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Obesity develops due to altered energy homeostasis favoring fat storage. Here we describe a novel 

transcription co-regulator for adiposity and energy metabolism, TRIP-Br2 (also called 

SERTAD2). TRIP-Br2 null mice are resistant to obesity and obesity-related insulin resistance. 

Adipocytes of the knockout (KO) mice exhibited greater stimulated lipolysis secondary to 

enhanced expression of hormone sensitive lipase (HSL) and β3-adrenergic (Adrb3) receptors. The 

KOs also exhibit higher energy expenditure due to increased adipocyte thermogenesis and 

oxidative metabolism by up-regulating key enzymes in respective processes. Our data show for 

the first time that a cell cycle transcriptional co-regulator, TRIP-Br2, modulates fat storage 

through simultaneous regulation of lipolysis, thermogenesis and oxidative metabolism. These data 

together with the observation that TRIP-BR2 expression is selectively elevated in visceral fat in 

obese humans suggests that this transcriptional co-regulator is a novel therapeutic target for 

counteracting the development of obesity, insulin resistance and hyperlipidemia.

INTRODUCTION

Obesity and its related complications are associated with high morbidity and mortality 

making it a pathologic condition of global significance1,2. Understanding the regulation of 

the factors that control storage, mobilization, and utilization of excess energy in adipocytes 

may lead to the development of potential therapies for obesity and related diseases.

In mammals, white adipose tissue (WAT) is the primary energy reservoir and a major source 

of metabolic fuel and regulatory adipokines3–5. On the other hand, brown adipose tissue 

(BAT) is specialized in energy expenditure and thermogenesis through high levels of fatty 

acid oxidation in numerous mitochondria, and the expression of uncoupling protein 1 

(UCP-1)6.

Transcriptional control of cellular energy metabolic pathways in mammals is achieved by 

the coordinated action of numerous transcription factors and associated co-regulators7, 

which integrate signals from dietary, metabolic and endocrine pathways to control target 

gene expression8. The co-regulators, which can have either positive (co-activators such as 

PGC1α and β) or negative (co-repressors such as SRC-2 and RIP140) gene transcriptional 

effects on downstream targets9,10, play a crucial role in controlling fat accretion8 primarily 

through the modulation of PPARγ activity, the master regulator of adipocyte differentiation 

and lipid storage11.

We identified a novel co-regulator of the E2F1/DP1/RB gene transcription complex 

involved in cell cycle progression. TRIP-Br2 (also known as SERTAD2-SERTA domain 

containing 2)12, is a member of a novel family of mammalian transcriptional co-regulators 

comprised of five members13, four of which have been shown to modulate E2F-dependent 

transcriptional activities12,14,15. While the role of TRIP-Br2 in adipose tissue is virtually 

unknown, it has been proposed to recruit PHD zinc finger- and/or bromodomain-containing 

transcriptional co-regulators12,16, such as p300/CBP17 and KRIP-118, to E2F1/DP1 

transcription complexes assembled on E2F-responsive promoters. Recent evidence suggests 

that besides its role in cell cycle regulation, the E2F1/DP1 transcriptional complex regulates 

adipocyte biology and energy metabolism19,20.
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We report that the expression of TRIP-Br2 in adipose tissues is necessary for the 

development of diet- and age-induced obesity while its ablation enhances adipocyte 

lipolysis, thermogenesis and oxidative metabolism without ectopic TG storage or increase in 

serum nonesterified fatty acid levels. To our knowledge, this is the first report of a cell cycle 

transcriptional co-regulator that modulates fat storage by simultaneously regulating multiple 

processes including lipolysis, thermogenesis and oxidative metabolism leading to enhanced 

fatty acid turnover in adipocytes, in contrast to the other known described co-regulators 

including PGC1α, 1β, SRC-2 and RIP140 which act by regulating adipocyte lipogenesis and 

differentiation. The elevated expression of TRIP-Br2 in visceral fat in obese humans and its 

significant correlation with indices of glucose homeostasis suggests that this transcriptional 

co-regulator is a novel target to treat obesity and its related complications.

RESULTS

Elevated TRIP-Br2 in fat tissue in obesity

Consistent with a potential role in adiposity, gene and protein expression of TRIP-Br2 was 

significantly and selectively up-regulated in BAT, epididymal (visceral) and subcutaneous 

WAT in high fat diet (HFD) fed male C57BL/6J mice compared to low fat diet (LFD) fed 

controls (Fig. 1a; Supplementary Fig. 1a). Similarly, TRIP-Br2 expression was selectively 

up-regulated in epididymal and subcutaneous adipose tissues from 12 week old obese ob/ob 

mice (Fig. 1b, Supplementary Fig. 1b), and down-regulated in mice on a calorie restricted 

(CR) diet (Fig 1c). Interestingly, a significantly higher expression of TRIP-Br2 was evident 

in the visceral (omental) fat from obese individuals, especially those with predominant 

visceral fat accumulation (Fig 1d, Supplementary Fig. 2a). TRIP-Br2 expression in visceral 

fat was significantly correlated with visceral but not subcutaneous fat area (Fig. 1e, Table 1) 

in both genders (Supplementary Fig. 2b, Supplementary Table 1, Supplementary Table 2) 

and independently of the presence of impaired glucose tolerance or diabetes, or the 

treatment modalities of these conditions. The correlation of TRIP-Br2 expression in visceral 

fat, even after adjustment for visceral fat area, remained significant for fasting plasma 

insulin, glucose utilization during euglycemic-hyperinsulinemic clamp, and HbA1c, 

suggesting independent dual roles of TRIP-Br2 in the modulation of adiposity and glucose 

homeostasis (Table 1, Supplementary Table 2). In both genders, the obesity-adjusted odds of 

diabetes progressively increased from the first to the fourth quartile of TRIP-Br2 visceral fat 

expression, with OR of 4.6 (95% CI 1.1–18.6) for Q2, 5.1 (1.2–21.4) for Q3, and 9.5 (2.2–

41.1) for Q4 (Fig. 1f).

TRIP-Br2 KO mice are resistant to development of obesity

To elucidate the physiological role of TRIP-Br2, we initiated studies in mice due to the 

limitations in performing mechanistic studies in human tissues. We investigated gene-trap 

targeted TRIP-Br2 knockout (KO) males on the original 129SvJ founder background21 and 

on the C57BL/6J background and used the latter for our studies. Successful ablation was 

confirmed by the virtual absence of TRIP-Br2 gene and protein expression, while the 

expression of TRIP-Br 1/3/4 remained unaltered (Supplementary Fig. 3). To potentially 

unmask the phenotype, we placed the mice on either a LFD (10% fat by kcal) or HFD (60% 

fat by kcal) for 12 weeks. The KO mice on the LFD exhibited a trend to reduce (~10%, 
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p=0.05) their body weights (Fig. 1g, left). However, on the HFD, the KO mice were 

significantly leaner (Fig. 1g, right). At the end of the HFD, the KO mice showed little 

change in their body weights and were similar to that of the WTs on the LFD (p=0.92) (Fig. 

1g). We also observed a protection against weight gain in the KOs even when maintained on 

the 129Sv background, which is known to resist diet-induced obesity22 (Fig. 1h). 

Interestingly, knocking out TRIP-Br2 also protected the mice from age-induced obesity 

(WT: 51.2 ± 2.7; Het: 47.6 ± 3.9; KO: 43.9 ± 1.9; WT vs KO, p<0.01). Food intake 

(Supplementary Fig. 4a), gene expression of appetite regulating peptides in the 

hypothalamus (Supplementary Fig. 4b) and the ability of the intestine to absorb fat23 were 

similar between groups (Supplementary Fig. 5).

