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Abstract
We focus here on the modulation of thin filament activity by cardiac troponin I (cTnI)
phosphorylation as an integral and adaptive mechanism in cardiac homeostasis and as a
mechanism vulnerable to maladaptive response to stress. We discuss a current concept of cTnI
function in the A-band region of the sarcomere, and potential signaling to cTnI in a network
involving the ends of the thin filaments at the Z-disk and the M-band regions. The cardiac
sarcomere represents a remarkable set of interacting proteins that functions not only as a
molecular machine generating the heartbeat, but also as a hub of signaling. We review how
phosphorylation signaling to cardiac troponin I is integrated with parallel signals controlling
excitation-contraction coupling, hypertrophy, and metabolism.
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Introduction and Overview of the Structure and Function of Cardiac Thin
Filament Proteins

There are a number of relatively recent reviews addressing these topics and providing the
detailed evidence for many of the ideas we present.1-4 Our intention here, as much as
possible, is to update rather than repeat this information, Figure 1 shows a cartoon of the
thin filaments in the sarcomere I-Z-I band and in the A-band. A-band operations of the thin
filament are the ones that generally are thought of first, when considering structure/function
and modulation of thin filaments. Yet the barbed (Z-disk) and pointed (M-band) ends of thin
filaments operate in a realm in which function in the form of cross-bridge interactions is rare
and function in the form of signaling is more common. Figure 1 illustrates this region of the
thin filaments at and near the Z-disk with emphasis on some of the elements of the Z-disk
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network of proteins. These elements include CapZ, the protein capping the barbed end (Z-
disk end) of the actin strand, α-actinin, titin (T-cap or telethonin), proteins kinases (PK)
such as PKC (docked at ZASP), PKD, p38, p21-activated kinase (Pak-1), the phospho-
diesterase PDE5, the phosphatase, calcineurin (docked at calsarcin), and transcription factors
such as muscle lim proterin (MLP) and MyoZ that shuttle between the Z-disk and the
nucleus. These are not all of the growing number of proteins with a Z-disk locus, but these
examples serve to emphasize the significant role of thin filaments in this region of the
sarcomere. There are a number of reviews providing a more detailed analysis and summary
of the Z-disk protein network.5-7 Our purpose here is to point out the importance and
relevance of considering this region when assessing the effects of thin filament protein
phosphorylation with focus on cTnI. The extended interactions of the Z-disk proteins with
costameres and integrins as well as nuclear proteins indicates the potential significance of
altered interactions among thin filaments, Z-disk proteins, and the cytoskeletal network.
Tropomodulin (Tmod) caps the pointed ends of the thin filaments as also illustrated in
Figure 1. As discussed below, together with associated regulatory proteins, CapZ and Tmod
operate at the ends of the thin filaments in the maintenance of thin filament functions by
their control of the stability and length of thin filaments.

Our consideration of thin filaments operating in the A-band includes new concepts of thin
filament control of the force and shortening reaction of cross-bridges with actin. These new
concepts include all of the major regulatory proteins – tropomyosin (Tm), cardiac troponin I
(cTnI), cTnC and cTnT (Fig. 2). Extensive and reversible interactions among these
regulatory proteins establish the diastolic state and provide an efficient mechanism for
transition to the systolic state, maintenance of systolic elastance, and return to the diastolic
state. As illustrated in Figure 2, an essential element in these mechanisms includes a
movement of Tm on the actin backbone of the thin filament. There is also a likely
modification of actin structure and reactivity by its interactions with Tm. Tm is a nearly
100% α-helical protein consisting of two alpha-helical polypeptide chains forming a stable
coiled-coil with heptad repeats matching the stoichiometry of 1 Tm: 7 actins.89 Tm is
thought to be a semi-flexible, mobile protein moving on surface of two stranded helix
forming the thin filament backbone. Tm sterically hinders actin-cross-bridge reactions in
one position and permits them in other positions.10 Speculation on the dynamics has been
considered but definitive measurements, for example hydrogen/deuterium exchange
measurements as has been carried out in the Tn complex11, have not been made in thin
filaments. Evidence for flexibility with a bend in coils of Tm comes from a high resolution
crystal structure.12 Strong evidence for a role of Tm flexibility as a determinant of function
has come from studies of Tm in which an Asp at position 137, a highly conserved residue
located in the sequence where one would expect a canonical hydrophobic residue.13. These
studies provided evidence that Asp-137 endows Tm with flexibility, believed to be
important in switching the thin filament-cross-bridge reaction on and off and in the spread of
activation. A significance of variations in Tm flexibility has been inferred from studies of
Tm mutants, which enhance myofilament response to Ca2+, and are linked to hypertrophic
cardiomyopathy (HCM). 14, 15. These mutants demonstrate increased flexibility when
investigated alone or bound to actin, and the theory is that the excess flexibility promotes
cross-bridge interactions with the thin filaments. An important feature is an N-terminal to C-
terminal overlap region between contiguous Tm proteins forming a specialized structure
functionally significant in the steep relation between Ca2+ and steady state tension
development.16 Disruption of the interaction between Tms on the thin filament reduces the
cooperative activation of the reaction of cross-bridges with actin.17 Yet, there remains a
residual cooperativity attributable to concerted changes in the state of neighboring actins.

As illustrated in Figure 2, the mobility and position of Tm is under the control of the
heterotrimeric Tn complex. 1, 4, 18 Tm is held in a blocking position mainly by the action of
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the N-terminal tail of cTnT, and by two regions of cTnI, a highly basic inhibitory peptide
(Ip) and a second actin-binding region. These cTnI peptides flank the switch peptide, SwP,
poised to interact with regions of the N-lobe of cTnC, when exposed by Ca-binding to a
single regulatory site. A relatively new concept is the idea that there are direct interactions
between Tm and a C-terminal region of cTnI beyond the second actin binding region.19, 20

Another relatively new concept is that Tm is also held in a blocking position by the N-
terminal tail of cTnT, and that the tail regulating a Tn on one strand of actins is from a Tn
complex in register on the opposite strand of actins (Fig. 2).19 Interactions among C-
terminal regions of cTnT, a near N-terminal region of cTnI and the C-terminal lobe of cTnC
promote this action of cTnT in diastole. Thus, as illustrated in Figure 2, Tm is wedged
between the cTnI actin binding peptides on one side and the cTnT tail on the other, and
possibly also immobilized by interactions with a C-terminal region of cTnI.

