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Abstract

We introduce a stochastic branching process model of diversity in recurrent

tumors whose growth is driven by drug resistance. Here, an initially declining

population can escape certain extinction via the production of mutants whose fit-

ness is drawn at random from a mutational fitness landscape. Using a combina-

tion of analytical and computational techniques, we study the rebound growth

kinetics and composition of the relapsed tumor. We find that the diversity of

relapsed tumors is strongly affected by the shape of the mutational fitness distri-

bution. Interestingly, the model exhibits a qualitative shift in behavior depending

on the balance between mutation rate and initial population size. In high muta-

tion settings, recurrence timing is a strong predictor of the diversity of the

relapsed tumor, whereas in the low mutation rate regime, recurrence timing is a

good predictor of tumor aggressiveness. Analysis reveals that in the high muta-

tion regime, stochasticity in recurrence timing is driven by the random survival

of small resistant populations rather than variability in production of resistance

from the sensitive population, whereas the opposite is true in the low mutation

rate setting. These conclusions contribute to an evolutionary understanding of

the suitability of tumor size and time of recurrence as prognostic and predictive

factors in cancer.

Despite the initial effectiveness of many anticancer thera-

pies in reducing tumor size and halting growth, many

tumors eventually resume growth after a period of time

during therapy due to the evolution of drug-resistant

clones. In recent work, Ding et al. (2012) observed clonal

evolution in relapsed acute myeloid leukemia (AML) using

whole genome sequencing. By sequencing the primary

tumor and relapse genomes from AML patients, they

observed that while some tumor subclones are indeed erad-

icated by therapy, others accumulate new mutations and

subsequently expand during cancer recurrence. As a result,

relapsed or recurrent tumors can be highly heterogeneous

in nature, and their composition can differ significantly

from that of the original tumor. These observations, part of

a growing literature documenting clonal evolution of the

cancer genome (the review of Merlo et al. 2006 and refer-

ences therein), lend credence to the idea that cancer

genomes are moving targets. This suggests that targeting

only cell types present at the start of therapy is insufficient

to eradicate tumors, and furthermore, therapy may itself

impact or enhance the clonal evolution of resistant subpop-

ulations.

An understanding of the amount of clonal diversity pres-

ent in recurrent tumors driven by drug-resistant cell popu-

lations is important for determining optimal treatment

strategies after failure of a first-line therapy. However, due

to limitations in detecting mutations in rare cells, experi-

mental studies may provide only an estimate of the lower

bound on clonal heterogeneity in recurrent tumors. Here,

we aim to obtain a better understanding of the major fac-

tors impacting the composition and growth of heteroge-

neous recurrent cancer cell populations using evolutionary

modeling. We study how, after an initial decline in tumor

size, the rebound growth kinetics and composition of the

recurrent tumor are affected by evolutionary parameters

such as the fitness landscape of mutations accumulated
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during therapy, initial size, drug effectiveness, and muta-

tion rates. In addition, we derive estimates of the amount

of clonal diversity present in relapsed tumors and demon-

strate a strong dependence on the shape of the mutational

fitness landscape. We also study the relationship between

the timing of cancer recurrence and the diversity and

aggressiveness of the relapsed tumor.

There has been a significant amount of research interest

in evolutionary modeling of drug resistance in cancer, both

prior to treatment in expanding tumor cell populations as

well as during treatment. For example, Coldman and col-

laborators introduced stochastic models of the emergence

of resistance to chemotherapy (Goldie and Coldman 1979,

1983; Coldman and Goldie 1986; Coldman and Murray

2000) to guide treatment schedules. Jackson and Byrne

(2000) considered a deterministic PDE model describing

the intra-tumoral drug concentration and density of sensi-

tive and resistant cancer cells and investigated the tumor

response to continuous infusion versus bolus injection of

chemotherapeutic drugs in the presence and absence of

drug-resistant subpopulations. Komarova and Wodarz

(2005, 2007) developed a model for multi-drug resistance

using a multi-type birth–death process in which the resis-

tance to each drug was conferred by genetic alterations

within a mutational network. Iwasa et al. (2003), Michor

et al. (2006) and Haeno et al. (2007) studied the dynamics

of resistance emerging due to one or two genetic alterations

in a clonally expanding population of sensitive cancer cells.

More recently, Silva and Gatenby (2010) introduced a

model that incorporated the interactions of cell resistance

mechanisms and tumor microenvironment during chemo-

therapy and found that a combined treatment strategy of

glucose restriction and chemotherapy can stabilize tumor

size and minimize resistant populations. These references

represent a few examples from a large and growing litera-

ture of evolutionary models of drug resistance in cancer.

Most of the existing mathematical formulations

described consider cells with identical genotypes to have

identical fitness characteristics. However, single-cell profil-

ing studies have revealed extraordinary heterogeneity in

phenotype even if genetically, these cells are identical (Elo-

witz et al. 2002; Kaern et al. 2005; Feinerman et al. 2008).

In particular, variable fitness effects have been observed in

cancer cell lines harboring the same drug-resistance

mechanisms (Godin-Heymann et al. 2007; Ohashi and

et al. 2012). For example, Godin-Heymann et al. (2007)

produced data exhibiting approximately 10% variation in

growth rates between non-small cell lung cancer clones har-

boring the same resistance mechanism to the drug erloti-

nib. Alternatively, there may exist a spectrum of distinct

possible resistance mutations for a single drug, each confer-

ring a different response to therapy (Sierra et al. 2010; Xu

et al. 2012). For example, in chronic myeloid leukemia

(CML), resistance to the tyrosine kinase inhibitor imatinib

can be conferred by over 90 distinct resistance mutations,

and these mutations confer different fitness advantages or

disadvantages relative to the unmutated drug-sensitive cells

(Skaggs et al. 2006; Sierra et al. 2010; Leder et al. 2011). In

considering 11 of the most common resistant mutants in

CML, Skaggs et al. (2006) determined that differences in

relative growth rates in vitro between resistant mutants can

exhibit as much as 30% variation above and below the

average.