The lower body weight of TRIP-Br2 KO mice was largely accounted for by a reduction in 

WAT weight (Fig. 1i, Supplementary Fig. 6) without an alteration in lean body mass and 

body length in HFD fed mice (Fig. 1i, 1j). On the LFD, the lack of a significant decrease in 

body weight in the KOs (Fig. 1g) was likely masked by an increase in their lean body mass 

despite a significant reduction in the percent of fat mass (Supplementary Fig. 7) indicating 

protection from diet-and age-induced obesity primarily due to lower fat mass.

TRIP-Br2 KO mice are resistant to detrimental effects of obesity

TRIP-Br2 KO mice fed a HFD exhibited improved glucose tolerance (Fig. 2a, left), and 

insulin sensitivity (Fig. 2a, right), and lower fasting glucose and insulin levels (Fig. 2b). 

Further, the fed serum adiponectin levels, 24, were significantly higher in KO mice on the 

HFD (Fig. 2b). Consistently, adiponectin mRNA levels were higher in the HFD KO mice 

compared to WT (Fig. 2b). Increased adipocyte volume and number are positively correlated 

with leptin production25. The HFD-induced 4.5-fold increase in serum leptin levels in WT 

mice (Fig. 2b) was also reflected by higher adipose leptin mRNA levels, while serum leptin 

levels remained low in the HFD-fed KOs. TRIP-Br2 KO mice exhibited significantly lower 

fed and fasting serum cholesterol and a trend to decrease triglyceride (TG) levels on HFD 

(Fig. 2b, Supplementary Fig 9b). Despite the increased lipolysis in TRIP-Br2 KO mice 

(discussed below), serum non-esterified fatty acid (NEFA) levels remained in the normal 

range in KO mice on HFD diet (Supplementary Fig. 9b).

In contrast, the TRIP-Br2 KO mice fed a LFD showed a trend toward improved insulin 

sensitivity and a mild metabolic phenotype probably due to an insignificant reduction in 

their body weights (Fig. 1g, Supplementary Fig. 8, Supplementary Fig. 9a, 9b). To confirm 

the effect of TRIP-Br2 KO on insulin sensitivity, we stimulated LFD-fed mice in vivo or 

differentiated adipocytes over-expressing TRIP-Br2 in vitro with insulin and observed that 

expression of proteins in the insulin signaling pathway were not significantly different 

between the two groups in the liver and muscle (Supplementary Fig 10) as well as in 

differentiated adipocytes (Supplementary Fig. 11).

Chronic exposure of mice to HFD causes fatty liver (steatosis)26. Feeding a HFD increased 

liver mass only in the WTs (Fig. 1g) while in the KOs, the livers exhibited smaller lipid-

containing vacuoles (Fig. 2c, left) and reduced TG content (Fig. 2c, right).
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Obesity is associated with an increase in macrophage infiltration in visceral adipose 

tissue27,28. Adipose tissues from TRIP-Br2 KO mice on the HFD exhibited 57% less adipose 

tissue macrophage (ATM) infiltration (Fig. 2d, left and middle). Consistently, the mRNA 

expression of macrophage marker, F4/80 and monocyte chemoattractant protein-1 (MCP-1) 

was significantly lower in WAT of TRIP-Br2 KO mice (Fig. 2d, right). These data suggest 

TRIP-Br2 is one factor that mediates the detrimental effects of HFD-induced obesity such as 

glucose intolerance, insulin resistance, changes in adiponectin, leptin and serum lipid levels, 

hepatic steatosis and adipose tissue inflammation.

Reduced adipocyte size in TRIP-Br2 KO mice

A decrease in adipose tissue mass could result either from a reduction in adipocyte size 

and/or a reduction in adipocyte number due to impaired differentiation29. The mRNA levels 

of adipogenic transcription factors30 as well as late markers of adipocyte differentiation 

were not significantly different in WAT between groups suggesting normal adipocyte 

differentiation in both fat depots (Supplementary Fig. 12a). In addition, no significant 

differences were observed in morphology or lipid accumulation, nor in mRNA expression of 

early and late adipogenesis markers in TRIP-Br2 over-expressing or TRIP-Br2 KD 3T3-L1 

cells differentiated in vitro (Supplementary Fig. 12b, 12c). These results suggest that TRIP-

Br2 is not important for adipocyte differentiation. A down-regulation of endogenous TRIP-

Br2 expression during the differentiation of WT adipocyte (Supplementary Fig. 13) argues 

for a putative repressor role in mature adipocytes.

Instead, histological analyses revealed a significantly greater frequency of small adipocytes 

and a lower frequency of midsized and large adipocytes in epididymal WAT from the KO 

mice on HFD (Fig. 2e, 2f, Supplementary Fig. 14). Thus, TRIP-Br2 ablation leads to 

adipocyte hypotrophy due to lower TG accumulation (Fig. 2f, left) and smaller adipocyte 

size rather than impaired adipocyte differentiation.

Absence of TRIP-Br2 increases fat lipolysis

We next examined whether the marked decrease in adipocyte cell size in the KO mice is due 

to alterations in lipolysis or lipogenesis. While no differences were detected either in the rate 

of lipogenesis or gene expression of lipogenesis markers31 in epididymal adipocytes 

between groups (Supplementary Fig. 15), β-adrenergic agonist (isoproterenol)-stimulated 

lipolysis was significantly higher in adipocytes from TRIP-Br2 KO mice fed a LFD or HFD 

(Fig. 3a, Supplementary Fig. 16). Further, while HFD feeding blunted the isoproterenol-

stimulated lipolytic response of WT adipocytes, the adipocytes from TRIP-Br2 KOs fed 

either diet remained sensitive (Supplementary Fig. 16). This observation was confirmed by 

lipolysis assay in in vitro differentiated TRIP-Br2 KD or over-expressing 3T3-L1 cells (Fig. 

3b). To further confirm the lipolysis changes observed in vitro or ex vivo, we measured the 

lipolysis rate in vivo either by IP injection of the CL316342 compound32, a β3-adrenergic 

agonist, or by the heavy water labeling technique33,34.The two approaches independently 

confirmed a significant increase in in vivo lipolysis rate in the TRIP-Br2 KO mice (Fig. 3c, 

3d). Analyses of key lipolytic genes, in epididymal fat of TRIP-Br2 KO mice placed on 

either diet, revealed unchanged levels of adipose triglyceride lipase (ATGL)35 or its co-

regulators including CGI-58 and G0S2 (Fig 3e, 3f, Supplementary Fig. 17, 18), but a 
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significant increase in another key lipolytic enzyme, hormone sensitive lipase (HSL) at both 

mRNA and protein levels36 (Fig. 3e, 3f, Supplementary Fig. 19), but not one of the HSL 

regulators, Perilipin A. Interestingly, we observed an increased in Perilipin A gene 

expression (Supplementary Fig. 17) but not in the protein level (Supplementary Fig. 18) in 

the epididymal fat from the HFD fed KO mice. We also observed a significant increase in 

the mRNA and protein expression of the β3-adrenergic receptor (Adrb3) in all adipose 

depots from HFD fed KO mice (Fig. 3e, 3f).