Ca-binding to a single regulatory site, located in N-lobe of cTnC, results in a release of Tm
from its immobilized state thereby allowing release of the sarcomere from its inhibited state
and permitting the actin-cross-bridge reaction.2122 Triggering of this release occurs with
structural changes associated with cTnC Ca-binding, which induces the exposure of a
hydrophobic patch that attracts an interaction with the SwP.22 Interaction of the SwP with
TnC moves the TnI sites tethered to actin, thereby releasing Tm. It is also apparent that
interactions between the C-domain of cTnI and Tm exist and are Ca-dependent.19, 20

Epitope mapping studies exploring structural changes in the last 23 amino acids of cTnI,
which are highly conserved, indicates that the C-terminus of cTnI is essential to the Ca-
switch.23 Truncation of the last 19 amino acids of cTnI at the C-terminus also depresses
maximum tension and enhances cross-bridge cycling kinetics.24 The release of Tm is also
related to transduction of the Ca-binding signal through to cTnT with induction of an altered
interaction of the cTnT N-terminal tail. 25

Near neighbor interactions between thin filament regulatory units control
cardiac function

In addition to these steric and allosteric regulatory mechanisms, the activation of thin
filaments involves cooperative mechanisms in which the activation of one regulatory unit
(RU), which is generally considered as one Tn-Tm complex in association with 7 actins,
influences the activation of a near neighbor. The steep relation between pCa and steady-state
tension development with Hill coefficients of the order of 4-6 provides strong evidence of a
cooperative activation process occurring despite the control by a single regulatory Ca-
binding sites on cTnC.16 This suggests that the RUs are in communication and not
functioning independently; Tm overlap region as well as actin-actin interaction provides a
means of this communication.17 There are opposing views on the mechanism of cooperative
activation but both views involve near-neighbor interactions of RUs in the thin filament.
One view is that strong, force generating cross-bridges increase the affinity of cTnC for
Ca2+ and thus promote near neighbor activation.26-28 This is a classical view of
cooperativity in which binding of a ligand promotes further binding of the ligand. Detailed
balance dictates that protein-protein interactions, which constitute information flow from
Ca-cTnC to actin-cross-bridge, also occur in the reverse direction i.e. also from actin-cross-
bridge to Ca-cTnC. Energies of interaction in the steps of the flow of information determine
the strength of the signal flow in either direction. Many experimental approaches have
biased this information flow in favor of promoting the signaling from actin-cross-bridge to
Tn. Thus, in the case of evidence supporting cross-bridge dependent activation of thin
filaments, many of the studies have employed strong cross bridges in the form of rigor
complexes or N-ethyl-maleimide modified heads of myosin (S-1) rather than cycling force
generating cross-bridges. These strong cross-bridges are able to move Tm to a non-blocking
position on the thin filament even without Ca-bound to the regulatory site of cTnC. Yet
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there are data indicating that cycling, force generating cross-bridges may not promote the
same, intense level of energy of interaction to Tn as rigor cross-bridges. Experiments by
Tobacman and Sawyer29 and Mehegan and Tobacman30 provided direct evidence that RU-
RU interactions may be intrinsic to the thin filament. They reported that Ca2+ binds
cooperatively to regulatory sites despite the absence of myosin and despite the presence of a
single regulatory binding site. Cooperative binding of Ca2+ to thin filaments has been
confirmed and demonstrated to be independent of cycling cross-bridges.31 To determine the
influence of cycling cross-bridges on the thin filament cooperativity in the force generating
lattice, Sun et al. 32 employed fluorescent probes attached to the E-helix in the I-T arm of Tn
or to the C-helix next to the regulatory Ca-binding site. Both probes tracked the steep Ca-
dependent increase in force in skinned trabeculae regulated by these modified Tn
complexes. Although depletion of MgATP and generation of rigor complexes resulted in an
increase in the Ca-affinity, inhibition of active force had little effect. Thus, these authors
concluded that the cooperative activation of the myofilaments is likely to be intrinsic to the
thin filaments, and that cooperative activation by cross-bridges is more likely to be extant in
pathological conditions such as ischemia, where rigor cross-bridges may be present.

Studies addressing the molecular basis of length dependent activation, a mechanism
fundamental to the Frank-Starling relation, also support a thin filament based cooperative
mechanism. Farman et al. 33 reported that disruption of communication from RU to RU by
replacing cTnC in skinned fibers with a variant of cTnC with a defunct regulatory Ca-
binding site, had a bigger effect in reducing myofilament Ca-sensitivity and Hill n values at
short sarcomere lengths compared to long sarcomere lengths. On the other hand reductions
in the number of cross-bridges reacting with the thin filaments had similar effects at long
and short sarcomere lengths. While the basis for the Frank-Starling relation length
dependent activation remains controversial and likely to involve multiple mechanisms34,
these data indicate that length dependent activation may not dependent cooperativity
induced by strong, force generating cross-bridges.

Tm-Tm and actin-actin interactions are likely to couple an active RU to inactive near
neighbor, but modulation of the cooperative spread of activation is likely to involve the Tn
complex. The influence of cTnI-binding on actin and on cTnC Ca-affinity is well
documented and modulation of these interactions may be an element in the communication
between near neighbor RUs.21 The modulation could occur through cTnI phosphorylation,
which is known to reduce cTnC Ca-affinity.35 Phosphorylation of cTnI affects length
dependent activation 36, as does isoform switching of cardiac to slow skeletal TnI, the
embryonic/neonatal isform.37 Length dependent activation is also critically dependent on
cTnI-Thr144, a unique amino acid in the Ip and phosphorylation site in cTnI. There is also
evidence that specific amino acid substitutions in cTnI are able to alter the effect of NEM-S1
on cooperative activation of cardiac myofilaments.38, 39 It remains to be determined whether
interactions of a C-domain of cTnI with Tm affects cooperative spread of activation, but
there is evidence for a role for modifications in cTnT.40 Apart from its implications in the
Frank-Starling relation, cooperative control of myofilament response to Ca2+ is a feature of
control of cardiac dynamics with relevance to the rate of rise of tension and pressure and
stretch-dependent activation .27 We 41 have previously argued that the cooperative spread of
activation is a significant and potentially dominant factor controlling the duration of systolic
elastance and isovolumic relaxation in the heart beat. Here we address the question of the
relative role of cTnI-cTnC interactions in the control of cooperative activation and the
question of modulation of cooperative activation by cTnI phosphorylation. We consider
these questions in the next section in discussions of the relevance of control mechanism at
the level of the sarcomeres in regulation of cardiac function.
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cTnI phosphorylation and integrated control of cardiac function by Ca-
fluxes and myofilament response to Ca2+

