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Abstract

Aims: Expression of Heat Shock Protein-27 (HSP27) is reduced in human coronary atherosclerosis. Over-expression of HSP27
is protective against the early formation of lesions in atherosclerosis-prone apoE2/2 mice (apoE2/2HSP27o/e) - however,
only in females. We now seek to determine if chronic HSP27 over-expression is protective in a model of advanced
atherosclerosis in both male and female apoE2/2 mice.

Methods and Results: After 12 weeks on a high fat diet, serum HSP27 levels rose more than 16-fold in male and female
apoE2/2HSP27o/e mice, although females had higher levels than males. Relative to apoE2/2 mice, female apoE2/2HSP27o/e

mice showed reductions in aortic lesion area of 35% for en face and 30% for cross-sectional sinus tissue sections – with the
same parameters reduced by 21% and 24% in male cohorts; respectively. Aortic plaques from apoE2/2HSP27o/e mice
showed almost 50% reductions in the area occupied by cholesterol clefts and free cholesterol, with fewer macrophages and
reduced apoptosis but greater intimal smooth muscle cell and collagen content. The analysis of the aortic mechanical
properties showed increased vessel stiffness in apoE2/2HSP27o/e mice (41% in female, 34% in male) compare to apoE2/2

counterparts.

Conclusions: Chronic over-expression of HSP27 is atheroprotective in both sexes and coincides with reductions in lesion
cholesterol accumulation as well as favorable plaque remodeling. These data provide new clues as to how HSP27 may
improve not only the composition of atherosclerotic lesions but potentially their stability and resilience to plaque rupture.
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Introduction

Heat Shock Protein 27 (HSP27) is a member of the small heat

shock protein family and is involved in a wide variety of cellular

processes, both physiological and pathological. Originally de-

scribed as an intracellular chaperone, HSP27 is capable of binding

and stabilizing the actin cytoskeleton in response to stress as well as

preventing downstream caspase activation [1]. More contempo-

rary studies now show that HSP27 and other (unrelated) heat

shock proteins may have an extracellular role and signal via

discrete receptors [2]. Indeed, we recently demonstrated that, via

NF-kB activation, extracellular HSP27 regulates the expression of
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a number of genes, including several of direct relevance to

regulation of vessel wall inflammation [3].

The expression of HSP27 in atherosclerotic plaques diminishes

with progression of the stage of the pathology [4,5]. Moreover,

serum levels of HSP27 are reduced in patients with carotid artery

disease [5] yet are increased in acute coronary syndromes [6].

Decreased HSP27 expression may be an important factor in the

development of atherosclerosis; hence to address this question we

performed acute studies of atherosclerosis-prone apoE2/2 mice

that over-express HSP27 (i.e., apoE2/2HSP27o/e) [7]. After four

weeks of ingesting a high fat diet (HFD) there was approximately a

35% reduction in the extent of aortic atherosclerosis in apoE2/2

HSP27o/e relative to apoE2/2 mice – but only in females. There

are several important findings from our original atherogenesis

studies involving apoE2/2HSP27o/e mice. First, while baseline

serum levels of HSP27 are virtually undetectable in all mice (prior

to ingesting a HFD), there was a .10-fold increase in serum

HSP27 levels in female apoE2/2HSP27o/e mice after 4 weeks of

HFD but practically no change in male counterparts. Second, in

female apoE2/2HSP27o/e mice there was an inverse correlation

(r2 = 0.78) between HSP27 levels and extent of atherosclerotic

burden. Third, sex-specific in vivo atheroprotection coincided with

our in vitro demonstration that the release of HSP27 from

macrophages occurs in response to estrogens. Finally, we

subsequently demonstrated that ovariectomized apoE2/

2HSP27o/e mice do not show elevated serum HSP27 levels or

atheroprotection until they are given estrogen replacement

therapy [8]. However, it is important to note that, in addition to

estrogens promoting the release of HSP27 into the extracellular

space, we previously observed in vitro that acLDL did so as well.

Hence, the question remains – could chronic exposure to an

atherogenic diet that is enriched in cholesterol promote the release

of HSP27 into the serum (and therefore atheroprotection) in male

mice – but perhaps requires higher serum levels of cholesterol

and/or more chronic exposure (.4 weeks) to be detectable?

In anticipation of future studies designed to explore the

potential of HSP27 as a novel therapeutic agent (e.g., recombinant

HSP27 protein), we sought to determine if over-expression of

HSP27 is chronically atheroprotective and alters not only plaque

burden but also morphology as reflected by a unique assessment of

both the histology and mechanical properties of aortic lesions.