Therefore, it is important to develop a quantitative

understanding of the diversity of heterogeneous drug-resis-

tant cancer cell populations that drive resistance. In recent

work, we introduced a model of the evolution of heteroge-

neity during tumorigenesis, describing the accumulation of

combinations of mutations that confer random alterations

to cellular fitness in an exponentially expanding population

(Durrett et al. 2010, 2011). In the current work, we con-

sider a different problem in which escape from inevitable

extinction of the initial population occurs via the genera-

tion of diverse mutant populations. Here, we adopt a mod-

ified mathematical framework and perform analysis in a

different asymptotic regime (of large initial population

size) to study the properties of relapsed tumors after an ini-

tial response during treatment. In other recent work (Foo

and Leder 2012), we examined the probability distribution

of recurrence times in a simple model of homogeneous

escape populations; here, we focus on the composition and

diversity of heterogeneous escape populations and explore

the relationship between recurrence timing and composi-

tion of the relapsed tumor.

The paper is outlined as follows. In the Model section,

we introduce the model and relevant notations to be used

in the paper. We also provide some sample simulations to

illustrate the diversity in the rebound population and vari-

ability in recurrence timing. In Results section, we establish

analytical results regarding the rebound growth kinetics of

the heterogeneous tumor after relapse. Then, we investigate

the composition and diversity of the relapsed tumor

and study the relationship between recurrence time and

diversity of the relapsed tumor.

Model

In the following, we consider the scenario in which a popu-

lation of drug-sensitive cancer cells is placed under therapy,

leading to a sustained overall decline in tumor size. During

this treatment, the cancer cell population may escape

extinction via the emergence of mutations that alter a cell’s

responsiveness to treatment and thus confer a random fit-

ness advantage to the cell under therapy. The stochasticity

of the fitness gain in our model reflects the possibility of a

spectrum of resistance mutations for any given therapy, or
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the possibility for a single genetic event to give rise to vari-

able fitness effects within the population.

The sensitive cell population is modeled as binary

branching process, Z0, with birth rate r0 and death rate d0.

Consider a starting population of Z0ð0Þ ¼ n drug-sensitive

cells; as the population is undergoing therapy, these cells

have a net negative growth rate (r0\d0). During every

birth, there is a probability of ln ¼ ln�a of a mutant drug-

resistant offspring with a random, net positive growth rate.

Thus, the net growth rate of the sensitive cell population is

k0 ¼ r0ð1� lnÞ � d0; in the following, we denote r � jk0j.
Although this phenotypic variability may be caused my

mechanisms other than point mutations, for simplicity we

will abuse terminology and refer to the parameter l as a

‘mutation rate’ throughout. The net growth rate of the

mutant, r1, is drawn from a probability density function

describing the mutational fitness landscape, g(x), and the

death rate of the mutant is denoted to be d1. We assume

that the fitness landscape g(x)>0 in an interval [0,b] for

some finite endpoint b and zero otherwise, because cells

cannot divide at unbounded rates. The heterogeneous

mutant population at time t is denoted by Z1ðtÞ and repre-

sents the drug-resistant tumor outgrowth population. In

Rebound growth kinetics section, we generalize the model

to consider a mixture of sensitive and resistant cells at the

start of treatment. In addition, we consider the impact of

heterogeneity in the sensitive cell population on recurrence

dynamics in the Supplementary Information.

The parameter a determines the balance between initial

population size of the tumor at the start of treatment and

the mutation rate. In the regime a<1, in the large n limit

the probability that resistance arises before the eradication

of sensitive cells is 1. This can be seen by considering the

mean number of mutations produced by the resistant cell

population by time t, that is, approximately lr0n1�a. If

a<1, this grows to infinity, and we are guaranteed a

successful resistance mutation prior to extinction. If a>1,
the mean number of mutations and thus the likelihood of

a successful resistance mutation by extinction time tends to

0. In the current work, we are interested in studying the

dynamics of recurrent tumors after the development of

resistance; therefore, we restrict ourselves to the parameter

regime a<1.
We next discuss relevant parameter ranges of the initial

population size n and the mutation rate ln in our model.

A solid tumor of diameter 1 cm has been estimated to

have approximately 106�9 cells, depending on tumor type

(James et al. 1999; Detterbeck and Gibson 2008). Thus,

considering tumors of diameter O(1)�O(10) cm, we can

obtain estimates of up to 109�12 cells. These order of

magnitude estimates are also clinically relevant in blood

cancers (Sekeres et al. 2007). In some situations, we may

be interested in restricting our study to only a small sub-

population of the tumor that is capable of self-renewing

and important in driving cancer progression. These small

subpopulations, called cancer stem cells, are estimated to

be present in frequencies of 10�6 � 10�4 of the total

tumor burden (Reya et al. 2001; Sarry et al. 2011). Thus,

lower estimates for relevant values of n could be within

the regime of 104, depending on the tumor type and sub-

population of interest. For example, in studies of chronic

myeloid leukemia, it has been estimated that 105 leuke-

mic stem cells are present at the time of diagnosis (Holy-

oake et al. 1999).