Stimulation of Adrb3 signaling phosphorylates HSL and increases HSL-mediated lipolysis 

leading to reduced fat mass37. Consistently, we observed an increase in HSL 

phosphorylation in TRIP-Br2 KO mice (Fig. 3f). In the KO mice fed a LFD, a significant 

increase in Adrb3 and HSL mRNA levels was detected in the epididymal WAT 

(Supplementary Fig. 19). Consistent with the in vivo data, the gene and protein expression of 

HSL and Adr3b were downregulated in differentiated 3T3-L1 adipocytes over-expressing 

TRIP-Br2 and again ATGL was found to be unchanged (Fig. 3g).

Further, treatment of TRIP-Br2 KO adipocytes with a HSL specific inhibitor, 4-isopropyl-3-

methyl-2-[1-(3-(S)-methyl-piperidin-1-yl)-methanoyl]-2H-isoxazol-5-one (BAY)38, 

completely prevented the increase in isoproterenol-stimulated lipolysis in TRIP-Br2 KO 

adipocytes (Fig. 3h), confirming the role of HSL as the major lipolytic enzyme regulated by 

TRIP-Br2 in the adipocyte.

To dissect the relative importance of β3-adrenergic receptor and HSL in the TRIP-Br2 KO 

adipocyte, we stimulated isolated primary adipocytes with isoproterenol, forskolin or IBMX 

to either activate the β3-adrenergic receptor or increase the cAMP level to indirectly 

enhance HSL enzyme activity. Interestingly, isoproterenol-stimulated lipolysis showed a 

tendency to be consistently higher compared to stimulation with forskolin or IBMX (Fig. 3i, 

upper panel) suggesting that the primary site for action is an increase in β3-adrenergic 

receptors in the TRIP-Br2 KO adipocyte. This observation was confirmed in the 

differentiated TRIP-Br2 KD 3T3-L1 cell line (Fig. 3i, lower panel).

These results suggest that increased lipolysis in adipocytes and reduced adiposity in the KO 

mice is mediated by specific regulation of β3-adrenergic receptors and HSL.

Enhanced thermogenesis in TRIP-Br2 KO mice

Reduction in adipose tissue mass without alterations in food intake (Supplementary Fig 4a) 

suggested a potential increase in energy expenditure in the KOs. Indeed, measurement of 

oxygen consumption (VO2) rates over 48 h (light and dark phases) revealed ~20% higher 

levels in the KOs (Fig. 4a) which could not be attributed to changes in activity 

(Supplementary Fig. 20a). The rate of carbon dioxide elimination (VCO2) was unchanged 

(Supplementary Fig. 20b). Consistent with the higher VO2, the KOs generated more heat 

(Supplementary Fig. 20c), a ~0.7°C higher basal core body temperature (Fig. 4b, left panel), 

and a higher body temperature for up to 3 h even in a cold environment (4°C) (Fig. 4b, right 

panel), suggesting enhanced adaptive thermogenesis. The generally lower respiratory 

quotient (RQ = VCO2/VO2) in the TRIP-Br2 KO mice indicated higher fat utilization 

(Supplementary Fig. 20d). These data indicating increased thermogenesis in the TRIP-Br2 
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KO mice, prompted us to examine BAT. Notably, although we did not detect significant 

alterations in the gross appearance or weight of interscapular BAT in the KO mice, we 

observed a significant increase in the number of smaller adipocytes associated with smaller 

lipid droplets (Fig. 1i, 2e). These results indicate that absence of TRIP-Br2 increases 

thermogenesis, in part, due to an increase in brown adipocyte number.

Consistent with the increase in thermogenesis and VO2 in the KOs, we observed an up-

regulation of gene expression for uncoupling protein 1 (UCP1), PPARγ coactivator-1α 

(PGC-1α), peroxisomal enoyl coenzyme A hydratase 1 (ECH1), cytochrome C (Cyc1) and 

cytochrome c oxidase subunit VIIIb (Cox8b), which are genes involved in thermogenesis, 

oxidative metabolism and mitochondrial biogenesis (Fig. 4c, left panel, Supplementary Fig 

21). Further, examination of BAT in mice exposed to a cold environment revealed a 

significant up-regulation in the expression of HSL and Adrb3 (Fig. 4c, right panel), 

consistent with observations under ambient conditions (Fig. 3e). The cold exposed BAT 

from the KO mice also showed a significant up-regulation of genes involved in 

thermogenesis and in both mitochondrial and peroxisomal fatty acid oxidation (Fig. 4c, right 

panel). Thus, ablation of TRIP-Br2 in brown adipocytes leads to up-regulation of Adrb3 

expression and genes essential for adaptive thermogenesis and oxidative metabolism. 

Considering Adrb3 signaling regulates thermogenesis and fatty acid oxidation pathways39, 

the significant up-regulation of Adrb3 expression upon cold-exposure could potentially up-

regulate the genes involved in thermogenesis and fatty acid oxidation observed in BAT in 

the KOs. These data were further supported by our observation that the BAT in TRIP-Br2 

KOs exhibits a significantly higher oxygen consumption rate (OCR) (Fig. 4d) and increased 

ratio of OCR to extracellular acidification rate (ECAR) (Fig. 4e) suggesting that the BAT 

lacking TRIP-Br2 has enhanced oxidative metabolism compared to BAT in WT controls. To 

further determine its role, we denervated the BAT and interestingly observed that this 

manipulation only partially reverses the TRIP-Br2 obesity resistant phenotype (Fig. 4f) 

suggesting contributions from other tissues.

In epididymal WAT of TRIP-Br2 KO mice, we detected an elevated expression of genes 

(Fig. 4g, Supplementary Fig. 22), involved in promoting fatty acid oxidation. Consistently, 

the basal and isoproterenol-stimulated fatty acid oxidation was enhanced in the isolated 

primary TRIP-Br2 KO adipocytes (Fig. 4h). This observation was confirmed in vitro where 

the basal and isoproterenol-stimulated fatty acid oxidation rates were reduced in the 

differentiated 3T3-L1 adipocytes over-expressing TRIP-Br2, and conversely, enhanced in 

adipocytes with a TRIP-Br2 knockdown (Figure 4i). The up-regulation of UCP1 and 

oxidative metabolism genes are expected to result in the uncoupling of fatty acid oxidation 

and the enhancement of in situ fatty acid utilization, which provide a plausible explanation 

for the lack of increase in serum NEFA despite an elevated lipolytic activity in the WAT of 

TRIP-Br2 KO mice. This hypothesis is further supported by unchanged fatty acid oxidation 

in TRIP-Br2 KO skeletal muscle (Supplementary Fig. 23) a tissue known to be a major 

organ to utilize circulating free fatty acids. These findings suggest a model in which normal 

TRIP-Br2 expression is permissive for the development of obesity and its related 

complications through its effect on reducing energy expenditure and fat oxidation in 
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adipocytes by down-regulating the expression of key proteins involved in adipocyte 

lipolysis, thermogenesis and oxidative metabolism (Fig. 5d).

TRIP-Br2 co-regulates HSL and Adrb3 transcription

We next used in silico sequence analysis to identify putative E2F consensus binding sites in 

the promoter sequences of the mHSL and mAdrb3 (Supplementary Fig. 24) that were 

conserved between the murine and human orthologs. Co-transfection of NIH-3T3 cells with 

expression constructs of E2F1, E2F4, DP1 or TRIP-Br2 with luciferase reporter constructs 

(pGL3) driven by the promoters of the mHSL or mAdrb3 genes revealed that over-

expression of either E2F1/DP1 or E2F4/DP1 transcriptional complex stimulates both HSL 

and Adrb3 promoter-driven luciferase expression while the co-expression of TRIP-Br2 

consistently repressed both promoter activities (Fig. 5a, Supplementary Fig. 25). These 

results were confirmed by partial deletion and by site-directed mutagenesis of putative E2F 

consensus binding sites. Our results show that the first two E2F sites in the HSL promoter 

(−445 and −240), and both of the E2F sites in the Adrb3 promoters are responsive to both 

E2F1/DP1 and E2F4/DP1 mediated transcriptional activation and TRIP-Br2 co-regulator 

mediated transcriptional inhibition (Fig. 5a, Supplementary Fig. 25).