Briefly, we now demonstrate that chronic HSP27 over-

expression attenuates atherogenesis in both males and females

and is accompanied not only by reductions in lesions size but also

arterial wall cholesterol content, macrophages accumulation and

apoptosis. Moreover, we note that the aortae of these mice show

increased intimal smooth muscle cell and collagen content as well

as increased vessel stiffness. This study provides new evidence that

the atheroprotective effect of HSP27 results not only in reduced

plaque burden but also an enhanced histo-mechanical profile of

lesions.

Methods

Murine atherosclerosis model
All experimental procedures involving laboratory animals were

approved by the Animal Care and Use Committee of the

University of Ottawa and complied with the United States

National Institute of Health Guide for the Care and Use of

Laboratory Animals. Transgenic mice with a C57BL10/CBA

background and over-expressing human heat shock protein 27

(HSP27o/e) under the control of a chicken b-actin promoter and a

CMV enhancer element were provided by Imperial College

London. ApoE2/2 mice with the C57BL/6 genetic background

were purchased from the Jackson Laboratory (Bar Harbor,

Maine). HSP27o/e females were crossed with apoE2/2 males to

generate apoE+/2HSP27o/e mice, which were then crossed with

apoE2/2 mice to generate apoE2/2HSP27o/e and apoE2/2

littermates [7,9]. Each study cohort consisted of at least six mice.

Mice were fed a normal chow diet until 6 weeks of age and

thereafter received a high-fat diet (HFD, 1.25% cholesterol, 15.8%

fat; Harlan Teklad, Madison, WI) for 12 weeks until euthanasia

when blood samples were collected (Figure 1A). Depending on

the nature of the intended experiment, the aortae were harvested

as follows. For histological evaluations, animals were anaesthetized

under isoflurane, and whole blood was collected via cardiac

puncture before systemically perfusing the mice via the left

ventricle with phosphate-buffered saline (PBS) followed by 4%

paraformaldehyde (PFA) in PBS, before the heart and aorta were

removed and immersed in 4% PFA/PBS at 4uC overnight. To

quantify the aortic mechanical properties, the heart and aorta

were immediately removed after euthanasia and immersed in

Krebs solution (118.1 mM NaCl, 11.1 mM D-glucose, 25 mM

NaHCO3, 4.7 mM KCl, 1.2 mM MgSO4N7H2O, 1.2 mM

KH2PO4, 2.5 mM CaCl2N6H2O, pH: 7.4) at 37uC and immedi-

ately processed.

Hemodynamic parameters
Hemodynamic parameters (heart rate, systolic and diastolic

blood pressure) were measured using a tail-cuff system (BP-2000

Blood Pressure Analysis System, Visitech Systems) in conscious

animals. To obtained stable values, mice were preconditioned for

three consecutive days (morning and afternoon) and hemodynam-

ic parameters were recorded during the subsequent two days

(morning).

Serum Cholesterol and HSP27 Measurements
An enzymatic assay kit (Wako Pure Chemical Industries, Ltd,

Osaka, Japan) was employed to determine serum levels of total

cholesterol. Serum HSP27 levels were measured using an ELISA

kit specific to human HSP27 (QIA119, Calbiochem, San Diego,

CA).

Preparation of the aorta and evaluation of atherosclerosis
Each aorta was dissected from the ascending to the thoracic

segments and the adventitial connective tissue was removed from

each segment before it was pinned to a black wax surface using

micro-needles and photographed. Thereafter, the aorta was

opened longitudinally with the primary incision following the

lesser curvature of the arch. To obtain a flat preparation for

imaging, a second incision was made along the greater curvature

of the arch down to the level of the left subclavian artery. Lipid-

rich intraluminal lesions were stained with oil red O and

photographed. The en face aortic atherosclerotic lesions were

analyzed by two observers using Image-Pro software (Media

Cybernetics, Silver Spring, MD) to calculate the total and

atherosclerotic lesion areas. As described previously the extent of

atherosclerosis was expressed as the percentage of surface area of

the entire aorta covered by lesions [7].

Assessment of atherosclerosis in the aortic sinus
The superior half of the heart including the aortic root was

embedded in paraffin or frozen in Tissue-Tek O.C.T. media.

Serial 4 mm sections of the aortic sinus with valves were cut,

beginning at the level where the aortic valve first appears, and

stained with hematoxylin and eosin (H&E), Masson’s trichrome,

oil red O and filipin. Additional tissue sections were used for an
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apoptosis assay and supplementary immunohistochemical/immu-

nofluorescence labeling. For the quantification of atherosclerotic

lesion areas all micrographs were captured with a bright field/

fluorescence microscope (Olympus BX60; Olympus America Inc.,

Center Valley, PA) and analyzed by two observers using Image-

Pro software. Lesion area data for each mouse is presented as the

mean lesion area of four sections.