There is no doubt that the amounts and rates of Ca2+ movements to and from the sarcomeres
are significant controllers of the intensity and duration of tension (pressure) development
and rates of contraction and relaxation. In the basal state estimates indicate that enough Ca is
released to occupy about 20% of the Tn regulatory units (RU) on the thin filament.42 Thus
one conceptualization of the cardiac inotropic reserve is the 80% of RUs available for
recruitment and regulation of contractility. There is also a relaxation or lusitropic reserve.
How these reserves are engaged physiologically, and what may go wrong with them in
cardiac disorders are important questions. One mechanism is straight forward and involves
variations in the load of Ca2+ in the SR for release and variations in the rate of return of
Ca2+ to SR. The extent and complexity of the wealth of mechanisms for controlling Ca2+

fluxes to and from the myofilaments support the significance of this mechanism of control
of inotropic and lusitropic reserve.43

A growing set of compelling data have brought support and clarity to the idea that control of
cardiac dynamics and power is not solely dependent on cellular Ca-fluxes, but depend
significantly on the response of the sarcomeres to Ca2+.1 The advantage of a regulatory
process involving both Ca fluxes and Ca-response is that it provides a mechanism for
control of inotropic and lusitropic reserve while limiting the liability of Ca2+ overload and
the associated arrhythmias. In a previous paper, we set forth arguments and speculation that
some aspects of the dynamics of the cardiac cycle are, in fact, dominated by control
mechanisms at the level of the sarcomeres.41 Prominent mechanisms at the level of
sarcomeres that can be rate limiting in the contraction/ relaxation cycle include the kinetics
of the reaction of cross-bridges with actin, the kinetics of Ca-release from cTnC 31, 35, and
the influence of the dynamics of cooperative processes within the myofilament lattice. There
is strong evidence that protein phosphorylation of cTnI modifies each of these mechanisms
in physiological control of the heartbeat.

There are many reports demonstrating that dynamics of cardiac myocytes may change with
no change in dynamics of the Ca-transient. A common mechanism giving rise to this effect
is a modification in cross-bridge cycling kinetics as for example occurs with isoform
switching of myosin isoforms with differing ATPase rates. Moreover, it has been
demonstrated by use of inotropic agents acting directly at the level of the myofilaments that
force and shortening can be significantly enhanced by mechanisms specifically affecting
myofilament response to Ca2+.44 Most recently data generated from experiments
investigating the sarcomere activator, omecamtiv mecarbil, have demonstrated how an agent
modifying cross-bridge duty cycle is able to increase contractility with no effect on cellular
Ca-transients.45 Our studies have demonstrated that similar modification in actin myosin
interactions occur with light chain phosphorylation 46 and with cTnI phosphorylation.47

Moreover, we have recently reported that ventricular myocytes from a model of diastolic
heart failure demonstrates slowed relaxation but no change in Ca-fluxes.48 Linkage of DCM
and HCM to sarcomeric mutations provides strong support for the significant role of
modulation of myofilament response to Ca2+ in short and long term homeostasis of cardiac
function. Mutations linked to HCM and DCM induce opposite alterations in myofilament
Ca-sensitivity, and thus indicate that there exists a homeostatic zone of sarcomeric Ca-
responsiveness.49 The idea is that when sarcomeres operate outside this zone for sustained
periods, as occurs in a genetic defect, there is an induction of maladaptive responses. These
may be mechanical stressors such as altered relaxation or altered force production or tension
cost. There may be an induction of altered Ca2+ interactions with the TnC leading to
arrhythmias.50 Moreover, as is evident in familial cardiomyopathies, there is induction of
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altered gene regulation resulting in a hypertrophic (DCM) or dilated cardiac phenotype
(DCM).

Unique phosphorylation at Ser23/Ser24 by diverse kinases controls cardiac
function

Phosphorylation of cTnI-Ser 23/Ser24 (Fig. 3) is the most well understood thin filament
protein post-translational modification in control of sarcomeric response to Ca2+ and
integration with Ca-fluxes controlling inotropic and lusitropic reserve.2-4, 18 Ser 23/Ser24 in
the unique N-terminus of cTnI are substrates for PKA and were among the earliest
phosphorylation sites to be identified. However, since these early studies more sites of
phosphorylation, more kinases with cTnI as a substrate, and new insights into the role of
multi-site phosphorylations have been identified. With the advent of high resolution mass
spectrometry techniques such as “top down” approaches and multiple reaction monitoring,
previously unappreciated sites have emerged and most likely will continue to emerge as the
studies extend into more detailed investigations of specific myocardial regions and
investigations of alterations in physiological and patho-physiological states of the hearts. In
addition to PKA, Ser23/Ser24 sites are substrates for PKG, PKCβ, PKCδ, and PKD1.51

Ser23/Ser24 phosphorylation is well known and generally agreed to induce a desensitization
of steady-state myofilament force generation to Ca2+. Although controversial52, 53, there are
also data indicating that Ser23/Ser24 bis-phosphorylation is associated with an increase in
cross-bridge kinetics.54 We think it is highly relevant that myofilaments controlled by
constitutively phosphorylated cTnI at Ser23/Ser24 demonstrate increases power 55, and also
show an enhanced force-frequency modulation and afterload relaxation sensitivity.56

