shown as spheres colored by atom type. (a) Tyrosine residue
packing against a thymine methyl group, derived from Tyr25A and Thy317B of 1mow. (b)
Bidentate arginine–guanine interaction, derived from Arg274B and Gua418C of 1cyq. (c)
Water-mediated interaction identified by placement of waters (transparent blue spheres) on
the DNA at canonical locations, derived from Ser47A and Ade516C of 1m5x. (d) Minor
groove interaction, derived from Lys116A and Cyt16C of 2np6.
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Fig. 2.
Overview of the motif-biased design protocol. In step 1, a series of rotamers and motifs are
tested to see if they are compatible with the crystal structure undergoing design. These
rotamers and motifs are subject to a series of cutoffs: distance of C1*, how parallel the
placed base is to the crystal structure DNA, and RMSD of nucleobase atoms. In this
example, two arginine rotamers (green and pink) are tested with a bidentate arginine–
guanine motif, and the pink rotamer passes a nucleobase RMSD cutoff of < 0.4 when an
ideal guanine base is placed in a motif-compatible position and compared to the nearest
guanine base in the crystal structure. This pink arginine rotamer is then added to the
standard rotamer sets used by the ROSETTA packer. The rotamer is given an energy bonus
over other rotamers and is found in a design completed for this guanine base.
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Fig. 3.
Optimization of ROSETTA energy function. Abbreviations for energy function terms are as
follows: fa_atr, attractive; fa_rep, repulsive; fa_sol, solvation; fa_pair, distance-dependent
atom pair potential; hbond_bb_sc, hydrogen bonds between backbone and side-chain atoms;
hbond_sc_sc, hydrogen bonds between side-chain atoms; fa_dun, rotamer probability;
p_aa_pp, probability of amino acid given backbone conformation; hack_elec, simple
electrostatics; lk_combined, combination of terms for orientation-dependent desolvation
model. (a) A comparison to two metrics of sequence recovery over several motif rotamer
bonuses and several iterations of energy function optimization (Figs. S2–S5). The
“Standard” energy function was the starting point for the optimization. The “Standard”
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energy function was improved by the addition of motifs, increasing the stringency of the
hydrogen-bonding model (“Stringent HBonds”), modification of the phosphorous
desolvation penalty (“Phosphorous Desolvation”), and the addition of a coulombic
electrostatics term1 for the “Electrostatics” energy function. The “Final (“Optimized”)”
energy function includes multiple additional changes detailed further in the text and in the
supplement. (b) Energy differences, separated out by energy term, between incorrectly
designed rotamers and rotamers with a motif bonus that match the native amino acid type, or
more correctly match the native rotamer, than a designed rotamer with no bonus. The units
for these energy differences are in REUs. The differences collected with the “Standard”
energy function reveal that the solvation term (fa_sol) and the rotamer probability term26

(fa_dun) are the two energy terms that are being offset by the motif bonus. As a part of the
energy function optimization, the solvation term was replaced with an orientation-dependent
solvation model1 (lk_combined), and changes were made to the atom-specific desolvation
parameters for several amino acid types.
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Fig. 4.
Sequence optimality of the interface residues of I-AniI. Heat map displaying the frequencies
observed of each amino acid type in a selected pool of sequences at each of 44 positions in
the I-AniI interface. The wild-type amino acid is marked with a green box. Each position in
the interface was fully randomized, and these single-position libraries were subject to an
activity selection.28 A frequency of 1 means that the amino acid with this frequency was the
only amino acid type observed at that protein position, whereas a frequency of 0.05 would
be an amino acid type observed once from a set of 20 sequences.
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Fig. 5.
Visual representation of the interface conservation of I-AniI. The frequency of observing the
wild-type amino acid after full randomization and selection (Fig. 4) is summarized on the
structure of I-AniI. Only the 44 residues that were randomized are shown in this
representation. Blue corresponds to a frequency of 0 or non-conserved positions. Red
corresponds to positions that are highly conserved as the wild-type amino acid. The overall
protein–DNA complex is shown on the leftmost panel, and the N- and C-terminal domains
are separated in the other panels to allow for a closer examination of the conserved contacts.
Four arginine residues are most conserved in the N-terminal domain and are likely essential
for formation of the initial substrate-bound complex. Lys202 and Tyr154 are conserved in
the C-terminal domain, and these interactions likely play an important role in the formation
of the catalytic complex.18 This representation is incomplete in that it loses information if
the preferred amino acid is not the wild type, but still a conserved type. For example,
positions Tyr18, Tyr27, and Tyr162 are strongly conserved as aromatic residues (Fig. 4), but
the native aromatic shows up at lower or equivalent frequencies as other aromatic types,
resulting in blue or green shading at these positions.
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Fig. 6.
Limited degeneracy increases sampling of the native sequence for two methods of diversity
generation. (a) Illustrative example of the level of DNA movement in the DNA rebuilding
simulations. (b) Both methods developed for sampling diverse sequences were tested, and
compared to the “Standard” method, for a benchmark set of 78 proteins. The frequencies of
amino acids observed at each position were calculated from 56 trajectories for each method.
If only the highest frequency amino acid is incorporated in the sequence recovery
calculation (cyan), the recovery shows a slight decrease for both weighted and unweighted
metrics. If the top two (purple) or top three (pink) amino acids are both considered in the
recovery calculation, and observing that the wild-type amino acid in any of these top
positions counts as correct, then the sequence recoveries are significantly increased.
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Fig. 7.
Recovery of experimental data with computational methods. A comparison between the two
methods of sequence diversity generation, DNA-Rebuild and HighTemp-Packer, is
summarized on the structure of I-AniI. The frequency distributions at each of the I-AniI
interface positions were compared to the experimental data (Fig. 4) by both Euclidean
distance and Jensen–Shannon divergence measures (Table 1 and Fig. S8). For this
illustration, the Jensen–Shannon divergence measure33 calculated for the DNA-Rebuild
method was subtracted from the same calculation completed for the HighTemp-Packer.
White is designated as a value of 0, indicating that neither computational method better
matched the experimental frequency distribution; green is negative values, indicating that
the DNA-Rebuild performed better than the HighTemp-Packer; and pink is positive values,
indicating that the HighTemp-Packer performed better than the DNA-Rebuild method. The
DNA is colored based on the average RMSD between the DNA-Rebuild simulations and the
crystal structure DNA, where yellow is the lowest average RMSD and where blue is the
highest. The DNA moved farthest away from the crystal structure DNA in the same area that
the DNA-Rebuild method performs well much less than the HighTemp-Packer, indicating
that the DNA location has a significant effect on the design results.
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Fig. 8.
Motif-based sequence constraints. (a) Lys24 in the I-AniI interface (native rotamer, white) is
mis-designed to a glutamine (yellow). The motif-based sequence constraint protocol
revealed that position 24 can be a lysine motif, and the motif residue (blue) very closely
matches the native lysine. (b) Arg61 in the I-AniI interface (native rotamer, white) is mis-
designed to a glutamine (yellow). The motif-based sequence constraint protocol revealed
that position 61 can be an arginine motif (blue). (c) The motif-based sequence constraint
protocol showed that position Lys200 in the I-AniI interface (native rotamer, white) can be a
motif of any of the three amino acid types previously identified to be active at this position
(arginine, blue; lysine, purple; and asparagine, green). (d) The alternative low-energy design