Quantification of cholesterol crystal clefts in
atherosclerotic lesions

H&E and Masson’s trichrome stained serial sections were

employed for assessment of cholesterol crystal deposition in

atherosclerotic lesions. Cholesterol clefts were defined as ghost-

like needle-shaped spaces that resulted from dissolution of

cholesterol crystals during paraffin-embedding and tissue process-

ing. In addition, the necrotic area was defined by the presence of

pyknosis, karyorrhexis, or complete absence of nuclei. The

cholesterol cleft and necrotic areas were measured using morpho-

metric analysis, as described previously [10].

Combination of filipin and oil red O staining on the same
tissue section

To observe both un-esterified cholesterol and lipoid deposits

within the same tissue section, the fluorescent polyene antibiotic

filipin and the lipid-soluble dye oil red O were respectively

employed according to previously described methodologies [11].

Briefly, a 4 mm-thick cryostat section was incubated in oil red O

solution (Sigma; St. Louis, MO) for 1 hour at room temperature.

Following washes in PBS, the section was stained with hematox-

ylin. After repetitive washing in PBS the section was treated with

the filipin solution (Sigma) for 2 hours at room temperature.

Triplicate washes in PBS were again performed before mounting

in 50% glycerol in PBS. Fluorescence was viewed through a

D405 nm (blue) and D490 nm (green) barrier filter, respectively.

Photomicrographs were taken under the fluorescence exposure

followed by bright field using an Olympus BX60 microscope.

Quantification of macrophage and smooth muscle cell
content in atherosclerotic lesions

Macrophage content was assessed using the avidin-biotin-

alkaline phosphatase method (Vector Laboratories, Burlingame,

California, USA) as described previously [12]. Briefly, tissue

sections were pre-incubated with 10% normal horse serum in PBS

for 5 minutes followed by a rat anti-mouse macrophage primary

antibody (Mac-2; Accurate Chemical and Scientific Corp.,

Westbury, New York, USA) diluted in PBS 1:500 at 4uC
overnight. After repetitive rinsing with PBS, the sections were

incubated with a biotinylated rabbit anti-rat secondary antibody

(1:100, Vector Laboratories, Burlingame, California, USA) for

10 minutes at room temperature. The endogenous peroxidase was

quenched with 3% H2O2 for 10 minutes. Antibody reactivity was

detected using an ABC kit (Vector Laboratories, Burlingame,

California, USA) and visualized with diaminobenzidine (DAB)/

hydrogen peroxidase as chromogenic substrate, resulting in a

brown-colored precipitate at the antigen site. As a negative

control, tissue sections from each mouse were subjected to the

same immunohistochemical protocols but in the absence of the

primary antibody. Sections were counterstained with hematoxylin

to identify the nucleus, cleared, and mounted. To immunolabel for

smooth muscle cell (SMC) content tissue sections were blocked

with 10% normal horse serum before being incubated with an

mouse anti-a-smooth muscle actin alkaline phosphatase conjugat-

ed antibody (aSMA; Sigma, Saint Louis, Missouri, USA) diluted in

PBS 1:60 at 4uC overnight. The visualization of a positive

immunoreaction was made possible by the addition of the SIGMA

FAST Fast Red TR/Naphthol AS-MX Phosphate (4-Chloro-2-

methylbenzenediazonium/3-Hydroxy-2-naphthoic acid 2,4-di-

methylanilide phosphate, Sigma, St. Louis, MO), which resulted

in a red color reaction product. SMC and macrophage areas were

quantified using Image-Pro software according to previously

described techniques [13].

Quantification of apoptotic cells in atherosclerotic lesions
Apoptotic cells in atherosclerotic lesions were observed using an

In Situ Apoptosis Detection Kit (TUNEL, TACS-XL, TA200, R&D

Figure 1. Experimental timeline and physiological parameters. (A) Schematic overview of chronic HSP27 over-expression atheroprotection
experiment in apoE2/2 mice. (B) Table profiling the physiological parameters and the 16-fold increase in serum HSP27 levels in male and female mice
maintained on a HFD for 12 weeks.
doi:10.1371/journal.pone.0055867.g001
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Systems, Inc. Minneapolis, MN, USA) and by the detection of