In contrast to cell numbers, the mutation rate parame-

ter ln in our model is relatively difficult to quantify, as it

represents the rate of resistant cells arising from the sensi-

tive cell population. If we are considering specific point

mutations or single base pair substitution rates per cell

divisions, various estimates can be obtained in the litera-

ture (e.g., ln ¼ 107�10; Seshadri et al. 1987; Araten et al.

2005). However, various processes within cells such as

chromosomal instability and chromatin reorganization

can impact mutation rates, and drug resistance may arise

through other types of mechanisms. Thus, in this work we

study the behavior of our model as a function of the

parameter ln.
Figure 1 shows some sample path simulations of the

tumor population over time in this model. As demon-

strated, this simple evolutionary model based on exponen-

tially growing branching processes with random growth

rates reflects large amounts of variability in rebound tumor

composition as well as the timing of recurrence.

Results

Rebound growth kinetics

We first investigate the growth kinetics of Z1, the heteroge-

neous resistant population driving the cancer recurrence,

and its dependence on tumor parameters including the

random mutational fitness landscape g(x). We confine our

analysis to the asymptotic regime of large initial tumor size

n, following the discussion of relevant population sizes in

the previous section. In addition, we analyze the dynamics

on the sped up time scale of extinction of sensitive cells,

that is, O( log n), since this is the time period during

which resistant mutants are produced.

As described previously, each mutation confers a positive

fitness advance represented by the random variable X ∈ [0,

b] with probability density function g. Define tn ¼ 1
r log n

and hn ¼ hn�bv=rþa�1 log n. We study the growth kinetics

of Z1 by finding its Laplace transform (LT), given by

E½e�hnZ1ðvtnÞ�, which determines the probability distribution

of the Z1 population as a function of time. Using this

Laplace transform, we then characterize the behavior of Z1

in the large n regime.

© 2012 The Authors. Published by Blackwell Publishing Ltd 6 (2013) 54–6956
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Figure 1 Example simulations of the model demonstrating tumor population trajectories during treatment. The black line indicates the size of the

total tumor population, the blue line indicates the initial sensitive population. The multicolored lines represent the temporal dynamics of individual

resistant clones created via mutation from the sensitive cell population, Z1 is the sum of these populations. The color of each of these lines is dictated

by the clonal fitness (mapped via the colorbar on the right), which is drawn at random from a symmetric beta (2,2) distribution on [0, 0.001]. The red

circle in each plot marks the point at which the minimal tumor size is achieved.

If ~/x
t is the Laplace transform of a simple binary branching process with birth rate d0 þ x and death rate d0, then

E½exp �hnZ1ðvtnÞð Þ� ¼ E exp � r0l
na

Z b

0

gðxÞ
Z vtn

0

Z0ðsÞ 1� ~/x
vtn�sðhnÞ

� �
dsdx

� �
:

To understand the LT of the limit, it suffices to understand the limit of the expression inside the exponential. As we are

considering the large initial population (n) limit, we replace Z0ðsÞ by ne�rs:

� r0l
na

Z b

0

gðxÞ
Z vtn

0

Z0ðsÞ 1� ~/x
vtn�sðhnÞ

� �
dsdx ¼ r0l

na

Z b

0

gðxÞ
Z vtn

0

ne�rs 1� ~/x
vtn�sðhnÞ

� �
dsdx

þ r0l
na

Z b

0

gðxÞ
Z vtn

0

ðZ0ðsÞ � ne�rsÞ 1� ~/x
vtn�sðhnÞ

� �
dsdx

¼ I1ðn; vÞ þ I2ðn; vÞ:
As Z0ðsÞ � ne�rs ¼ Oðn1=2Þ, it follows that I2 is negligible compared with I1. Observe that the actual birth rate of the sen-

sitive cell population is given by r0ðnÞ ¼ r0ð1� lnÞ. As ln ¼ ln�a, we replace r0ðnÞ with r0. Next recall that (Athreya and

Ney 2004)

1� ~/x
vtn�sðhnÞ ¼

xð1� e�hnÞ
e�xðvtn�sÞ ðd0 þ xÞe�hn � d0½ � � ðd0 þ xÞðe�hn � 1Þ

� xhn
xexsn�xv=r þ hnðd0 þ xÞð1� n�xv=rexsÞ ;

ð1Þ

where the approximation sign is from making the substitution 1� e�hn � hn. Using this approximation, and the definition

of hn, we see that

n1�a 1� ~/x
vtn�sðhnÞ

� �
¼ xh log n

xexsnvðb�xÞ=r þ hna�1ðd0 þ xÞð1� n�xv=rexsÞ log n :
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Therefore

I1ðn; vÞ � hr0l log n
Z b

0

gðxÞ
Z vtn

0

xe�rs

xexsn
v
rðb�xÞ þ hna�1ðd0 þ xÞð1� n�xv=rexsÞ log n dsdx

¼ hr0l log n
Z vtn

0

Z b

0

xgðxÞe�rs

xexsn
v
rðb�xÞ þ hna�1ðd0 þ xÞð1� n�xv=rexsÞ log n dxds:

We now consider the integral over x. Assume that h(�) is a positive decreasing function such that h(n)?0 and

v
r hðnÞ log n
log log n

! c[ 1:

Then,

hr0l log n
Z b�hðnÞ

0

xgðxÞ
xn

v
rðb�xÞexs þ ðd0 þ xÞð1� n�xv=rexsÞhna�1 log n

dx

� hr0l log n
Z b�hðnÞ

0

gðxÞ
exsn

v
rðb�xÞ dx

� hr0l log n

nvb=r

Z b�hðnÞ

0

gðxÞ exp xðv
r
log nÞ

h i
dx

� hr0l log n
nvb=r

�xn
b� hðnÞ exp ðb� hðnÞÞðv=rÞ log n½ � þ b� hðnÞ � �xn

b� hðnÞ
� �

;

where the final inequality is an application of Bennett’s inequality and �xn ¼ E½XjX\b� hðnÞ�. It is easy to see that due to

the assumptions on h, the last expression goes to 0 as n?∞. This argument reveals that mutations only contribute signifi-

cantly to the overall growth if they confer a fitness close to b.