Evidence also indicates that the bis-phosphorylation of these sites decreases the Ca-affinity
of TnC regulatory sites and may also decrease the affinity of cTnC for the SwP independent
of an effect on Ca-affinity.22, 35 The cTnI-Ser23/Ser24 sites occur in the highly flexible N-
terminal domain, comprised of ~30 amino acids and unique to the cardiac variant. This
region did not resolve in the core crystal structure of cTn 57, but data derived from solution
NMR and neutron contrast variation studies, have provided an atomic model of Tn revealing
the conformational transition with bis-phosphorylation of Ser23/Ser24.58 The atomic model
revealed that without phosphorylation the region around the phosphorylation motif and an
α-helix (residues 25-30) are less structured than with phosphorylation. In the absence of
phosphorylation the N-extension interacts with the N-lobe of cTnC in a position to influence
both Ca-binding and binding of the SwP by enhancing their affinity for the N-lobe relative
to the phosphorylated state. The interactions are with cTnI acidic residues interacting with
Arg22 and Arg 28 of cTnC and with hydrophobic residues Leu 29 and Pro12 of cTnC.
Leu29 mutated to a Gly is linked to HCM, which induces a more open sub-state of the cTnC
N-lobe and hinders the effect of phosphorylation of Ser23/Ser24 on myofilament Ca-
sensitivity.59 Ser23/Ser24 phosphorylation induces an extension of helix (residues 21-30)
and weakens the interaction of the N-extension with cTnC. This repositioning and bending
alters the axial ratio of cTnI and appeared to be aided by a poly-proline helix (residues
11-19) forming a rigid linker. As illustrated in Figure 3, these conformational transitions
place the acidic N-terminus cTnI (residues 1-10) close to the C-domain of cTnI containing
the basic Ip, the second actin binding domain, and the SwP. To test for this intra-molecular
interaction, we 60 employed cTnI-Ser5Cys and cTnI-Iso19Cys, labeled with the hetero-
bifunctional cross-linker benzophenone-4-maleimide. Our studies identified novel cross-
linking between these mutants at Met-154 (residue 19 mutant) and at Met-155 (residue 5
mutant) of cTnI and novel inter-molecular interactions at positions Met-47 and Met-80 of
cTnC. The cross-linking between the acidic N-terminus of cTnI and these Met residues,
which reside in the SwP, provide evidence supporting the possibility of an intra-molecular
interaction controlling the Ca-responsiveness and power of the myofilaments with cTnI

Solaro et al. Page 6

Circ Res. Author manuscript; available in PMC 2014 January 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



phosphorylated by PKA. Studies of myofilaments regulated by cTnI-Arg146Gly linked to
HCM provide indirect evidence of interaction between the N-terminus of cTnI and the
regulatory C-domain of cTnI surrounding the Ip.61 The loss of the basic residue in the Ip
leads to enhanced Ca-sensitivity in the myofilaments, but importantly there is also a loss of
the ability of PKA-phosphorylated cTnI to reduce Ca-sensitivity.62 This effect also indicates
the possibility that the control of myofilament response to Ca2+ by cTnI phosphorylation
involves an intra-molecular interaction. Studies investigating interactions between Thr144, a
PKC substrate in the Ip and Ser23/Ser24 also support the potential significance of an
interaction between the cTnI-N extension and the regulatory domain surrounding the Ip.
These studies employed pseudo-phosphorylation variants of cTnI-Thr144Glu and cTnI-
Ser23D, Ser24D. Whereas the presence of Ser23D/Ser24D or Thr144Glu both desensitized
the myofilaments to Ca, there was reduction in Ca-affinity only in the myofilaments
regulated by Ser23D/Ser24D. In other words, desensitization of the myofilaments to Ca2+

occurred independently of altered cTnC Ca-affinity in the case of myofilaments regulated by
cTnI-Thr144Glu. Moreover, when compared to myofilaments regulated by either, wild-type
cTnI, cTnI-Ser23D/Ser24D, or cTnI-Thr144E, myofilaments regulated by cTnI-Ser23D/
Ser24D/Thr144E demonstrated a significantly depressed Hill n value for both the pCa-
tension and Ca-binding relations. As discussed below there is also evidence of interactions
between phosphorylation at Ser23/Ser24 and cTnI-Ser150, a site phosphorylated by Pak1,
Pak3, and AMPK.

Troponin I phosphorylation as an integral mechanism in hypertrophic and
mechano-signaling networks and in the progression to heart failure

While the functional significance of phosphorylation at Ser23/Ser24 is well accepted, the
functional significance of the phosphorylation of other sites is either poorly understood or
controversial3. Early studies identified Ser43/Ser45, and T144 as substrates for PKC, and
eventually as substrates for specific PKC isoforms.63 Further studies employing transgenic
mouse models with up and down regulation approaches with site specific modifications or
expression of PKC isoforms further supported a functional role of these PKC sites.47, 64-66

The effect of A general conclusion is that when phosphorylated the Ser 43/Ser45 sites in
contrast to phosphorylation of Ser23/Ser24 depress maximum tension and cross-bridge
kinetics. In our hands, phosphorylation of T144 alone had little effect on tension or Ca-
sensitivity, but also depresses cross-bridge kinetics 67. The effect of phosphorylation at Ser
43/Ser45/Thr144 dominates the effects of phosphorylation at Ser23/Ser24.55, 68 More
recently, we 47reported results of extensive studies of a transgenic mouse model expressing
pseudo-phosphorylated cTnI (cTnI-Ser43Glu, Ser45Glu,T144Glu). Although we determined
that only ~7 per cent of the endogenous cTnI was replaced with the mutant, the experiments
revealed an induction of a negative inotropic effect with significantly slowed relaxation in
isolated hearts and in intact papillary muscle preparations. Ca-transients were unaffected in
isolated cardiac myocytes, and there was no effect of myofilament Ca-sensitivity or tension
cost. A mathematical model was employed to understand and analyze the integrative
interpretation of the data. The model fit the data on the basis of a decrease in the rate of
cross-bridges into the force generating state thereby producing negative inotropy, and an
increased persistence of the myofilament active state producing negative lusitropy. Studies
on animal models of heart failure produced by either pressure overload (P/O) or myocardial
infarction (MI) also produced a decrease in maximum tension dependent on phosphorylation
of cTnI 69. Analysis of the cTnI by non-equilibrium gel electrophoresis revealed a
preponderance of highly charged cTnI in both the P/O and MI models of heart failure
compared to controls. These changes could also be produced by treatment of the skinned
myocytes with PKCα.70
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A role for PKC activation in human hearts with ischemic failure was first made clear by
studies reported by Bowling et al. 71, who reported an increased activation of PKCβII
compared to control heart samples. Mouse hearts expressing an active form of PKCβII also
demonstrated an decrease in contractility and an associated increase in cTnI
phosphorylation 72. In a well-controlled study, Hwang et al. 73 infected adult cardiac
myocytes with viral constructs expressing active PKCβII and observed an overall depression
in rates and amplitudes of shortening with a parallel decrease in Ca2+ dynamics.
Surprisingly while the activated PKCβII promoted dephosphorylation of phospholamban,
there was an increase in phosphorylation of myofilament proteins including cTnI-Ser23/
Ser24. Increases in activation of PKD1 in the myocytes expressing activated PKCβII may
have accounted for the increased phosphorylation of cTnI-Ser23/Ser24. No further analysis
of sites of cTnI phosphorylation was carried in the study by Hwang et al.