activated Caspase 3 using a Cleaved Caspase 3 antibody (Cell

Signaling Technology, Inc. Danvers, MA, USA). For TUNEL

staining, serial 4 mm sections were incubated with 20 mg/ml

proteinase K for 20 minutes at room temperature and washed in

PBS. Endogenous peroxidase activity was squelched by incubating

with 3% H2O2 for 10 minutes, washing with PBS and then

incubated in 16TdT Labeling Buffer for 5 minutes at room

temperature. Sections were treated with the Labeling Reaction

Mix for 1 hour at 37uC and then soaked in 16TdT Stop Buffer for

5 minutes at room temperature. Following triplicate washes in

PBS sections were incubated with an anti-BrdU antibody for

1 hour at 37uC. After triplicate washes sections were covered with

a horseradish peroxidase streptavidin solution for 30 minutes at

room temperature. The sections were then washed with PBS and

treated with 0.03% 3,39-diaminobenzidine (DAB) containing

0.01% H2O2 in order to visualize the immunolabeling. Sections

were counterstained with hematoxylin to identify the nucleus,

cleared and mounted. For negative controls, the Labeling

Reaction Mix was omitted. Tissue sections were examined using

an Olympus BX60 microscope equipped with a high-resolution

digital camera. In each section, the total intimal cell number and

TUNEL-positive apoptotic cells within the intima (excluding the

necrotic core regions) were manually counted and expressed as the

percentage of intimal cells that are TUNEL-positive. For Cleaved

Caspase 3 staining, serial 4 mm sections were treated with 0.01 M

citric acid buffer (pH 6.0) for 3 minutes in microwave, and then

pre-incubated with 10% normal horse serum in PBS for 5 minutes

and the sections were incubated with a rabbit anti-Cleaved

Caspase 3 antibody diluted in PBS 1:100 at room temperature for

1 hour. After repetitive rinsing with PBS, the section was

incubated with a Texas red goat anti-rabbit secondary antibody

(1:100, Vector Labs) at room temperature for 30 minutes.

Following triplicate washes in PBS, tissue sections were incubated

with Hoechst 33258 to produce a nuclear signal. Three washes

with PBS were again performed before mounting in 50% glycerol

in PBS. Photomicrographs were obtained using a fluorescence

microscope (Olympus, BX60).

Combination of immunofluorescence and histochemistry
in same tissue section

In order to clearly interpret the morphological relationships

amongst various cells and their environments, both immunoflu-

orescence and histochemistry were applied on the same section as

described previously [14]. Briefly, in addition of TUNEL and

Cleaved Caspase 3 labeling, tissue sections were also label with

aSMA/Mac-2 immunolabeling and H&E staining. Tissue sections

were pre-incubated with 10% normal horse serum in PBS for

5 minutes followed by a mouse anti-aSMA-FITC (Sigma, Saint

Louis, Missouri, USA) diluted in PBS 1:1000 or a rat anti-mouse

Mac-2 (Accurate Chemical and Scientific Corp., Westbury, New

York, USA) diluted in PBS 1:500 at room temperature for 1 hour.

After repetitive rinsing with PBS, the section was incubated with a

biotinylated rabbit anti-rat secondary antibody (1:100, Vector

Laboratories, Burlingame, California, USA) for 10 minutes at

room temperature and assessed as described previously or a Texas

red goat anti-rat antibody (1:100, Vector Laboratories Inc.

Burlingame, CA) for 30 minutes at room temperature. Following

triplicate washes in PBS tissue sections were incubated with

Hoechst 33258 to produce a nuclear signal. Three washes with

PBS were again performed before mounting in 50% glycerol in

PBS. Photomicrographs were obtained using a fluorescence

microscope (Olympus, BX60). Thereafter, the same section was

washed with PBS and subjected to hematoxylin staining, and

repeat photomicrographs were obtained.

Quantification of Collagen Content
Picro-sirius red (Sigma) was used to stain for collagen [15,16].

Co-aligned molecules of Type I collagen display a bright yellow or

orange birefringence with polarized microscopy. Image Pro

software was used to quantify the intimal collagen content, and

the result was expressed as a percentage of the total intimal area.

Evaluation of aortic stiffness
The effect of HSP27 over-expression on aortic stiffness was

assessed using a custom made vessel-stretching device. The vessel

dimensions and the force required to stretch a 2 mm aortic ring

segment were used to compute the stress induced in the vessel wall

and to calculate the stiffness of the thoracic aortic segments. The

motorized stage uses a linear voice coil motor (Moticont, CA,

USA) mounted on a miniature linear motion ball bearing slide

(Edmund Optics Inc., NJ, USA). The real-time position of the

motorized stage was recorded using an optical encoder with a

resolution of 0.5 mm (MicroE Systems, MA, USA). The motor was

controlled with a motion controller (DMC-2143, Galil, CA, USA)

fed by the output signal of the optical encoders to execute motion

commands. Motion commands are managed using a LabVIEW

interface (National Instruments, TX, USA), which controls

displacement and speed of the stage. Force was measured using

a miniature load cell (model 31 low) with a load range of 0–150 g

(Honeywell, MN, USA). Displacement and force measurements

were acquired simultaneously using a data acquisition card

interfaced with LabVIEW.