To confirm the binding of TRIP-Br2 on the mHSL and mAdrb3 promoters in vivo, we 

performed chromatin immunoprecipitation (ChIP) in differentiated 3T3-L1 adipocytes 

stably expressing TRIP-Br2-FLAG or empty vector control. Fragments of mHSL and 

mAdrb3 promoters containing the E2F binding sites were enriched in the genomic DNA 

immunoprecipitated from mTRIP-Br2-FLAG over-expressing adipocytes using an anti-

FLAG antibody and detected by qRT-PCR (Fig. 5b, left panel). Conversely, neither GAPDH 

(negative control) nor the respective promoter regions lacking the E2F sites could be 

detected in the immunoprecipitated genomic DNA samples (Supplementary Fig. 26). The 

luciferase promoter analyses demonstrating co-repressor activity of TRIP-Br2 on the 

transcriptional read-outs of the mHSL and mAdrb3 promoters were further confirmed by 

showing decreased RNA polymerase II binding at the mHSL and mAdrb3 promoters in 

mTRIP-Br2-FLAG over-expressing differentiated adipocytes (Fig. 5b, right panel).

To confirm the functionality of the E2F binding sites on the HSL promoter, we mutagenized 

the first two endogenous E2F binding sites on the HSL promoter in 3T3-L1 cells using a 

newly developed genome modification technique, TALEN (Transcription Activator-Like 

Effector Nucleases)40. Mutagenesis of the HSL promoter E2F binding sites abolished the 

enhanced isoproterenol-stimulated lipolysis observed in the differentiated TRIP-Br2 KD 

3T3-L1 adipocytes (Fig. 5c), confirming the functionality and critical role of TRIP-Br2/E2F 

regulation on HSL in the adipocyte.

Taken together, these data suggest that TRIP-Br2 is recruited as a co-repressor to novel 

E2F1/DP1 or E2F4/DP1 complexes assembled on E2F consensus binding sites in the mHSL 

and mAdrb3 promoters.
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DISCUSSION

Over the past several decades, adipocytes have been the target of intense investigation due to 

the dramatic emergence of obesity as a serious public health problem. Furthermore, 

adipocytes have been shown to be critical integrators of various physiological pathways 

regulating whole body glucose and energy homeostasis3. Identifying points of regulatory 

convergence that can serve as therapeutic targets to improve glucose and energy 

homeostasis is therefore of great necessity.

Transcriptional co-regulators have been clearly identified as having dominant roles in 

metabolism and energy homeostasis8,41. Despite the identification of numerous co-activators 

and co-repressors (e.g. PGC1 and RIP140), most of the co-regulators have shown prominent 

roles in fat accretion and adipocyte differentiation, primarily through the modulation of the 

master regulator, PPARγ transcription factor. In this study, we identify a novel 

transcriptional co-regulator, TRIP-Br2, for the regulation of adiposity and energy 

metabolism and we also report a novel link between the cell cycle regulators (E2F family) 

and energy homeostasis. To our knowledge, this is the first report of a cell cycle 

transcriptional co-regulator capable of modulating fat storage by simultaneous regulation of 

multiple processes including lipolysis, thermogenesis and oxidative metabolism, leading to 

enhanced fatty acid turnover in adipocytes. TRIP-Br2 appears to be functionally different 

from the other previously described transcriptional co-regulators, which regulate adipocyte 

lipogenesis and differentiation. Our studies suggest that TRIP-Br2 mediates this metabolic 

phenotype, in part, through transcription regulation of HSL and Adrb3 expression.

We observed that β-adrenergic agonist-stimulated lipolysis was markedly increased in in 

vivo in the TRIP-Br2 KO mice as well as ex vivo in the isolated primary adipocytes from 

TRIP-Br2 KO mice. Consistently, expression of HSL and Adrb3 were both significantly 

enhanced in the adipose tissues from the KO mice suggesting that the enhanced stimulated 

lipolysis is due to an increase in the expression of key proteins in the β-adrenergic regulated 

lipolytic pathway. However, due to technical limitations in accurately monitoring the rate of 

lipolysis by release of FA or glycerol, we are unable to rule out the effects of TRIP-Br2 KO 

on FA re-esterification.

The enhanced lipolysis is consistent with the observation of smaller adipocytes and reduced 

lipid accumulation in WAT and BAT of the TRIP-Br2 KO mice on a HFD. This finding is 

consistent with other studies reporting a smaller fat pad and adipocyte size secondary to 

increased lipolytic activity in the adipose specific desnutrin/ATGL overexpressors34 and the 

adipose-specific phospholipase A2 (AdPLA) KO42 mice. Lipolysis in adipocytes is under 

tight hormonal regulation and dependent on nutritional status. For example, during fasting, 

increased levels of catecholamines bind to β-adrenergic receptors and promote the activation 

of hormone sensitive lipase (HSL), whereas, in the fed state, lipolysis is inhibited by insulin. 

Our data suggests that absence of TRIP-Br2 enhances the fasting stimulated β-adrenergic 

regulated lipolytic activities.

However, it is evident that enhanced lipolysis alone may not be adequate to account for all 

the observed phenotypes in the TRIP-Br2 KO mice, as demonstrated by a study in which 
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HSL over-expression failed to induce a lean phenotype in mice fed a HFD43. However, 

unlike the simultaneous up-regulation of both HSL and Adrb3 due to ablation of TRIP-Br2, 

Adrb3 was not simultaneously over-expressed in the HSL over-expression study. We 

observed no significant increase in serum NEFA in the TRIP-Br2 KO mice. We hypothesize 

that the lack of an increase in serum NEFAs despite enhanced lipolysis in TRIP-Br2 KO 

mice reflects the use of alternative mechanisms that allows the utilization of excess fat and 

FA in the mutant mice. Indeed, we observed enhanced fatty acid oxidation in the isolated 

primary adipocytes from the TRIP-Br2 KO mice and in the differentiated 3T3-L1 adipocytes 

with reduced expression of TRIP-Br2. In addition, the finding of increased oxygen 

consumption and heat production in the KO mice also indicates an increase in energy 

expenditure in vivo. The higher core body temperature and superior cold tolerance, both 

indicate an increase in adaptive thermogenesis in the KOs. The energy expenditure 

phenotype is consistent with a substantial up-regulation in the expression of genes that 

regulate thermogenesis, mitochondrial and peroxisomal FA oxidation in both WAT and 

BAT. Further, ectopic expression of UCP1 in WAT has been reported to cause resistance to 

diet-induced obesity with increased fatty acid oxidation in adipocytes44. Since peroxisomal 

FA oxidation is associated with efficient uncoupling34,45, the elevated levels of peroxisomal 

FA oxidation observed in TRIP-r2 KO mice is consistent with a switch from ATP 

production to heat generation in WAT and BAT. In BAT, cold-induced PGC1α expression 

has been reported to regulate thermogenesis by promoting mitochondrial respiration and by 

uncoupling electron transfer from ATP synthesis through the induction of UCP146,47. In our 

study, we observed that numerous genes involved in thermogenesis and FA oxidation were 

up-regulated in cold-induced BAT in the KO mice. Together, our findings indicate that FA 

liberated by enhanced lipolysis could potentially be used as fuel by the increased FA 

oxidation and thermogenesis that together contribute to a leaner phenotype in the TRIP-Br2 

KO mice.