However despite all this evidence for the potential significance of phosphorylation at the
PKC sites, most studies with human heart samples at end-stage failure showed only a
reduction in phosphorylation at Ser23/Ser24 and no evidence for Ser43/Ser45 or Thr144
phosphorylation. Yet incubation of skinned myocytes from failing human hearts with PKCα
and PKCε resulted in cTnI phosphorylation and desensitization to Ca2+. PKCα, but not
PKCε, induced a small but significant depression in maximum tension. Dong et al.74

reported definitive evidence of an association of heart failure in the spontaneously
hypertensive (SHR) rat model with phosphorylation on PKC sites on cTnI. Employing a
“top down” proteomic approach they reported unambiguous evidence of an increase in cTnI-
Ser43/Ser45 phosphorylation in samples from the failing hearts of the SHR rats compared to
controls. Moreover, employing mutltiple reaction monitoring (MRM) in a mass
spectrometry approach to compare and quantify cTnI phosphorylation in samples from
donor and end stage DCM and HCM hearts, Zhang et al. 75 confirmed that both cardiac
disorders show a depression in phosphorylation at cTnI-Ser23/Ser24, but an increase in
phosphorylation of cTnI-Ser43/Ser 45. Zhang et al. also reported a depression in
phosphorylation of sites identified at cTnI-Ser5/Ser6 associated with DCM and HCM. Other
sites identified on cTnI await further functional analysis. In a separate set of studies, we had
also found the existence of phosphorylation at cTnI-Ser5/Ser6 in mouse hearts.76 Pseudo-
phosphorylation of the sites induced a decrease in maximum tension and ATPase rate. Thus,
the decrease in phosphorylation of Ser5/Ser6 noted by Zhang et al. may have been an
adaptive response. Whatever the case, the effects of phosphorylation in the acidic N-
terminus of cTnI provides further evidence for the potential effect of intra-molecular
interactions of this region of cTnI with the SwP 60, 77. Earlier studies had identified the
acidic region of cTnI as a functionally significant domain in contractility and response to
adrenergic stimulation.78 The significance of the acidic region of cTnI at amino acids 1-10 is
also evident from linkage of an Ala5Val mutation to DCM.79 The mutation induced a
depressed cooperative activation of the myofilaments but not in the presence of cTnI-Ser23/
Ser 24 phosphorylation.76 With anticipated advances and more application of high
resolution mass spectrometry, we expect that more new insights into phosphorylations and
other post-translational modifications will be forthcoming. For example, there is evidence
that mammalian sterile 20-like kinase 1 has sites of cTnI as a substrate, with Thr 30 at the
hinge region of the N-extension (Fig. 3) as the most likely preferred site during hydrogen
peroxide treatment. Further experiments are required to more fully understand the
significance of this effect.80 The amplification of functional effects as a result of modest
changes in phosphorylation makes the understanding of even small changes potentially
significant.

Studies such as those described above emphasize the concept that homeostasis of cardiac
function requires a balance of phosphorylations of cTnI and most likely other proteins such
as MyBP-C, which also has multiple sites of phosphorylation. In addition to the disturbance
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of this balance by stresses such as MI or hypertension, there is an increase in appreciation of
an influence of oxidative stress on the homeostatic balance of phosphorylation of
myofilament proteins.81, 82 This is illustrated by a direct connection between oxidative
stress, Src activation, and PKCδ with cTnI as a substrate. In the case of PKCδ activated by
lipid co-factors phosphorylation occurs at cTnI occurs at Ser23Ser24. However, if the PKCδ
is phosphorylated by Src at Tyr311 and Tyr 322 there is an enhanced auto-phosphorylation
at Thr505 in the activation loop, and phosphorylation at both Thr144 and Ser23/Ser24.
Studies with skinned myocytes demonstrated a mechanical correlate to this switch in
substrate preferences. Moreover, treatment of heart muscle preparations with hydrogen
peroxide as a mimic of oxidative stress also induced an activation of PKC and modification
of myofilament83 response to Ca2+. 84

cTnI phosphorylation and signaling at the barbed and pointed ends of
cardiac thin filaments

In previous studies, we have developed evidence indicating a modulation of cTnI
phosphorylation by signaling associated with the modification of protein-protein interactions
in the Z-disk protein network. Localization of kinases and phosphatases at the Z-disk
provide one mechanism for this remote control of the A-band region of thin filaments by
signals at the Z-disk regions. There are several reviews dealing with general signaling
involving these thin filament regions.5, 6, 85 Regulation of protein phosphatase 2A (PP2A)
activity by Pak1 with dephosphorylation of cTnI may also occur via a Z-disk related
mechanism. We86, 87 reported that Pak1 has a Z-disk localization and moves to the
cytoplasm with activation. Active Pak1 has anti-hypertrophic properties, but the role of Z-
disk signaling in this mode of action remains unknown.88 In another line of experiments,
we 89-91 and others 92, 93have reported that alterations in the interaction of CapZ at the
barbed end of thin filaments sets into motion PKC mediated regulatory mechanisms
involving phosphorylation of cTnI. We first identified a role for integrity of the CapZ-thin
filament interaction in relocation of PKC isoforms to the myofilaments and in the
phosphorylation of cTnI 90, and subsequent studies have developed evidence for control of
the interaction by lipid signaling through PIP2 89, as well as induction of a protective
effective in hearts stressed by cold cardioplegia, ischemia reperfusion and pre-
conditioning92, 93. These results indicate that modulation of the CapZ-thin filament
interaction by neighboring proteins is a significant factor in the modulation of cardiac
function by cTnI phosphorylation. Inasmuch as our initial studies 90demonstrated that
modification of the CapZ-thin filament interaction induced a significant increase in
expression of Tmod at the pointed end, we also discuss regulatory proteins that affect Tmod.