Now consider the contributions from mutations conferring fitness close to b,

hr0l log n
Z b

b�hðnÞ

xgðxÞ
xn

v
rðb�xÞexs þ ðd0 þ xÞhna�1 log n

dx

¼ hr0lhðnÞ log n
Z 1

0

ðb� yhðnÞÞgðb� yhðnÞÞ
ðb� yhðnÞÞesðb�yhðnÞÞ exp½vr yhðnÞ log n� þ ðd0 þ b� yhðnÞÞhna�1 log n

dy

� hr0lhðnÞ log n
Z 1

0

bgðbÞ
ðbesb exp½vr yhðnÞ log n� þ ðd0 þ bÞhna�1 log n

dy

� hr0lhðnÞ log ngðbÞ
esb

Z 1

0

exp �y
v

r
hðnÞ log n

h i
dy

¼ hr0lgðbÞr
vesb

:

Combining these approximations, we see that

I1ðn; vÞ � hr0lgðbÞr
v

Z vtn

0

e�sðrþbÞds ; ð2Þ

and therefore for any h>0, limn!1E exp �hnZ1ð ðvtnÞÞ ¼ exp � hr0rlgðbÞ
vðrþbÞ

� �
: As this is the Laplace transform of a deterministic

random variable, we have that for v>0,

na�1�bv=r log nvZ1ðvtnÞ ! gðbÞr0rl=ðr þ bÞ

as n?∞. Furthermore, based on these results, the Z1 process is approximated by the following:
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EZ1ðvtnÞ ¼ r0l
na�1

Z b

0

gðxÞ
Z vtn

0

exðvtn�sÞdsdx

� n1�aþbv=r gðbÞr0rl
vðr þ bÞ log n 1� n�vð1þb=rÞ

� �
:

ð3Þ
To understand the dependence of the growth kinetics of

Z1, the resistant rebound population, on various model

parameters, let us examine the structure of the result in

eqn (3). In particular, the term n1�a comes from the pro-

duction of new resistant mutants from the sensitive cell

population. The remaining power of n, nbv=r represents

the growth of resistant clones. We note that the growth

rate of Z1 depends on the fitness distribution g(b) only

through its value at the endpoint b. In other words, the

growth of the population is dominated by the fastest

growing mutant in the population, which in our setting

a<1 is the fittest possible mutant. We also note a delay in

the growth rate by the log n term in the denominator,

which comes from the waiting time needed to achieve a

maximally fit mutation. Specifically, to create a mutation

with growth rate near b we need a large number of muta-

tions, and due to this waiting the maximally fit mutation

has a slightly lowered growth rate. The explicit form of

this delay is dependent on n as the initial population size

impacts the chance of developing mutations, and also

since the dynamics are analyzed on the time scale of sensi-

tive cell extinction. In particular, a larger n implies a faster

time scale, so the slowdown is more pronounced. While

the growth kinetics of the rebound tumor population

depend on the mutational fitness landscape only through

its endpoint, as we will show next the diversity of the

relapsed tumor depends strongly on the entire shape of

this landscape.

Lastly, here we have assumed for simplicity that the sen-

sitive cells are a homogeneous population. While it is likely

that the sensitive cell population is already heterogeneous

in terms of growth rates by the time a tumor is diagnosed

and treated, we show (in the Supplementary material) that

the scaling behavior of the resistant population is robust to

variation among the decay rates of sensitive cells. We refer

the reader to the Supplementary Information for further

discussion of this point.

Preexisting resistance

An important issue to consider is the presence of preexist-

ing drug-resistant cells (Komarova and Wodarz 2005;

Turke et al. 2010; Diaz et al. 2012). Suppose that we

decompose the resistant population at time t into acquired

and preexisting resistant populations as

Z1ðtÞ ¼ ZA
1 ðtÞ þ ZP

1 ðtÞ;
where ZA

1 ð0Þ ¼ 0 and ZP
1 ð0Þ ¼ nx for some x ∈ (0,1).

Here, ZP
1 ð0Þ is comprised of a resistant clone with net

growth rate b. To analyze this new process, we define the

following scaling factor for h>0 as

hn ¼ hn�bv=rþa�1 log n; x\1� a
hn�bv=r�x; x� 1� a.

�

If we consider the resistant population on the approxi-

mate time scale of extinction, we see that

EZP
1 ðvtnÞ ¼ nxþbv=r and thus for x<1�a

lim
n!1 E½hnZP

1 ðvtnÞ� ¼ 0:

Then, we conclude that if x<1�a, the preexisting resis-

tance will have negligible impact on the dynamics of the

resistant population in the large n regime. In contrast, if

x� 1�a, we have

lim
n!1 E½hnZA

1 ðvtnÞ� ¼ 0

and in this case the acquired resistant population will have

a negligible effect on the behavior of the resistant cell popu-

lation. The distribution of the resistant population as a

function of time can be characterized through its Laplace

transform as follows:

E expð�hnZ1ðvtnÞÞ � E expð�hnZ
P
1 ðvtnÞÞ

¼ 1� ð1� ~/b
vtn
ðhnÞÞ

� �nx

� 1� bhn
bn�bv=r þ hnðd0 þ bÞð1� n�bv=rÞ

� �nx

¼ exp nx log 1� bhn
bn�bv=r þ hnðd0 þ bÞð1� n�bv=rÞ

� �� �

� exp �nx
bhn

bn�bv=r þ hnðd0 þ bÞð1� n�bv=rÞ
� �

� exp½�h�:
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In the previous display, the first equality follows from

the independence of the nx initial preexisting resistant cells,

the first approximation follows from (1), and the penulti-

mate approximation from the approximation

log (1�x)��x for x small. If x� 1�a, the preexisting

resistant clone will dominate the Z1 population, and there-

fore Z1ðvtnÞ � nxþbv=r:

Thus, we have determined conditions under which the

level of preexisting resistance will impact recurrence

dynamics. In particular, if x� 1�a, the relapsed tumor

will be largely driven by the initial resistant clone and

acquired resistance mutations will not impact tumor

growth kinetics significantly. In contrast, when x<1�a the

resistant population will be largely driven by the creation of

a heterogeneous resistant population from mutations

acquired during the course of treatment, and the contribu-

tions from the preexisting resistant clone will be small in

comparison with this population.

Composition of the recurrent tumor

We next turn our attention to exploring the heteroge-

neous nature of the recurrent tumor population. To

quantify heterogeneity, several measures of diversity are

utilized: Simpson’s Index, Shannon Index, and species

richness. Simpson’s Index is defined as the probability

that any two randomly selected individuals in the popu-

lation will be identical, and species richness represents

the total number of distinct types in the population.

The Shannon Index quantifies the uncertainty in predict-

ing the type of an individual selected at random from

the population and is defined mathematically as follows:

Suppose pi, for i=1...N represents the proportional

abundance of the ith type in the population. The Shan-

non Index for this population with N types is

SI � �PN
i¼1 pi log pi:

We first perform exact stochastic simulations of the

model to demonstrate the evolution of these diversity

indices over time. Figure 2 demonstrates the evolution

of species richness over time as the tumor population

declines and rebounds during treatment. We observe

that both the Simpsons and Shannon measure of diver-

sity peak during the time period just before tumor

recurrence is observed. Then, over time the species

diversity decreases and the species richness appears to

reach an asymptotic value. This is due to the large pro-

duction rate of mutants when the sensitive cell popula-

tion is high, and subsequent extinction of a large

fraction of those mutants due to demographic stochas-

ticity. After the sensitive cell population is depleted, no

further resistant mutants can be produced, so the surviv-

ing escape mutants comprise the rebound tumor popula-

tion. These dynamics are also reflected in the behavior

of the species richness index over time.

Figure 3 demonstrates the effect of the mutational fitness

distribution on the diversity of the population. In particu-

lar, we plot the average species richness in the population

over time, for a family of parametrized beta distributions

with shape parameters a and b. Observe that as the mass of

g(x) shifts to the right with increasing shape parameter a,
the species diversity increases as more of the produced

mutants survive. Similarly, as b increases the species diver-

sity decreases.

As noted previously, the resistant cell population expe-

riences a large increase in diversity at early times while

the sensitive cell population is in its initial decline.

However, over time only a fraction of these resistant

types produced during this fruitful period survive to

become dominant in the relapsed tumor. We next pro-

vide analytical estimates of how many of these resistant

types produced will emerge as viable subpopulations in

the recurrent tumor.

The probability of eventual extinction in a binary

branching process with birth rate a0 and death rate b0 is

given by minf1; b0=a0g. Therefore, the expected number of

mutants created by time t that will go on to establish viable

resistant subpopulations, S(t) is
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E½SðtÞ� ¼ r0l
rna�1

Z b

0

xgðxÞð1� e�rtÞ
d0 þ x

dx:

For the case where g represents the uniform distribution

on [0,b],

E½SðtÞ� ¼ ð1� e�rtÞr0l
rna�1b

bþ d0 log
d0

d0 þ b

� �
:

In contrast, the total number of mutant types created by

time t, Q(t) has expected value

E½QðtÞ� ¼ r0l
rna�1

Z b

0

gðxÞð1� e�rtÞdx;

which, in the case of g uniform on [0,b], takes the form

E½QðtÞ� ¼ r0l
rna�1

ð1� e�rtÞ:

In the limit as t?∞, E[S(t)] represents the asymptotic

species richness of the recurrent tumor. Figure 4 (left)

demonstrates the convergence of these two quantities: the

dashed line denotes the species richness or extant number

of resistant types in the tumor, obtained through simula-

tion. Since the sensitive cell population is declining expo-

nentially during this time, eventually very few additional

resistant types can be produced and overall species richness

declines toward an asymptotic value. The solid line repre-

sents the theoretical estimate of the number of resistant

types present that will eventually be permanently viable in

the recurrent tumor. Therefore, this quantity estimates the

number of types in the species richness index that will not

go extinct and monotonically approaches the asymptotic

species richness as new mutants are produced. Thus, these

two quantities asymptote to the same value, which repre-

sents the overall number of surviving resistant types in the

recurrent tumor after the initial transient period. Note that

in this plot, the dashed line if extended to the left would

reach a species richness of zero at time zero. The plot on

the right of Fig. 4 demonstrates the shape of dependence of

asymptotic species richness the mutational fitness land-

scape g(x). We observe that the diversity of the relapse

tumor depends strongly on the shape of the distribution;

even when the support of g(x) is held constant, varying the

shape parameters a and b of the distribution results in spe-

cies richness varying over the range of 5–30 resistant types

in the tumor.