The load cell is kept fixed in space while the motorized stage is

allowed to move and induce tissue stretch. Hooks are aligned

together for mounting of an aortic ring. All samples were kept in

Krebs solution at 37uC during stretching experiments. The system

was automated to induce a 40% stretch based on the unloaded

dimensions of each aortic ring. The tissues were subjected to 12

loading and unloading cycles with a displacement rate of 50 mm/s.

The first 11 cycles served to precondition the tissue (40% stretch)

and the final cycle was considered as the experimental run. Each

aortic ring generated a force-stretch curve. Force data were

transformed into engineering stress by dividing the force by the

length of the tissue and its thickness. Tissue stiffness was quantified

using a MATLAB script (MathWorks, Massachusetts, USA),

which calculates the slope of each stress-stretch curve at 30% of

stretch.

Statistical Analysis
All data represent the mean 6 standard error of the mean

except as specifically stated. Statistical analyses were performed

with one-way ANOVA by using SigmaStat 3.5 software. A value

of p,0.05 was considered statistically significant.

Results

All mice thrived during these experiments (Figure 1A) and

body weights were similar between the cohorts, though males were

consistently ,30% heavier than females (Figure 1B). The

hemodynamic parameters (systolic, diastolic, mean blood pressure

and heart beat) of the apoE2/2 and apoE2/2HSP27o/e mice

cohorts at 12 weeks after the beginning of the HFD were similar.

Total serum cholesterol levels rose in all groups and were similar in

female mice at euthanasia (apoE2/2: 1,1446198 vs. apoE2/2

HSP27o/e: 1,4056217 mg/dl; p = ns). However, in male mice the

total serum cholesterol levels at euthanasia were lower in the

HSP27 Alters Atherogenesis
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apoE2/2HSP27o/e compared to apoE2/2 mice (1,4976304 vs.

1,8326267 mg/dl; p,0.05). In mice of both sexes serum HSP27

levels rose by more than 16-fold from baseline until completion of

a 12 week HFD/euthanasia, however both baseline and final levels

were higher in females compared to males (e.g., females: 2116116

to 3,47361,340 pg/ml, p = 0.02; males: 74623 to 1,2046473 pg/

ml, p = 0.04) (Figure 1B).

HSP27 over-expression reduces aortic atherosclerotic
lesion area

Female apoE2/2HSP27o/e mice showed reductions in aortic

lesion area of 35% for en face and 30% for cross-sectional sinus

tissue sections compared to apoE2/2 female counterparts

(p,0.001 for both). Male apoE2/2HSP27o/e mice also showed

reductions in aortic lesion area of 21% in the en face and 24% for

cross-sectional sinus sections compared to their apoE2/2 male

counterparts (p,0.001 for both) (Figure 2).

HSP27 over-expression reduces aortic lesion cholesterol
content

Within the necrotic core of atherosclerotic lesions the acellular

area containing cholesterol clefts was reduced in apoE2/

2HSP27o/e mice by 28% and 42% in females and males

compared to their apoE2/2 counterparts (p,0.05 and p,0.001

respectively; Figure 3A, B). As well, the intimal lipid and free

cholesterol content, as reflected by oil red O (Figure 3C) and

filipin staining (Figure 3D), respectively, were lower in apoE2/

2HSP27o/e mice compared to apoE2/2 mice.

HSP27 over-expression and lesion macrophage content
and remodeling

Previously we demonstrated that HSP27 over-expression results

in reduced macrophage adherence and migration in vitro [7]. As

macrophage apoptosis is a prominent characteristic of atheroscle-

rotic plaques (see review, [17]) and HSP27 is a known anti-

apoptotic factor [18], we postulated that HSP27 over-expression in

vivo would result in reduced plaque macrophage content and

apoptosis. The aortic sinus cross-sectional area occupied by

macrophages was identified using an anti-macrophage antibody

(Mac-2) and quantified (Figure 4A). Macrophage content in the

lesion area was reduced by 38% and 26% in female and male

apoE2/2 HSP27o/e mice, respectively, when compared to their

apoE2/2 counterparts (Figure 4B, p,0.01 & p,0.05; respec-

tively). Apoptotic macrophages were identified in lesions using a

combination of TUNEL and Mac-2 immunolabeling. TUNEL-

positive cells within the nuclei of Mac-2-immunopositive macro-

phages were found surrounding (Figure 4C) as well as within the

necrotic core of aortic lesions (data not shown). In the non-necrotic

core the percentage of apoptotic cells found in aortic lesions were

reduced by approximately 35% and 55% in female and male

apoE2/2HSP27o/e compared to control sex-matched apoE2/2

mice (Figure 4D, p,0.05 & p,0.001; respectively). In order to

clarify if vascular smooth muscle cells apoptosis is also present in

lesion, we performed double immunohistochemistry/immunoflu-

orescence studies with TUNEL and cleaved Caspase 3

(Figure 4E, F). We demonstrate that apoptosis is present in

lesions but is primarily found in the necrotic core and did not co-

localize with VSMCs.