Our data demonstrate that despite enhanced lipolysis in TRIP-Br2 KO mice, coordinate up-

regulation of fatty acid oxidation and thermogenesis in both WAT and BAT lead to 

enhanced in situ fatty acid utilization as well as the absence of increased circulating NEFA 

levels and ectopic fat accumulation in metabolic organs such as liver – a finding that is 

clearly observed in WT mice fed with HFD. This hypothesis is further supported by a recent 

observation that an increase in lipolysis and release of free fatty acids by the adipocytes 

during weight loss or in fasting mice leads to an increase in inflammation in adipose 

tissues48. In the TRIP-Br2 KOs, despite a striking increase in lipolysis, we observed 

markedly less inflammation in the adipose tissues, consistent with our hypothesis that the 

free fatty acid generated from the enhanced lipolysis is potentially utilized in situ in the 

adipocyte rather than released into the circulation.

Cell cycle regulators have been increasingly implicated in the control of metabolism49. Our 

data provide the first evidence that E2F/DP transcription complexes together with TRIP-Br2 

regulate the β-adrenergic regulated lipolytic and mitochondrial beta oxidative pathways. 

This is in contrast to the previous report that E2F1 and E2F4 modulation of PPARγ 

transcription regulates adipocyte differentiation19,20.
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The striking resistance to high fat diet-induced obesity and lean phenotype exhibited by 

TRIP-Br2 KO mice and its selective elevation in visceral fat in obese humans makes it an 

attractive therapeutic target for the treatment of obesity and obesity-related metabolic 

diseases.

ONLINE METHODS

Animals

The creation of the original TRIP-Br2 knockout out bred mouse strain in the 129SvJ 

background and the generation of a TRIP-Br2 inbred mouse strain on a C57BL/6 

background by over 10 generations of backcrossing, has been previously reported21. Mice 

were housed in pathogen-free facilities and maintained on a 12 hr light/dark cycle at the 

Foster Biomedical Research Laboratory of Brande is University in Waltham, MA. All 

protocols were approved by the Institutional Animal Care and Use Committee of the Joslin 

Diabetes Center and Brande is University and were in accordance with NIH guidelines.

Subjects

Paired samples of visceral and subcutaneous adipose tissue were obtained from 178 

Caucasian men (N=92) and women (N=86), who underwent abdominal surgery as described 

in detail elsewhere50. The age ranged from 16 to 82 years and body mass index from 20.8 to 

54.1 kg/m2. In these subjects, abdominal visceral and subcutaneous fat area was calculated 

using abdominal MRI scans or computed tomography scans at the level of L4–L5. 

Percentage body fat was measured by dual-energy X-ray absorptiometry (DEXA). 

Individual assigned to all three cohorts (lean: BMI<25; visceral obesity: visceral/

subcutaneous fat area > 0.4) fulfilled the following inclusion criteria: 1) Absence of any 

acute or chronic inflammatory disease as determined by a leukocyte count > 7000 Gpt/l, C-

reactive protein (CRP) > 5.0 mg/dl or clinical signs of infection, 2) Undetectable antibodies 

against glutamic acid decarboxylase (GAD), 3) No medical history of hypertension, i.e. 

systolic blood pressure (SBP) was < 140mmHg and diastolic blood pressure (DBP) was < 

85mmHg, 4) No clinical evidence of either cardiovascular or peripheral artery disease, 5) No 

thyroid dysfunction, 6) No alcohol or drug abuse, 7) No pregnancy. All subjects had a stable 

weight with fluctuations smaller than 2 % of the body weight for at least 3 months before 

surgery. Normal glucose tolerance (NGT) was defined as fasting plasma glucose <6.0mmol/l 

and a 120 min OGTT plasma glucose <7.8mmol/l. Impaired glucose tolerance (IGT) was 

defined as fasting plasma glucose <6.0mmol/l and a 120 min OGTT plasma glucose 

>7.8mmol/l and <11.1mmol/l. Type 2 diabetes was defined as fasting plasma glucose > 

7.0mmol/l and/or a 120 min OGTT glucose >11.1mmol/l. The study was approved by the 

ethics committee of the University of Leipzig. All subjects gave written informed consent 

before taking part in the study.

Fasting plasma insulin was measured with an enzyme immunometric assay for the 

IMMULITE automated analyzer (Diagnostic Products Corporation). Plasma leptin levels 

were assessed by radioimmunoassay (Millipore). The OGTT was performed after an 

overnight fast with 75 g standardized glucose solution (Glucodex Solution 75g; Merieux) 
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and insulin sensitivity was assessed with the euglycemic-hyperinsulinemic clamp method as 

described51.

TRIP-Br2 mRNA expression in human visceral and subcutaneous adipose tissue

Human TRIP-Br2 mRNA expression was measured by quantitative real-time RT-PCR in a 

fluorescent temperature cycler, and fluorescence was detected on an ABI PRISM7000 

sequence detector (Applied Biosystems). Total RNA was isolated from paired subcutaneous 

and omentaladipose tissue samples using TRIzol (Life Technologies), and 1 μg RNA was 

reverse transcribed with standard reagents (Life Technologies). TRIP-Br2 mRNA expression 

was determined by a premixed assay on demand: Hs00207372_m1 SERTA domain 

containing 2 (Applied Biosystems). Samples were incubated in the ABI PRISM 7000 

sequence detector for an initial denaturation at 95°C for 10 min, followed by 40 PCR cycles, 

each cycle consisting of 95°C for 15 s, 60°C for 1 min, and 72°Cfor 1 min. TRIP-Br2 

mRNA expression was calculated relative to the mRNA expression of hypoxanthine 

phosphoribosyltransferase 1 (HPRT1), determined by a premixed assay on demand for 

human HPRT1 (Applied Biosystems). Amplification of specific transcripts was confirmed 

by melting curve profiles(cooling the sample to 68°C and heating slowly to 95°Cwith 

measurement of fluorescence) at the end of each PCR. The specificity of the PCR was 

further verified by subjecting the amplification products to agarose gel electrophoresis.

Statistical analysis for human subject data

All analyses were conducted with the two genders considered together as well as separately. 

TRIP-Br2 expression in subcutaneous and visceral fat was compared between lean and 

obese subjects by means of t tests. The unadjusted correlation between TRIP-Br2 expression 

and metabolic parameters was evaluated by means of Pearson’s correlation coefficients. 

Adjusted correlation coefficients were derived from partial r2 obtained from ANCOVA 

models that included each of the metabolic parameters and the visceral fat area as predictors 

of TRIP-Br2 expression. The association between quartiles of TRIP-Br2 visceral fat 

expression and risk of type 2 diabetes was evaluated by logistic regression with and without 

adjustment for visceral and subcutaneous fat areas and expressed by means of Odds Ratios 

and their 95% CI.

Body weight study

For diet-induced obesity, all mice were fed a chow diet (21.6% fat, 23% protein and 55.4% 

carbohydrate by kcal; #5020, LabDiet) until 6 weeks of age. Subsequently, mice were 

assigned randomly to either a low-fat (10% fat, 20% protein, and 70% carbohydrate by kcal; 

D12450B, Research Diets) or a high-fat diet (60% fat, 20% protein, and 20% carbohydrate 

by kcal; D12492, Research Diets) until the end of the experimental protocol. Body weight 

was measured weekly until 18 weeks of age.