Recurrence dynamics and tumor composition

Next, we computationally investigate the relationship

between the timing of cancer recurrence and the composi-

tion of the relapsed tumor. The time of cancer recurrence

during therapy represents a measure of the overall survival

benefit of therapy. In addition, the size of the tumor at the

time of recurrence as well as the timing of recurrence may

vary between patients. Stochasticity in the time of recur-

rence may arise due to variability in the time of emergence

of resistant mutants, the fitness of the mutant clones, and

the growth dynamics of mutant clones once established. In

this section, we are interested in the following question:

can we learn clinically useful information about the nature

of recurrent tumors, based on clinically observable quanti-

ties such as timing of a patient’s recurrence and the size of

the tumor at recurrence? For example, intuitive assump-

tions might be that patients who experience later than nor-

mal recurrence harbor more indolent resistant clones with
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lower fitnesses or that a smaller tumor size at recurrence

signifies a less diverse relapsed tumor population.

To investigate this, we consider a tumor consisting ini-

tially of sensitive cells, producing resistant mutants with

net growth rate drawn from a uniform distribution. We

then study statistical correlations between recurrence tim-

ing and the diversity of the recurrent tumor. We first con-

sider two stochastic times important to cancer recurrence:

(i) the time at which the total population size stops declin-

ing and begins to increase, which we denote as the ‘turn-

around time’, and (ii) the first time at which the resistant

population becomes dominant in the tumor, which we

denote as the ‘crossover time’. The turnaround time may

be thought of as approximately observable in the clinic,

since it is the time at which disease progression is detect-

able via serial tumor scans. The crossover time is not obser-

vable but may be clinically relevant since it can be used to

inform optimal times to switch therapies and target

another subpopulation within the tumor. Figure 5 shows

scatterplots demonstrating that these two stochastic times

are strongly correlated. In the following, we utilized just

one of these times, the crossover time, as a temporal mar-

ker of tumor recurrence to investigate correlations with

diversity measures of the tumor. This correlation between

turnaround and crossover time is robust to changes in key

model parameters such as a, which controls the balance

between mutation rate and initial tumor size. Thus, in the

following investigations, for simplicity we will utilize the

crossover time as the marker of recurrence timing.

Recurrence timing as a predictor of tumor composition

We first investigate the relationship between recurrence

timing and the composition of relapsed tumors. To this

end, we calculate diversity measurements of the relapsed

tumor (e.g., species richness, Simpson’s Index, Shannon

diversity) and study the correlations of these measures with

recurrence times. To account for a variety of sources of var-

iability in the resistant cell population, we consider a wide

spectrum of mutation rates. As we will demonstrate, the

system behavior is strongly dependent on this key parame-

ter.

Figure 6 exhibits the relationship between the cross-

over time and the aggressiveness of the relapsed tumor,

as indicated by the average growth rate of the resistant

cell population, taken at the time when the total tumor
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size has rebounded to 10% beyond original size of the

sensitive tumor. We observe (left panel) that at low val-

ues of a, which indicates a high mutation rate relative

to the tumor size, there is no significant correlation

between aggressiveness and recurrence time (correlation

coefficient of �0.04). Interestingly, there appears to be a

qualitative shift in system behavior at high values of a
(middle panel), where relapsed tumor aggressiveness is

strongly negatively correlated (coefficient of �0.7) to

recurrence time. In this regime, late recurrence is indica-

tive of a more indolent tumor on average. Studying this

in more detail, we consider a spectrum of mutation

rates by varying a between 0 and 1 (right panel). We

observe a strong dependence of the correlation coeffi-

cient on this parameter. In particular, within the regime

of high a the recurrence time is a good predictor of

tumor aggressiveness. For low to moderate values of a,
there appears to be little value in using recurrence time

to predict relapse growth rate.

The relationship between recurrence timing and the

diversity of the relapsed tumor exhibits a similar shift in

behavior as a is varied. For example, Fig. 7 (left) exhibits a

strong negative correlation between the species richness

(number of distinct genotypes) of the relapsed tumor and

the crossover time, for a=0.3. In this case, tumors that

recur later than average tend to be more homogeneous

than those that recur early. This anticorrelation is also

reflected in investigations of the relationship between

recurrence time and other measures such as Shannon

diversity and Simpson’s Index (data not shown). As we

increase a, we once again observe a qualitative shift in sys-

tem behavior, as the correlation between recurrence time

and diversity is lost at high a values (see Fig. 7 right panel).

Thus, the crossover time is a good predictor of relapsed

tumor diversity in the low to moderate a regime, but not in

the regime of high a.

We next explore the mechanisms causing these observed

correlations between recurrence timing, tumor diversity,

and aggressiveness. In the low a regime, we observe that

later recurrence is associated with more homogeneous

relapsed tumors, but not associated with tumor aggressive-

ness. To explain the lack of correlation with tumor aggres-

siveness, we note that in this regime the mutation

production level is high. Thus, it is likely that mutants with

near-maximal fitness are produced, and there will be little

variation in the average fitness of relapsed tumors between

patients. Thus, in this regime, variation in recurrence tim-

ing is not driven by differences in tumor aggressiveness. To

explain the observed correlation between diversity and

recurrence time, we first consider the hypothesis that late-

recurring tumors are a result of a lower than normal num-

ber of resistant mutants produced, hence leading to lower

diversity in the relapse population. Interestingly, an investi-

gation of the relationship between the total number of

mutants produced and the recurrence time reveals no such

correlation. We next investigate the time at which mutants

are produced in the population and find that while there is

little correlation between recurrence time and the average

time of mutant production, there does exist a correlation

with the time of production of the surviving mutants in the

recurrent population (see Fig. 8 left panel). Since there is

relatively little correlation between the number and average

time of mutants produced from the sensitive cell popula-

tion, this indicates that late recurrence occurs due to the

death of resistant mutants produced early in the temporal

history of treatment.