Thin filament associated proteins positioned at the barbed (Z-disk) and pointed (M-line)
ends of thin filaments are important in mechanisms controlling the assembly of thin
filaments, which is critical to hypertrophic growth, as well the maintenance of thin filament
stability and length. 90 Regulation of actin dynamics most likely requires coordination of
control mechanisms at both ends of the thin filament, but Littlefield et al. 94 reported that
actin exchange at the pointed end occurs significantly faster than actin exchange at the
barbed end of actin filaments. The actin capping protein, CapZ, caps the barbed end of thin
filaments and is tethered to the Z-disk via, alpha-actinin, which cross-links adjacent thin
filaments (Fig. 1). At the pointed end, thin filaments are capped by the striated isoform of
tropomodulin (Tmod-1) (Fig. 1). Tm is another actin-binding protein critical to the stability
and maintenance of thin filament by inducing a resistance to de-polymerization. 95 As
discussed below, Tmod binding to Tm is also an important element in the capping of the
pointed ends of thin filaments. 96 Although more investigation is required, emerging
evidence indicates that these control mechanisms may involve phosphorylation.
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CapZIP, which is present in both cardiac and skeletal muscle, has been identified as a CapZ
interacting protein, which is phosphorylated by several protein kinases, such as JNK,
important in stress responses. 97, 98 The phosphorylation of CapZIP induces a dissociation of
CapZ from thin filaments and is thus believed to regulate actin assembly. No detailed
investigation of the role of CapZIP in thin filament assembly in the heart has been carried
out. However, CapZIP phosphorylation has been reported to be modified in hearts stressed
by hypertrophy. 99 Phosphorylation also appears to play a role in the control of CapZ
binding to thin filament by FHOD3, which is a member of the formin family controlling the
assembly of thin filament via FH2 (formin homology domain 2). There is disagreement as to
the exact position of FHOD3 on the thin filaments. One set of studies 100 concluded that
FHOD3 localizes at the A-band-I-band junction, but in a position permitting interaction of
the FH2 domain with the barbed end of actin. Another set of studies 101 concluded that
FHOD3 localizes to the Z-disk. Iskratsch et al. 101 reported evidence that FHOD3 is
regulated by casein kinase 2 (CK2) dependent phosphorylation. The site of phosphorylation
arises from tissue specific splicing generating a muscle specific isoform possessing an 8
amino acid C-terminal extension with the CK2 phosphorylation site. Phosphorylation targets
FHOD3 to the thin filaments and releases it from p62, a protein which has multiple roles in
kinase signaling, and functions in protosomal activity and autophagy.102 Compared to
controls, hearts with a decrease in expression of FHOD3 (mouse model of DCM and human
hearts in failure) show a loss of myofibrillar integrity. Future experiments will have to be
carried out to determine whether, when, and how CK2 signaling is engaged in cardiac
myocytes undergoing stresses such as stretch that induce increased actin assembly.

Interactions of Tmod at the ponted end of thin filaments provide a mechanism for control of
filament length, stability, and assembly. Levels of Tmod are critical to myofibrillar stability.
Sussman et al. 95 reported that over-expression of Tmod in a mouse model induced
myofibrillar disorganization with short thin filaments, and a dilated cardio-myopathy,
whereas Littlefield et al. 94 reported that a reduction in expression of Tmod leads to
relatively long thin filaments. The interaction of Tmod with the pointed end of thin filaments
occurs through interactions of an N-terminal region with both actin and Tm with two
domains interacting with Tm and one domain interacting with actin. 96, 103 Tmod binding to
the pointed end is antagonized by leiomodin-2 (Lmod), which also binds to the pointed end
of thin filaments, but does not act as a capping protein. It is apparent that the competition of
Lmod with Tmod for aTm binding site is most likely to account for the antagonism between
the two regulatory proteins. It may be of significance that the human Lmod gene is located
near the hypertrophic cardiomyopathy locus CMH6 on human chromosome 7q3. On the
basis of this identification, Conley et al. 104suggested that Lmod may be implicated in HCM.

Whether phosphorylation is an important signaling mechanism to the set of proteins
controlling actin dynamics at the pointed end of the thin filaments remains unclear and
understudied. A role for Tm phosphorylation in modulating the interaction among these
regulatory proteins at the pointed end has not been explored to our knowledge. However,
there are data suggesting that phosphorylation of Tmod may modulate its interactions with
actin and Tm105. Dorovkov et al. 105 reported that pseudo-phosphorylation of Tmod-1
mimicking phosphorylation byTRPM7 kinase induced a loss of Tmod-1 capping function in
thin filaments. The phosphorylation was at a highly conserved Thr residue (T54), which
appeared to alter only actin binding and not Tm binding. TRPM7 kinase is fusion of a Ser/
Thr kinase with an ion channel.106 The channel is inactivated by PIP(2) hydrolysis 107,
which may be of some interest inasmuch as PIP(2) has been reported to alter CapZ
interactions with the barbed end of thin filaments 89, and one wonders if a similar
mechanism may be occurring at the pointed end via a modification of TRPM7 activity.
Whatever the case, there is a need to more thoroughly investigate a role for post-
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translational modification of thin filament regulatory proteins with a role in thin filament
assembly, length, and stability.

cTnI phosphorylation as an integral homeostatic mechanism in metabolic
signaling networks