Adipocyte size determination

Adipocyte cross-sectional area from caveolin (BD Biosciences) stained adipose tissue 

images (150-200 adipocytes/mouse, 3 mice/genotype) was calculated using CellProfiler 

image analysis software (Broad Institute, http://www.cellprofiler.org/)52,53
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Fatty acid oxidation—Differentiated 3T3-L1 cells were treated with either vehicle or 

isoproterenol for 1 hr. Cells were then washed and incubated with assay media containing 

2% fatty acid-free BSA, 0.30 mM L-Carnitine, and 3H-palmitic acid (3 uCi/well) in low 

glucose DMEM media for 1 hr. Fatty acid oxidation was determined by measuring 3H2O 

production as previously described and normalized with total cellular protein45.

Isolated white and brown adipocytes were used to determine fatty acid oxidation by 

measuring 14CO2 production from [U-14C] palmitic acid (0.2 uCi/ml) after incubation for 1 

hr at 37°C with gentle shaking as previously described before normalized with total lipid 

content54.

Genomic mutagenesis—Transcription Activator-Like Effector Nuclease (TALEN) 

plasmid DNA was designed, synthesized and tested by Cellectis Bioresearch. Exchange/

integration matrix harboring the mutation was synthesized by GenScript. 3T3-L1 

preadipocytes at 50-60% confluency were transfected with 1 μg of each TALEN plasmid 

and exchange matrix using Lipofectamine2000 (Invitrogen). Twenty-four h after 

transfection, cells were trypsinized and selected using puromycin. Colonies were then 

picked and expanded before screening with PCR and confirmed with sequencing.

Adipose tissue oxygen consumption and extracellular acidification

Oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) were 

determined in mouse brown adipose tissue using a modified protocol55. Briefly, freshly 

isolated BAT from WT and TRIP-Br2 KO mice (n = 5 per genotype) were rinsed with 

unbuffered KHB medium containing 111 mM NaCl, 4.7 mM KCl, 2 mM MgSO4, 1.2 mM 

Na2HPO4, 0.5 mM carnitine and 2.5 mM glucose. Adipose tissue was cut into small pieces 

and rinsed with KHB medium, and 10 mg of tissue was placed in each well of a XF24-well 

Islet Flux plate (Seahorse Bioscience). Then, 450 μl of KHB medium was added to each 

well and samples were analyzed in an XF24 Extracellular Flux Analyzer (Seahorse 

Bioscience) at 37°C56. The XF24 Analyzer mixed the media in each well three times for 2 

min before measurements to allow oxygen partial pressure to equilibrate. Basal OCR and 

ECAR were measured in all wells three times. Five tissue replicates from 5 mice per 

genotype were analyzed in independent experiments and results were normalized to tissue 

weight.

Ex vivo lipolysis and lipogenesis

Isolated adipocytes were incubated with or without increasing doses of isoproterenol 

(10−6-10−9 M), isoproterenol (5μM), forskolin (20μM) or IBMX (0.2μM) for 90 min. 

Extracellular glycerol release was extracted and measured using Free Glycerol Reagent 

(Sigma) as an indicator of lipolysis57. For the assessment of lipogenesis, isolated adipocytes 

were incubated with [14C] deoxyglucose in the presence or absence of increasing 

concentrations of insulin (0.1-100 nM) for 90 min. Incorporated radiolabeled glucose was 

extracted and measured using liquid scintillation counting58.
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Adipocyte differentiation

Mouse 3T3-L1 preadipocytes were grown in DMEM supplemented with 10% fetal bovine 

serum (FBS). Two days after confluence, adipocyte differentiation was initiated with the 

addition of 1.7 μM insulin, 0.5 mM isobutylmethylxanthine (IBMX) and 1 μM 

dexamethasone in DMEM media supplemented with 10% FBS for 2 days, followed by 2 

days in medium supplemented with insulin, and finally cultured for 4 days in normal growth 

medium.

Tissue triglyceride analysis

Lipids from tissues were extracted with Folch solution consisting of a mixture of 2:1 (vol/

vol) chloroform/methanol as previously described59. Lipids were solubilized in 1% Triton 

X-100 before evaporation under nitrogen gas. Triglyceride content was determined using 

Triglyceride Determination Kit (Sigma).

Plasmid

Complete ORF of TRIP-Br2 was amplified from 3T3-L1 preadipocytes cDNA with PCR 

using oligos carrying flag epitope-tag at the C-terminal from IDT and cloned into pBabe-

puro retroviral or pCDNA3.1 vector60. Mouse hormone sensitive lipase (HSL) or β3-

adrenergic receptor (Adrb3) promoter and respective deletion constructs were amplified 

from 3T3-L1 preadipocyte genomic DNA with PCR using oligos from IDT and cloned into 

pGL3 or pGL3-min-promoter luciferase vector respectively (Promega). All plasmids were 

sequenced verified. Expression plasmids for E2F1, E2F4 and DP1 were gifts from L. Fajas 

(Metabolism and Cancer Laboratory, INSERM, France)19.

Cell culture

3T3-L1 preadipocyte cell lines stably over-expressing TRIP-Br2-Flag were established by 

infecting 3T3-L1 cells using retrovirus containing pBabe-puro-TRIP-Br2-flag construct, 

followed by puromycin selection. The stable cell lines used in the experiments were mixed 

clones from at least three independent viral productions, infections, and selections.

Antibodies

Rabbit polyclonal anti-TRIP-Br2 was raised against the peptide with the amino acid 

sequence TRIP-Br2-25-39: DGPSKVSYTLQRQT and affinity purified with the antigen 

(YenZym Antibody). Chicken polyclonal anti-HSL, anti-Adrb3, rabbit anti-perilipin A and 

mouse anti-α-tubulin were obtained from Abcam. pHSL, pAkt, Akt, pERK, ERK, ATGL 

antibodies were from Cell Signaling. PPARγ, CGI-58 and G0S2 antibodies were from Santa 

Cruz.

Food intake, energy expenditure, physical activity and body composition

Food intake, physical activity, oxygen consumption (VO2), carbon dioxide (VCO2) and heat 

production was measured using the Comprehensive Laboratory Animal Monitoring System 

(CLAMS; Columbus Instruments). The respiratory exchange ratio (VCO2/VO2) was 

calculated from the gas exchange data and all data were normalized to lean body mass. Body 
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composition (fat and lean mass) was assessed by the Dual-Energy X-Ray Absorptiometry 

(DEXA).

Body temperature and cold exposure

Body temperatures were assessed in 18-week-old male mice using a RET-3 rectal probe for 

mice (Physitemp). Mice were exposed to an ambient temperature of 4°C in a cold room until 

their core body temperature dropped to 25°C. Body temperatures were measured at 30 min 

intervals using a digital thermometer.

Metabolic parameters

Plasma insulin was measured with an ELISA kit (Millipore). NEFA, TG and cholesterol 

concentration in serum were measured with NEFA-C and Triglyceride E tests (Wako), 

respectively. Serum adiponectin and leptin levels were measured with ELISA kits from 

R&D Systems (Joslin DERC Assay Core).

Physiological studies and Histological analyses

Blood glucose was monitored with an automated glucose monitor (Glucometer Elite, Bayer). 