In contrast, in regimes of high a, late recurrence timing

is strongly associated with lower tumor aggressiveness.

Here, recurrence timing is not strongly correlated with

tumor diversity, and variation in recurrence timing is dri-

ven by differences in fitness of the mutants produced,

rather than in the survival of mutants. To explain these

2350 2400 2450 2500 2550 2600
2.78

2.79

2.8

2.81

2.82

2.83

2.84

2.85

2.86
x 10−3 x 10−3

Crossover time

A
ve

ra
ge

 fi
tn

es
s 

of
 r

el
ap

se
d 

tu
m

or

4000 5000 6000 7000 8000 9000 10 000 11 000 12 000
2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

Crossover time

A
ve

ra
ge

 fi
tn

es
s 

of
 r

el
ap

se
d 

tu
m

or

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

α

C
or

r(
av

g 
fit

ne
ss

, c
ro

ss
ov

er
)

Figure 6 Correlations between the crossover time and the aggressiveness of relapsed tumor. Left: low a case: a=0.3, correlation coefficient �0.04,
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observations, we note that in this regime, mutation pro-

duction is rare and the fitness of relapsed tumors can vary

significantly between patients. Therefore, variability in

recurrence time is driven by these differences in fitness,

resulting in a strong correlation between late recurrence

and lower average fitness. To further support this conclu-

sion, we note that the correlation between the crossover

time and the fitness of the most aggressive clone is strong

(�0.66) in the high a regime, while it is negligible (�0.03)

in the low a regime. The strong effect of fitness variation

on recurrence timing in this regime dominates any effects

from stochasticity in survival of these mutants; hence no

correlation between diversity and recurrence timing is

observed.

To summarize, we have observed that as mutation rates

are increased, there is a qualitative shift in behavior reveal-

ing two distinct regimes. In the regime of low or moderate

a, the mutant production level is high enough to regularly

generate maximally fit mutants. Thus, variability in recur-

rence timing is more highly associated with demographic
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stochasticity, or differences in survival, of the mutants pro-

duced rather than differences in the production of mutants.

In the regime of high a, there is significant variation in the

fitness of resistant mutants produced, which strongly influ-

ences recurrence timing. Here, variability in recurrence

timing is associated with differences in mutant production

rather than survival. Lastly, we note that the size of the

tumor at the time of recurrence is strongly correlated with

the timing of recurrence (see Fig. 8 right panel). Thus,

tumor size at recurrence provides similar predictive value

for relapsed tumor aggressiveness and diversity, as seen in

Fig. 9.

Preexisting resistance

We next study the impact of preexisting resistance on the

correlations observed in this section. In Model section, we

determined analytically that for values of x less than 1�a,
there will be little impact of preexisting resistance on the

relapse dynamics, whereas for x greater than 1�a, the

relapse tumor will be driven by the preexisting clone. Here,

we study the correlation between recurrence time and aver-

age fitness of the relapse tumor for varying levels of preex-

isting resistance and find that the behavior is consistent

with results of our earlier analysis. In particular, recall that

in the case where a=0.3 and the initial population of

n ¼ 105 sensitive cells, the correlation coefficient between

crossover time and species richness is �0.04 (Fig. 7). If we

now include a small population of preexisting resistant cell

(x=0.3<1�a), the correlation coefficient is �0.04, identical

to the case of no preexisting resistance. However, if we

consider a larger preexisting resistant population

(x=0.8>1�a), the correlation coefficient changes signifi-

cantly to �0.65. This threshold level is dependent on the

parameter controlling the balance between mutation rate

and initial tumor size, a. As this parameter may change

between tumor types, therapies, and individual patients, it

follows that the threshold frequency determining the

impact of preexisting resistance can vary as well. In other

words, the same preexisting resistance frequency of x%

may have negligible effects in one tumor type but strongly

impact recurrence dynamics in another tumor type.

Connections to clinical data

There have been several clinical studies suggesting that

poor prognosis of patients with relapsed disease may be

correlated with larger initial tumor size (Port et al. 2003;

Mery et al. 2005; Wang et al. 2009). We next utilized our

model to investigate this phenomenon. Although the distri-

butions of in vivo growth rate parameters for sensitive and

resistant cells are generally not available, we are still able to

investigate whether these qualitative correlations are pre-

dicted by the model by varying parameters. In particular,

we first vary the initial population size and study a ‘survival

time’, which is defined as the time at which the relapsed

tumor reaches twice the initial size (see Fig. 10). We

observe that as the initial tumor size increases, the survival

time decreases significantly. If we defined the survival time

as the time until the relapsed tumor reaches a fixed thresh-

old size, this effect would be even more significant. Thus,

we find that, consistent with the trend observed in clinical

studies, a larger initial tumor size is correlated with a

poorer prognosis.

Discussion

In this work, we have investigated a model of diversity in

relapsed tumors driven by a spectrum of drug-resistance

mutations. In particular, we introduced a stochastic

branching process model in which an initially declining

population can escape certain extinction via the production

of mutants whose fitness is drawn at random from a muta-

tional fitness landscape. Using this model, we first applied

analytical tools to characterize rebound growth kinetics of

the tumor during recurrence. We derived the explicit form
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of the dependence of the growth kinetics of this population

on the initial starting tumor size, mutational fitness land-

scape, drug response, mutation rate, and growth rates of

the sensitive population. In particular, we observed that the

exponential growth is dominated by the fittest possible

mutant, but there is a correction of log n to this growth

rate due to the waiting time associated with producing a

maximally fit mutant.