A potentially significant and under investigated area of research is the coordination of
signals controlling cardiac energy supply and signals controlling energy consumption by the
myofilaments. As major consumers of energy this coordination at the level of myofilament
proteins appears particularly important to understand. A strong case for this has been made
in the case of mutations in myofilament proteins linked to familial hypertrophic
cardiomyopathy, a disease that remains characterized as a disease of the sarcomere. One of
theories related to mechanisms linking a sarcomere disease gene to hypertrophy and sudden
death is related to the promotion of energy deficiency and altered Ca2+ fluxes. 108 There is
evidence that the mechanism may be more than a simple energy demand/energy supply
imbalance, but may involve signaling mechanisms that modify myofilament response to
Ca2+. Moreover, metabolic links to altered gene expression are well described in the switch
to a fetal gene program in hearts responding to a variety of stressors. 109 We have reported a
similar switch to fetal metabolic phenotype by expression of slow skeletal TnI in the adult
heart. 110 Here our focus is on coordinated signaling between metabolic demand and
metabolic supply with cTnI phosphorylation as a relevant example.

A recent and excellent example of the integration of mechanical and metabolic signaling
networks comes from studies, which have identified cTnI as a substrate for AMPK. 111-113

AMPK is well known to act as an energy sensor in cardiac myocytes 114, 115. Imbalances in
AMP/ATP ratio resulting from metabolic stress, such as ischemia and reperfusion injury,
shift this ratio and activate AMPK. The activation is generally considered to be protective as
it offsets the metabolic stress. Apart from the metabolic enzymes demonstrated to be
regulated by AMPK, there is evidence that other significant elements in function of cardiac
myocytes may be substrates for AMPK. For example, there are data suggesting that
Nchannels may be substrates for AMPK as indicated by arrhythmogenic activity in patients
with mutations in the AMPK gene, PRKAG2 116. Along these lines, there is also evidence
suggesting that Na+, Ca2+ exchanger may be a substrate for AMPK, but this has not been
studied in the heart 117. Among the sarcomeric proteins, cTnI is the most well documented
substrate for AMPK. In vitro studies 113 identified two regions of cTnI as substrates for
AMPK, Ser22 in the unique N-terminal extension and Ser150 in the switch region (Fig. 1).
Kinetic studies indicated Ser150, which was phosphorylated by AMPK at a much faster rate
of phosphorylation than Ser22, as the more important and more likely in situ substrate. Two
subsequent studies 111, 112 confirmed these initial finding with more direct evidence that
cTnI-Ser150 is a substrate for AMPK. Oliveira 112 employed a yeast two-hybrid screen to
identify cTnI as a protein interacting with AMPK. Hearts responding to promoters of AMPK
activity (either Aicar or ischemia) showed an increase in cTnI-Ser150 phosphorylation,
which was also, depressed by an inhibitor. Relaxation rate was slowed in association with
activation of AMPK with no change in the dynamics of the Ca2+ transient 112. These results
indicated that AMPK-dependent phosphorylation of cTnI might induce an increase in Ca-
responsiveness of the myofilaments. This was confirmed by studies with skinned fiber
preparations in which S-150 of cTnI was phosphorylated by incubation of reconstituted
myofilament preparations with AMPK. Moreover, skinned fiber preparations regulated by a
pseudo-phosphorylated mutant (cTnI-Ser150Asp) also demonstrated an increase in
sensitivity to Ca2+ and an increased Ca-binding to the cTnC regulatory site.111 An important
additional finding in this study was the demonstration that associated with phosphorylation
of cTnI-Ser150 there was reduced desensitization by PKA dependent phosphorylation of
cTnI-Ser23,Ser24 and a reduced effect of PKA-dependent phosphorylation to enhance
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length dependent activation. It is of interest that both these effects would tend to increase
Ca-binding to cTnC, which may also be a factor in the arrhythmias. There are important
implications of the findings on the effects of cTnI-S150 phosphorylation on mechanisms
modulating sarcomere response to Ca2+. Data showing an interaction between effects of
phosphorylation at Ser23/Ser24 in the N-helix and at Ser150 also support previous studies,
as discussed above, in which we reported a close proximity between residues in the cTnI-N-
terminal extension and Met residues at position 155 of cTnI 60. Moreover, Ouyang et al. 118

reported evidence from studies using steady-state Forster fluorescence resonance energy
transfer that with pseudo-phosphorylation of cTnI at Ser150, there is a shortening of the
inter-site distances between cTnI and cTnC. Interestingly, this modification in inter-site
distance was similar to the effect of strong cross-bridges on the structural transitions in cTnI.
This is a significant finding inasmuch it provides further evidence for a role for modulation
of the cTnI-cTnC in thin filament related cooperative activation of the myofilaments.

Signaling via PKD1 (formerly known as PKCμ) also provides an example of the
coordination of signaling to the myofilaments apparently coordinated with metabolic supply
and demand, as well as nuclear signaling promoting hypertrophy.100, 119, 120 PKD1 is able to
phosphorylate both cTnI and MyBP-C resulting in desensitization of the myofilament
response to Ca2+. as well as increase in cross-bridge kinetics.119, 121. As with PKA, PKD
also has effects on excitation-contraction coupling in form of altered L-type Ca-channel
activity and Ca-loading of the sarcoplasmic reticulum.122 Studies with electrical stimulation
of isolated cardiac myocytes demonstrated a stimulus dependent activation of PKD and
dynamic regulation of cTnI phosphorylation and myofilament Ca-desensitization.122