Glucose tolerance tests and insulin tolerance tests were performed 16 hr after fasting as 

described previously61. Mice were anesthetized, and tissues were rapidly dissected, weighed 

and processed for immunohistochemistry as described previously61.

BAT denervation

In anesthetized mice, the posterior aspect around the neck and intra-scapular region were 

first shaved and cleaned before a T-shaped incision (1/2 inch each direction) in the mid-

scapular region was made. Under a dissecting microscope, the intra-scapular fat pad was 

carefully separated from the surrounding skin and a drop of 1% filtered sterilized toludine 

blue was applied to the fat pad to allow visualization of the nerves. After careful separation 

of the nerves from the surrounding tissues and vasculature around the fat pad, small nerves 

were cut in 3 different locations and around 3mm segments of the larger nerves were 

removed to prevent possible re-connection. Sham-operated animals were treated similarly 

using the same procedure except cutting the nerves. After recovery, operated animals were 

placed on HFD and monitored for their body weight and temperature until the end of the 

experiment.

Reporter assay

3T3-L1 preadipocytes were cotransfected by Lipofectamine 2000 reagent (Invitrogen) with 

HSL and Adrb3 reporter constructs, various combinations of pCDNA3.1-TRIP-Br2-Flag and 

mammalian expression constructs expressing E2F1, E2F4, and DP1, along with a 

promoterless Renilla luciferase construct. Lysates were collected 36 h after transfection, and 

firefly and Renilla luciferase activities were measured with a Dual-Luciferase Reporter 

System (Promega).
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TAG hydrolase assay

To prepare the substrate for the TG hydrolase activity, triolein (Sigma) and [9,10-3H] 

triolein (Perkin Elmer) as radioactive tracer was emulsified with phosphatidylcholine/

phosphatidylinositol (Sigma) using a sonicator. The final substrate concentration was 167 

nmol of triolein/assay (8000 cpm of [9,10-3H] triolein/nmol). 100 μl with or without HSL 

specific inhibitor were incubated with 100μl of the substrate (adipose tissue extract) in a 

water bath at 37°C for 60 min. The reaction was terminated by adding 3.25 ml of methanol/

chloroform/heptane (10:9:7) and 1 ml of 0.1 M potassium carbonate, 0.1 M boric acid, pH 

10.5 before vortex twice for 30 s. After centrifugation at 3200 rpm for 15 min at room 

temperature, the radioactivity in 1 ml of the upper phase was determined by liquid 

scintillation counting.

Chromatin immunoprecipitation

Adipocytes derived from the Cont-3T3-L1 and TRIP-Br2-Flag-3T3-L1 cell lines were fixed 

at day six of their differentiation by addition of 37% formaldehyde to a final concentration 

of1% formaldehyde and incubated at room temperature for 10 min. Cross-linking was 

stopped by addition of glycine to a final concentration of 0.125 M. Cells were then scraped 

and samples were prepared using the EZ-Magna ChIP™ G Chromatin Immunoprecipitation 

Kit (Millipore) according to the manufacturer’s protocol. The chromatin fractions were 

incubated in each case with 10 μg of one of the following antibodies: anti-Flag M2 (F-1804; 

Sigma), anti-RNA polymerase II and Normal IgG mouse (both provided by Millipore Kit), 

Millipore) at 4 °C overnight with Magnetic Protein G Beads. After extensive washing and 

final elution, the product was treated for 4h at 65°C to reverse cross-linking. Input DNA and 

immunoprecipitated DNA were purified using kit column and analyzed by quantitative PCR 

using Maxima™ Sybr Green qPCR Master Mix (Fermentas Life Sciences) with different set 

of primers (both proximal and distal promoter regions) listed here. Mouse HSL proximal 

promoter (F 5′-gcggaatggaaacagcgtagtgaa-3′, R 5′-tgttacctgccattgcttcggaga-3′), mouse HSL 

distal promoter (F 5′-aacacagttcaagggctggagaga -3′, R 5′-caccatgtggttgctgggaattga -3′), 

mouse GAPDH promoter 62 (F 5′-tactcgcggctttacggg-3′, R 5′-tggaacagggaggagcag-3′), 

mouse β3 adrenergic receptor proximal (F 5′-cttggatggtttgggttgttcggt -3′, R 5′-

agggcttctgctgcaaagaagaga -3′) and mouse β3 adrenergic receptor distal (F 5′-

ttgtcccaaccaggacagaacaga -3′, R 5′-aagaaagccaggcacgttcacaag -3′). Data were normalized by 

input values (for each set of promoter oligonucleotides) and binding was expressed relative 

to the non-specific binding of IgG immunoprecipitated DNA content.

Statistical analyses

All data are presented as mean ± SEM and analyzed by unpaired two-tailed Student’s t-test 

or analysis of variance (ANOVA) as appropriate. A p-value less than 0.05 is considered 

significant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Regulation of TRIP-Br2 in obesity and effects of TRIP-Br2 ablation on obesity
(a) TRIP-Br2 mRNA and protein in brown adipose tissue (BAT), visceral (epididymal, Epi) 

and subcutaneous (SubQ) white adipose tissue from low fat (LF) or high fat (HF) diet fed 

C57BL/6J mice (n=7–9 per group). (b) Four- or 12- week old ob/+ or ob/ob mice (n=6 per 

group). (c) Control or 3 month calorie restricted (CR) mice (n=5 per group). (d) Human 

TRIP-Br2 mRNA in visceral fat from lean and men or women with SubQ or visceral obesity 

(n=178). (e) Correlation of TRIP-Br2 mRNA expression in visceral fat with visceral fat area 

in men and women. (f) Odds ratio (crude or adjusted for visceral and SQ fat area) of type 2 

diabetes stratified by quartile expression of visceral TRIP-Br2 mRNA. (g) Body weights of 

male WT, Het and KO on C57BL/6 background on either a LFD or HFD (n=7–9 per group). 

(h) Body weights of male WT and KO in the original 129SvJ founder strain on HFD (n=3 

per group). (i) Upper, representative photographs of male WT, Het and KO mice, fat pads 

(BAT, SQ and epididymal) and livers of male WT, Het and KO mice fed with HFD. Lower, 

body length, fat pad and liver weights in absolute amounts from male KO, Het and KO mice 

fed with HFD. (j) Absolute and % body composition of male WT and KO mice fed HFD by 
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DEXA (n=6 per group). All data are presented as mean +/− SEM. *, p<0.05; **, p<0.01; 

***, p<0.001.
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Figure 2. Effects of TRIP-Br2 ablation on glucose homeostasis and physiological parameters
(a) Glucose tolerance (left) and insulin tolerance (right) in male WT, Het, and KO mice fed 

HFD (n=7–9 per group). (b) Plasma glucose, insulin, adiponectin, leptin and cholesterol in 

male WT, Het and KO mice fed with HFD in the fed or overnight fasted states (n=7–9 per 

group). adiponectin and leptin mRNA in Epi fat from male WT, Het and KO mice fed HFD 

(n=7–9 per group). (c) Left, representative images of hematoxylin and eosin (H&E)-stained 

sections of livers from male WT and KO mice fed HFD. Scale bar, 100 μm. Right, 

triglyceride (TG) content of liver from male WT and KO mice fed HFD (n=5 per group). (d) 
Left, representative images of H&E-stained sections of Epi fat from male WT and KO mice 

fed HFD. Scale bar, 100 μm. Middle, quantification of F4/80+ crown-like structures in Epi 

fat from male WT and KO mice fed HFD. Immunofluorescence images were used to 

quantitate the % of crown-like structures. Three to five low power fields analyzed for 4 mice 
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per genotype (>1000 adipocytes per genotype). Right, F4/80 and MCP-1 mRNA in SubQ 

and Epi fat from male WT, Het and KO mice fed with HFD (n=7–9 per group). (e) Left, 

representative images of H&E-stained sections of SQ, epididymal and BAT from male WT 

and KO mice fed HFD. Scale bar, 100 μm. Right, brown adipocyte numbers in control and 

KO BAT. (f) Left and middle, representative confocal images of caveolin-stained 

epididymal adipose tissue and frequency distribution of adipocyte cell size in epididymal 

adipose tissue from WT and KO mice fed with HFD. Right, triglyceride (TG) content of 

epididymal and SQ from male WT and KO mice fed HFD (n=5 per group). Scale bar, 100 

μm. All data are presented as mean +/− SEM. *, p<0.05; **, p<0.01; ***, p<0.001.