HSP27 over-expression and lesion SMC/Collagen content
The aortic sinus cross-sectional area occupied by SMCs was

identified using anti-SMC immunolabeling and quantified

(Figure 5A, B). SMC content in the lesion area was increased

by 72% and 127% in female and male apoE2/2 HSP27o/e mice,

respectively, when compared to their apoE2/2 counterparts

(p,0.05 for both). Enhanced intimal collagen content is purported

to represent a surrogate marker for lesion resilience to plaque

Figure 2. HSP27 over-expression reduces aortic atherosclerotic
lesion area in female and male mice. (A) The aortic atherosclerotic
lesion area was analyzed in apoE2/2HSP27o/e mice and compared to
apoE2/2 littermates. We observed a reduced lesion area in the aortic
wall (B) and in the aortic sinus (C) in apoE2/2HSP27o/e compared to
apoE2/2 mice.
doi:10.1371/journal.pone.0055867.g002
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rupture [19]. Using polarized microscopy on picro-sirius red

stained sections we noted that the abundance of collagen was

greater in apoE2/2HSP27o/e compared to apoE2/2 mice.

Indeed, collagen content in the lesion area was increased by

59% and 50% in female and male apoE2/2 HSP27o/e mice,

respectively, when compared to their apoE2/2 counterparts (e.g.,

females: 14.363.9% vs. 9.064.6%, p,0.05; males: 12.865.4% vs.

8.662.7%, p,0.05; Figure 5C, D). Finally, we noted a direct

relationship between the abundance of intimal collagen and SMC

area in lesions (R2 = 0.421, p,0.001; Figure 5E).

HSP27 over-expression increases aortic stiffness
To determine the impact of the enhanced intimal collagen

content on the vessel mechanical properties, 2 mm aortic ring

segments were precisely measured and preconditioned in prepa-

ration for stretching experiments (Figure 6A–D). The overall

aortic wall thickness of equivalent segments from both murine

cohorts was similar (e.g., apoE2/2: 128.969.3 mm; apoE2/

2HSP27o/e: 124.566.8 mm). Changes in the vessel stiffness

induced by the over-expression of HSP27 were determined by

the calculation of the Young’s modulus (Pa) from the stress-strain

curves generated during the stretching experiment. The stiffness of

the aortic segments in female and male apoE2/2 mice were

44.463.8 kPa and 50.562.2 kPa, respectively and in the same

order of magnitude as the stiffness of human tissues that we

previously reported [20]. In contrast chronic over-expression of

HSP27 resulted in 41% and 34% increases in aortic stiffness (e.g.,

62.863.0 kPa in females and 67.961.9 kPa in males; p,0.001 for

both groups, Figure 6E).

Discussion

Previously we showed that HSP27 over-expression reduced

atherogenesis in female but not male apoE2/2HSP27o/e mice fed

a HFD for 4 weeks. We also noted a tight inverse correlation

between aortic atherosclerotic lesion burden and serum HSP27

levels [7]. In the current study we sought to determine if long-term

over-expression of HSP27 attenuates atherogenesis independent of

sex. Herein, we found that after 12 weeks on HFD, serum HSP27

levels rose in both male and female apoE2/2 HSP27o/e mice.

Moreover, both male and female apoE2/2 HSP27o/e mice show

reduced aortic lesion burdens, with important reductions in plaque

cholesterol and macrophage accumulation, as well as increased

intimal collagen content and aortic stiffness.

Several important concepts emerge from the current study.

First, both sexes of apoE2/2HSP27o/e mice showed a more than

16-fold increase in HSP27 serum levels. Female apoE2/2HSP27o/e

mice had higher baseline and final serum HSP27 levels compared to

males. Indeed, male apoE2/2HSP27o/e mice had serum HSP27

levels that are similar to those previously observed in female apoE2/

2HSP27o/e mice after ingesting a HFD for just 4 weeks [7]. These

higher serum levels of HSP27 in the female mice correlate with

important earlier observations from our laboratory. Previously we

demonstrated in vitro that estrogens promote the extracellular release

Figure 3. HSP27 over-expression reduces aortic lesion cholesterol content. (A–B) Cholesterol cleft area is reduced within lesions from
apoE2/2HSP27o/e vs. apoE2/2 mice as observed using the Masson’s trichrome stain. (C) Reduction in arterial wall cholesterol content with over-
expression of HSP27 with oil red O staining identifying lipid deposits. (D) Attenuated arterial wall unesterified cholesterol content in apoE2/2HSP27o/e