Thyme et al. Page 29

J Mol Biol. Author manuscript; available in PMC 2013 June 08.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



that disallows any of the motifs in (c) to be designed at position 200. The native structure is
shown in white, and the design with K200V and D194K is shown in yellow. (e)
Abbreviations: WT, wild type; AA, amino acid. Flowchart summarizing the results of the
protocol that generates designs with forced amino acid types for each type of motif
identified by the motif search. The protocol was completed only for protein positions that
were considered to be true failures of the computational methods by a series of analyses.
The chart summarizes the motif status, energetics, and rotameric state of the designs at each
of these failed positions. Rotamers are considered similar to the wild-type amino acid if they
have an RMSD of <0.8. (f) Energy differences calculated between rotamers that resemble
the wild-type amino acid that has a motif rotamer incorporated with a bonus and between the
incorrectly designed amino acid observed at this same protein position in the lowest-energy
design, as marked on the flowchart in (e). The repulsive energy term (fa_rep) stands out at
the biggest contributor to the energy difference between these rotamers.
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Fig. 9.
Representative failures of the computational methods. Native structure, gray; designed
structure, pink. (a) The designed lysine, making a canonical contact with the guanine
nucleotide, is calculated to interact more strongly with the DNA than the wild-type
glutamine (Gln39, 1zs4), and no interactions with neighboring protein positions are lost
from this substitution. (b) A histidine (His97, 2fl3) is redesigned to an alanine, and energetic
analysis revealed that the rotamer probability term was mainly responsible for the alanine
preference. The High-Temp-Packer method corrects this failure, as the histidine is regained
in 71% of the design trajectories, compared to 19% with the DNA-Rebuild method. (c) An
arginine residue (Arg432, 1j1v), making multiple contacts to both the protein and DNA
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backbone atoms, is redesigned to a smaller aspartate residue that makes no favorable
interactions. The atoms in the starting crystal structure are very close to each other, and the
repulsive clashes cannot be relieved without backbone movement or minimization. (d) A
bidentate asparagine–asparagine hydrogen bond is lost (Asn70–Asn90, 2ex5). This failure is
also due to repulsive clashes with the nearby protein backbone. (e) Amount of atomic
overlap Arg432 in the 1j1v crystal structure calculated using MolProbity.36–38 The atomic
overlap is shown with yellow and red dots, DNA is black, side chains are cyan, and the
protein backbone is brown. This analysis indicates that the protein backbone and
neighboring side-chain residues are clashing with Arg432. Backbone optimization would be
required to relieve the clash with the backbone. (f) Atomic overlap (yellow and red dots)
between an asparagine residue (yellow) and a hydrogen atom (gray) of the beta-carbon of a
neighboring serine residue shown in cyan (2ex5, Asn90–Ser68). Hydrogen bonding between
this same serine residue and the other asparagine (Asn70–Ser68) of the bidentate asparagine
pair is shown with green dots.
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Table 1

Comparison of computational protocols to experimental data

Computational
method

Jensen–Shannon
divergence

Euclidean
distance

Standard 0.472 0.839

DNA-Rebuild 0.409 0.670

HighTemp-Packer 0.399 0.695

Divergence between experimentally observed and computationally predicted amino acid frequency distributions at 44 positions of the I-AniI

protein–DNA interface was assessed using two standard metrics for comparing probability distributions: the Jensen–Shannon divergence33 and the
Euclidean distance. A lower divergence value indicates that the probability distributions better match one another.
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