Liew et al. Page 24

Nat Med. Author manuscript; available in PMC 2013 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. TRIP-Br2 ablation enhances lipolysis by up-regulation of HSL and Adrb3 expression
(a) Ex vivo lipolysis in isolated SQ or BAT adipocytes from WT or KO mice (n= 5 per 

group). (b) In vitro lipolysis in differentiated adipocytes expressing either empty vector 

control, shTRIP-Br2 (left) or TRIP-Br2-flag (right) (n= 4 per group). (c) In vivo lipolysis in 

WT or KO mice. Plasma glycerol (left) and FFA (right) were measured after administration 

of β3-adrenergic receptor agonist. (d) In vivo lipolysis in epididymal or SQ fat from 18-

week old HFD fed WT or KO mice after 7 days of heavy water labeling. (e)β3-adrenergic 

receptor (Adrb3), adipose triglyceride lipase (ATGL) and hormone sensitive lipase (HSL) 

mRNA in BAT, SQ and Epi fat from male WT, or KO mice fed HFD (n=7–9 per group). (f) 
Western blotting for pHSL, HSL, ATGL and Adrb3 proteins in Epi or SQ fat from male 

WT, Het and KO mice fed HFD (n=3 per group). (g) qPCR (left) or western blotting (right) 

for lipolysis markers in differentiated 3T3-L1 adipocyte cells expressing either empty vector 

control or TRIP-Br2-Flag (n=3 per group). (h) Lipolysis in adipocyte cell lysate from WT or 

KO mice treated with or without forskolin and/or HSL inhibitor (BAY). (i) Upper, lipolysis 

in isolated adipocytes from WT or KO mice or lower, differentiated adipocytes expressing 
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either control or shTRIP-Br2 treated with isoproterenol, forskolin or IBMX. All data are 

presented as mean +/− SEM. *, p<0.05; **, p<0.01.
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Figure 4. TRIP-Br2 ablation promotes energy expenditure and fatty acid oxidation
(a) Oxygen consumption (VO2) analyzed by indirect calorimetry in WT or KO mice fed 

with HFD (n=6 per group). (b) Left, rectal temperature measured for WT or KO mice fed 

chow diet at room temperature (n=9 per group). Right, rectal temperature measured for WT 

or KO mice on chow diet housed in a room at 4°C temperature (n=9 per group). (c) Left, 

UCP1, PGC1α, ECH1, Cox8b and Cyc1 mRNA in BAT from male WT or KO mice after 

fed with HFD (n=7–9 per group). Right, HSL, Adrb3, UCP1, PGC1α, NRF1, Tfam, Dio2, 

PPARδ, Cpt1b, AOx and PhyH mRNA in BAT from male WT or KO mice after 3 h cold 

exposure (4°C) (n=7–9 per group). (d) Oxygen consumption rate (OCR) (e) Ratio of OCR 

and extracellular acidification rate (ECAR) of BAT from WT or KO mice analyzed by 

Seahorse extracellular flux analyzer (n=5 per group). All data are mean +/− SEM. *, p<0.05; 

**, p<0.01; ***, p<0.001. (f) Body weight of sham or BAT denervated WT or KO mice on 

HFD after surgery. (n=5 per group). All data are presented as mean +/− SEM. *, p<0.05; **, 

p<0.01 (vs sham WT); #, p<0.05 (vs denervated WT); +, p<0.05; ++, p<0.01 (vs sham KO). 

(g) UCP1, PGC1α, ECH1, Cox8b and CAT mRNA in epididymal (Epi) WAT from male 
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WT or KO mice after fed with HFD (n=7–9 group). (h) Fatty acid oxidation in isolated 

epididymal or SQ adipocytes from WT or KO mice on HFD. All data are mean +/− SEM. *, 

p<0.05; **, p<0.01. (i) Fatty acid oxidation in differentiated 3T3-L1 adipocytes expressing 

either empty vector control, TRIP-Br2-Flag or TRIP-Br2 shRNA with or without 

isoproterenol stimulation (n=3 per group). All data are presented as mean +/−SEM. *, 

p<0.05; **, p<0.01 (vs control basal); #, p<0.05; ###, p<0.001 (vs control stimulated).
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Figure 5. TRIP-Br2-Flag represses HSL and Adrb3 gene expression by recruitment to novel E2F 
consensus binding sites
(a) Luciferase reporter assay for HSL (left) and Adrb3 (right) promoters in NIH-3T3 cells 

transiently transfected with plasmids (n=4 per group). Results were normalized to Renilla 

luciferase activity and expressed as relative light units (RLU). All data are mean +/− SEM. 

*, p<0.05; **, p<0.01; ***, p<0.001. (b) Chromatin immunoprecipitation (ChIP) assays for 

TRIP-Br2 (left) and RNA polymerase II (right) on HSL, Adrb3 and GAPDH (control) 

promoters in differentiated 3T3-L1 adipocytes expressing either empty vector control or 

TRIP-Br2-Flag (n=3 per group). All data are mean +/− SEM. *, p<0.05. (c) Lipolysis in 

control or TRIP-Br2 KD differentiated 3T3-L1 adipocytes with or without HSL promoter 

E2F binding sites mutation stimulated with or without isoproterenol. (n=4 per group). All 

data are mean +/− SEM. **, p<0.01. (d) Proposed model for the permissive role of TRIP-

Br2 in the complementary regulation of adipocyte lipolysis, thermogenesis and oxidative 

metabolism.
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Table 1

Correlation between TRIP-Br2 Expression in visceral fat and antropometric and metabolic parameters.

Unadjusted Adjusted †

r P value r p value

Age 0.10 0.18 −0.02 0.79

Subcutaneous fat area 0.25 0.0008 0.10 0.18

Visceral fat area 0.55 <0.0001 - -

Body Fat 0.32 <0.0001 0.01 0.88

BMI 0.41 <0.0001 0.09 0.23

Waist-to-hip ratio 0.41 <0.0001 0.06 0.43

Total Cholesterol 0.39 <0.0001 0.06 0.46

HDL-C −0.15 0.033 −0.14 0.07

LDL-C 0.10 0.18 0.03 0.92

TG 0.41 <0.0001 0.07 0.33

FFA 0.28 <0.0001 0.04 0.64

Fasting plasma glucose 0.14 0.05 0.09 0.25

Fasting plasma insulin 0.41 <0.0001 0.16 0.03

HbA1C 0.35 <0.0001 0.18 0.015

2h OGTT plasma glucose 0.31 <0.0001 0.14 0.09

Clamp-GIR −0.48 <0.0001 −0.15 0.05

†
Adjusted for gender and visceral fat area.
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