mice as denoted by fluorescent blue filipin staining. Scale bar = 100 mm (A, C and D) and 500 mm (inserted photo of A), L = lumen.
doi:10.1371/journal.pone.0055867.g003
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of HSP27 from macrophages, and that in vivo HSP27 over-

expression in ovariectomized mice requires estrogen replacement

therapy to restore both the rise in serum HSP27 levels and

atheroprotection that normally occurs when these mice are placed

on a HFD [7,8]. Presumably the rise in serum HSP27 levels seen in

the male mice from the current study is the result of prolonged

Figure 4. Reduction in arterial wall foamy macrophage content and apoptosis with over-expression of HSP27. (A) Macrophages
(brown anti-Mac-2 immunolabeling reaction product) localized mainly in layers along the lumenal surface of aortic sinus cross-sections. (B)
Quantification of macrophage content in aortic sinus cross-sections. (C) On a single tissue section stained for histomorphology (hematoxylin and
eosin stain; H&E), an apoptotic cell (TUNEL labeling in nucleus; green/arrow) immunolabeled with an anti-Mac-2 macrophage antibody (red
immunofluorescence) is identified. (D) Quantification of apoptotic cells in aortic sinus cross-sections. (E, F) Combination of immunohistochemical
and fluorescent TUNEL/Cleaved Caspase 3 staining demonstrating that apoptosis is detected in lesions but do not involve vascular smooth muscle
cells. In (E), TUNEL (green), aSMA (red), Mac-2 (brown) and Hoechst (blue). In (F), cleaved Caspase 3 (red), aSMA (green) and Hoechst (blue). Scale
bar = 100 mm (A, F), 500 mm (inserted photo of A), 10 mm (C) and 50 mm (E). L = lumen, I = Intima, M = Media, dotted lines delineates the media.
doi:10.1371/journal.pone.0055867.g004
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Figure 5. Increased intimal SMC and collagen content with HSP27 over-expression. (A) SMC (anti-a-SMA red immunolabeling reaction
product) localized mainly in sub-endothelial layers along the luminal surface of aortic sinus cross-sections. (B) Quantification of SMC content in aortic
sinus cross-sections. (C) Intimal collagen content demonstrated by polarized microscopy. Bright yellow or orange birefrigence of collagen, due to co-
aligned molecules of Type I collagen. (D) Quantification of intimal collagen content. (E) Correlation between collagen and SMC content in lesions.
Scale bar in (A) and (C) = 20 mm and 200 mm (insert photo), L = Lumen, I = Intima, dotted lines delineates the media.
doi:10.1371/journal.pone.0055867.g005
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exposure to the metabolic influences of an atherogenic HFD – as

before we noted in vitro that macrophages treated with acLDL also

secreted HSP27 [7]. Detecting HSP27 levels in the serum is a recent

phenomenon, as HSPs are traditionally considered as intra-cellular

chaperone proteins – yet an expanding number of HSPs are now

identified in the extracellular space and implicated in macrophage

signaling events (see review, [21]). While our understanding of the

mechanisms by which HSPs exit cells is incomplete, we demon-

strated that the release of HSP27 from macrophages occurs via an

exosomal pathway [8].

Second, it is intriguing to consider why HSP27 over-expression

is associated with a reduction in plaque cholesterol cleft area and

lipid content. In a previous study, we showed that extracellular

HSP27 interacts with Scavenger Receptor-A (SR-A) and compet-

itively inhibits the uptake of acLDL in vitro by 41% [7]. Hence, we

have reason to believe that HSP27 interferes with cholesterol

uptake by macrophages, and our recent studies suggests that

HSP27 reduces SR-A expression and the ability of cells to take-up

cholesterol [22].

Third, in the current study we observed an important reduction

in the macrophage content of lesions. Previously we noted in vitro

that adhesion and migration is attenuated in macrophages derived

from apoE2/2HSP27o/e compared to apoE2/2 mice [7]. Yet,

macrophage abundance in lesions is not only determined by the

Figure 6. HSP27 over-expression results in increased aortic stiffness. Aortic stiffness measured in apoE2/2 and apoE2/2HSP27o/e mice fed a
high fat diet for 12 weeks. (A) The custom made vessel-stretching device is composed of a motorized stage with a linear voice coil motor used to
perform loading and unloading cycles. (B–C) To determine the stress applied to vessels during stretching, we measured the unloaded vessel area by
the microscopic measurement of aortic ring segments length (B) and wall thickness (C). (D) The aortic rings were slipped on two parallel hooks and
immersed in a physiological Krebs solution maintained at 37uC. (E) Male and female apoE2/2HSP27o/e mice showed an increase of aorta stiffness
compared to apoE2/2 counterparts.
doi:10.1371/journal.pone.0055867.g006
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number of macrophages that enter lesions – but also by the