Nuclear PKD1 also phosphorylates HDAC5, promoting its export from the nucleus and
releasing MEF2 from inhibition thereby inducing hypertrophic growth. Active PKD1 is also
critical in enhanced glucose uptake associated with contraction in adult cardiac myocytes by
mechanism independent of AMPK activation.123 The mechanism is a PKD1 dependent
increase in Glut4 translocation and glucose uptake. While AMPK activation can increase
fatty acid uptake, PKD1 activation cannot. An interesting aspect of the experiments of Dirkx
et al. 123 is the demonstration of the relative reactive oxygen species (ROS) sensitivity of
PKD1 signaling and effects of glucose transport compared to ROS dependent effects on
AMPK signaling and fatty acid uptake. The relative effects of ROS dependent modulation of
PKD1 activity with regard to cTnI phosphorylation has not been investigated to our
knowledge. As with many signaling networks, PKD1 signaling presents a puzzle to be
solved in terms of why Nature has chosen to modify cTnI phosphorylation by different
kinases. Localized signaling may provide the clues to solution of the puzzle. In the case of
PKD1, localization at the Z-disk or related regions has been shown.122 There is also a
regulatory complex consisting of AKAP-Lbc, which scaffolds PKA and PKD1. PKA
activation is known to suppress PKD1 activity, and localized activity of PDE3 and PDE4
may control PKA activity. These mechanisms provide pathways whereby PKD1 activity
may be directed toward various cellular functions via adrenergic receptors signaling through
DAG/PKC for cAMP/PKA or via growth receptors such as endothelin receptors acting
through PKC. This is but one example where more data are needed with regard to what
happens, when and where following a stimulus of the cardiac myocytes relevant to a
physiological adaptive response, or to pathophysiological maladaptive response.

Summary and Challenges
It is no surprise that in the nearly 40 years since the first identification of functionally
significant covalent phosphorylation of sarcomeric proteins, major challenges remain,
despite a steady increase in studies and the appreciation of these post-translational
modifications in complex signaling networks. The discussion here on multi-site
phosphorylation of cTnI in this network is an example of how little we know, despite the
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generation of much knowledge. We know or will soon know all the thin filament sites
potentially phosphorylated and their relative abundance. We have a good idea of the
functional consequences of the site specific phosphorylations at various levels of
organization. We have knowledge strongly indicating that the phosphorylations provide an
integrated response coordinating energy consumption and energy supply as well as
excitation contraction coupling, and transcription and translation. We know that the sites of
phosphorylation are modified in homeostatic, adaptive physiological control of cardiac
output, and we know the sites of phosphorylation are modified in maladaptive responses to
acquired and inherited disorders of the myocardium. We don’t know precisely the dynamics
of the multi-site phosphorylations in the time course of the response to physiological or
pathological signals and stressors. We don’t know precisely how the phosphorylations are
coordinated with diverse signaling events and their site specific occupancy.. In the best of
scientific worlds we would have an in situ probes providing readout of site-specific
phosphorylations during a temporal change in cardiac function. Addressing these
unanswered questions may be impossible for the near term; we have to make the best with
the approaches we do have, and we have to continue to take lessons from advances made in
network biology in much simpler systems than the heart, such as yeast. Moreover in the face
of massive amounts of genomic and proteomic information, together with knowledge of
spatial/temporal relations among proteins as well as kinase/phosphatase signaling networks
we must devise ways of separating signal from noise.
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List of Non-standard Abbreviations

AMPK 5′AMP Kinase

CapZ actin capping protein

cTn cardiac troponin

cTnI cardiac troponin I

cTnT cardiac troponin T

cTnC cardiac troponin C

DAG diacyl glycerol

DCM dilated cardiomyopathy

FH2 formin homology domain 2

Ip troponin I inhibitory peptide

HCM hypertrophic cardiomyopathy

SwP troponin I switch peptide

NEM n-ethyl maleimide

MI myocardial infarction

Lmod leiomodin 2
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MLP muscle lim protein

MRM multiple reaction monitoring

Pak1 p21-activated kinase 1

PDE phospho-diesterase

PIP2 phosphoinositide bis-phosphate

PK protein kinase

P/O pressure overload

PP2A protein phosphatase 2A

ROS reactive oxygen specie

RU regulatory unit

S-1 myosin head

SR sarcoplasmic reticulum

Tcap titin capping protein

Tm tropomyosin

Tmod tropomodulin

TRPM7 transient receptor potential melastatin 7
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Figure 1.
Scheme illustrating the function of cardiac thin filaments in different regions of a half-
sarcomere. The A-Band region depicts thin filaments reacting with thick filaments. At one
end I-band regions interact with a complex network of proteins some of which are illustrated
to emphasize the presence of kinases (PKC, p38 MAPK, PKD), phosphatases (calcineurin)
and transcription factors (eg. MLP, MyoZ) that dock and engage in signaling in this region.
at the function in Schematic illustration of a region of the I-Z-I region of the sarcomere also
depicted in an electron micrograph. Desmin is depicted as connecting in a cytoskeletal
signal network with the costamere as well as the nuclear envelope. CapZ caps the thin
filaments at the barbed end at the Z-disk and is significant in signaling. CapZ is regulated by
associated proteins, FHOD3 and CapZIP. At the pointed end (M-Band region), thin
filaments are capped by Tmod, which is modulated by Lmod. Also in the M-band region,
obscurin makes connections with membrane proteins. Titin is shown extending from Z-disk
to M-band and is also engaged in signaling stress sensing. See text for details and further
explanation.
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Figure 2.
Scheme illustrating thin filament structural changes in the transition from a relaxed to an
active state. In relaxation Tm is immobilized and wedged between actin binding peptides of
cTnI and the N-terminal tail of cTnT. There also may be an interaction between the C-
terminal domain of cTnI and Tm. Activation occurs with Ca-binding to a single regulatory
site on cTnC N-lobe, which promotes an interaction between this region of cTnC with SwP,
a switch peptide that reacts with the Ca-bound cTnC N-lobe. Movement of the SwP promote
a movement of the actin cTnI binding peptides and via reactions involving the intertwined
arms of cTnT and cTnI together with the C-lobe of cTnC there is a release of Tm, exposing
binding sites for cross-bridges on actin. Note the position of the dephosphorylated N-
terminal extension of cTnI as bound to cTnC. This interactions promotes Ca-binding and
Sw-P binding to cTnC (Illustration credit: Ben Smith).
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Figure 3.
Illustration of the potential phosphorylation sites of cTnI for which there are functional
correlates as described in the text. Note the double arrow indicating that the N-terminal
extension of cTnI shifts position upon phosphorylation at Ser23/Ser24 and thus promotes
release of Ca2+ and the SwP from the N-lobe of cTnC. Also note the proximity of the acidic
N-terminus of cTnI to the regulatory domain of cTnI containing the SwP. Functional
correlates of the phosphorylation sites are discussed in the text. (Illustration credit: Ben
Smith).
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