survival and exit of macrophages from the plaque. Although

HSP27 is known to have anti-apoptotic effects, despite this

stabilizing effect on macrophage survival, there are still fewer

macrophages in lesions of HSP27 over-expressing mice. At this

stage, we are unable to comment on the dynamics of macrophage

transit from lesions, but we now know that HSP27 dramatically

upregulates GM-CSF, a cytokine known to play an important role

in mononuclear cell trafficking and re-entry into the circulation

[3]. Hence, it is attractive to posit that HSP27 has a stabilizing

effect on vessel wall macrophages, not only reducing their ability to

sequester cholesterol as foam cells, but also reducing their

adherence and entry into lesion, as well as promoting their

survival and potential egress from the plaque.

Fourth, we note that the lesions of HSP27 over-expressing mice

undergo a multi-faceted histological remodeling process that is

consistent with a more resilient lesion. The characteristics of this

lesion remodeling include: i) reduced macrophage content, ii)

reduced apoptotic cells in the non-necrotic areas of lesions, iii)

increased intimal SMC and collagen content, and iv) increased

aortic rigidity. Although we are unable to ascertain a direct

connection between increased SMC and collagen content with the

vessel wall stiffness, these biological changes in the vessel wall are

certainly consistent with the altered mechanical properties that we

measured. It is interesting to note that, while intimal collagen

content was higher for both the female and male apoE2/2

HSP27o/e compared to the apoE2/2 mice, the difference was

greater for males. One possible explanation for the less impressive

increase in collagen content for the female apoE2/2HPS27o/e

mice may be the known negative effect that estrogens have on the

expression of collagen [19]. Certainly, collagen expression is

recognized as an important part of complex human coronary

artery lesions [23]. The abundance of collagen in lesions reflects

the balance between production and destruction. Hence it is

attractive to postulate that the higher collagen content of the

apoE2/2HSP27o/e murine lesions reflects less destruction of

collagen – a possibility that might be predicted from our previous

observations that HSP27 facilitates a shift towards an anti-

inflammatory vascular milieu (e.g., increase in IL-10 with a

decrease in IL-1b) [3,7]. Taken together, these features of vessel

wall remodeling are important surrogate end-points for plaque

resilience and support the contention that HSP27 promotes

favorable vascular remodeling.

Finally, it is interesting to note lower total serum cholesterol

levels in the male apoE2/2HSP27o/e vs apoE2/2 mice. While this

difference in serum cholesterol levels is not found in the female

mice, total serum cholesterol levels are not as high in the female

mice compared to the males. Although the precise mechanistic

explanation for this difference in serum cholesterol levels remains

unclear, we recently identified that HSP27 plays a key role in NF-

kB signaling – including the induction of a number of important

factors that may influence cholesterol levels [3]. Hence, we

speculate that the reduction in serum cholesterol levels observed in

the male apoE2/2HSP27o/e mice may be due to downstream

transcriptional effects (FIGURE 7). Certainly, longer duration

experiments are needed to ascertain if these differences in serum

cholesterol levels become more striking over time and remain

isolated to males.

Taken together, these data indicate that chronic HSP27 over-

expression results in atheroprotection that is independent of sex.

Moreover, HSP27-mediated atheroprotection occurs in associa-

tion with remarkable reductions of plaque lipid and macrophage

abundance plus an increase in intimal collagen content and vessel/

plaques stiffness. While our studies are too short to be conclusive,

we surmise that the enhanced vascular remodeling seen with

HSP27 over-expression may offer an important advantage by

enhancing the resilience of lesions and potentially preventing

plaque rupture. Preliminary therapeutic studies utilizing a

recombinant form of HSP27 are ongoing.
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Figure 7. HSP27 release and cell-signaling. In response to estrogenic stimulation or to atherogenic stress induced by elevated serum cholesterol
levels, HSP27 is released into the extracellular space via an exosomal pathway. Once available in the extracellular space, HSP27 may alter gene
transcription in target cells (e.g., vascular smooth muscle cells or monocyte/macrophages). Shown here is HSP27-induced activation of NF-kB,
resulting in candidate genes expression and the altering of scavenger receptor-A (SR-A) expression, thereby reducing cholesterol uptake and foam
cell formation. The search for a putative HSP27 cell surface receptor is ongoing.
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