We next studied the composition of the relapsed tumor

under this model, utilizing ecological measures of diversity

such as species richness. We found that while the rebound

growth kinetics depend on the mutational fitness landscape

only through its value at its endpoint, the diversity of the

relapse tumor depends strongly on the full shape of this

landscape. We demonstrated that theoretical estimates of

the asymptotic species richness matched the asymptotics of

the simulated extant species richness in the model. Using

these estimates, we demonstrated the variability in asymp-

totic species richness of the tumor associated with varying

the shape parameters of the mutational fitness distribution.

We also computationally investigated the correlations

between relapsed tumor diversity and the timing of cancer

recurrence. We found that when the mutation rate is high

relative to the initial population size, stochasticity in recur-

rence timing is driven mainly by the random growth and

survival of small resistant populations, rather than variabil-

ity in production of resistance from the sensitive popula-

tion. Furthermore, late recurrence times are strongly

associated with more homogeneous relapse tumors, while

early recurrence times are strongly associated with high lev-

els of diversity. In this regime, recurrence timing is not

associated with the aggressiveness of the recurrent tumor.

In contrast, when the mutation rate is low relative to the

initial population size, stochasticity in recurrence timing is

driven more by variability in the fitness of resistant mutants

produced, rather than their survival. In this regime, a later

recurrence time is strongly associated with more indolent

tumors, and not associated with the diversity of the

relapsed tumor.

The existence of different paradigms of behavior suggests

that determining the parameter regime relevant for specific

tumor types and resistance mechanisms (e.g., point muta-

tions, epigenetic alterations, amplifications) is an impor-

tant factor in utilizing recurrence time or size of the tumor

at relapse as predictive tools for estimating the aggressive-

ness or diversity of relapsed tumors. For example, consider

the scenario of emergence of resistance to the tyrosine

kinase inhibitor erlotinib during treatment of non-small

cell lung cancer (NSCLC). Here, we estimate that the size

of a NSCLC tumor lies in the range 108�10 (where a 1 cm3

tumor is approximately 109 cells; Talmadge 2007). The

T790M point mutation in the EGFR kinase domain has

been implicated in the development of resistance to this

drug (Pao et al. 2004). If we assume an initial population

size of 109, and consider relapse due to point mutations

occurring at an estimated rate of 10�7 or 10�8, we are likely

to be in a high a regime. Thus, we would expect the recur-

rence time (or tumor size at recurrence) to be indicative of

the aggressiveness of the tumor. Although we are not aware

of any clinical studies of this nature in NSCLC, this phe-

nomenon has been observed in a glial brain tumor study,

which concluded that a decreased time to tumor recurrence

is associated with a more aggressive phenotype, as indicated

by higher levels of hypoxia detected (Evans and et al.

2004). However, in a tumor type where alterations causing

a resistant phenotype occur at a higher rate (e.g., in the

presence of chromosomal instability), we may expect

behavior in the low a regime, where no correlation exists

between tumor size at recurrence and aggressiveness. This

may be the case, for example, in the case of chronic mye-

loid leukemia where mutation rates are elevated by the

BCR-ABL mutation or in colon carcinogenesis where

somatic deletions in simple repeat sequences have been

shown to increase mutation rates in these tumors (Ionov

et al. 1993).

We also considered the impact of heterogeneity of the

initial population on these findings. In particular, we first

studied the impact of preexisting resistant cells on recur-

rence dynamics. We analytically derived simple conditions

on the relationship between the initial size, mutation rate,

and preexisting resistant population size that can be used

to determine whether preexisting resistance plays a signifi-

cant role in the relapsed tumor. Although the initial fre-

quency of resistant cells can be difficult to determine

clinically, especially in cases where the mechanism of resis-

tance is unknown, our results could be used to help deter-
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Figure 10 Left: average survival time as a function of initial tumor size.
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mine the presence or absence of a substantial clone of pre-

existing resistance based on clinical observations. For

example, we have shown that in the low a regime, if the ini-

tial population of resistant cells is negligible, there should

be no correlation between the size of the tumor at relapse

(or recurrence time) and the aggressiveness of the tumor.

Thus, if clinical observations do reveal a strong correlation

between tumor size at recurrence and aggressiveness, this

may suggest that a substantial preexisting resistant popula-

tion was present at the start of therapy. In addition, we

noted that the threshold level for determining the impact

of preexisting resistance on recurrence dynamics is strongly

dependent on a, the parameter controlling the balance

between mutation rate and initial tumor size. This parame-

ter may vary significantly between tumor types, therapies,

and individual patients. Therefore, the same level of preex-

isting resistance may have negligible effects in one tumor

type or individual but strongly impact recurrence dynamics

in another.

These findings also provide us with some insight into the

clinical treatment and prognosis of relapsed or recurrent

tumors. For example, if certain tumor types are known to

be in the low a regime, patients who progress rapidly after

an initial response to therapy may benefit more from com-

bination therapies to combat high levels of heterogeneity in

their recurrent tumors, while patients who progress late

can be expected to harbor less clones. Also, for patients

whose tumor types are known to be in a high a regime, a

late relapse can be given a better prognosis from the time

of recurrence. Furthermore, a detailed quantitative under-

standing of how initial tumor size/composition, mutation

rates, and growth kinetics conspire to drive recurrence

dynamics, and the composition of relapsed tumors can be

eventually utilized to design treatment schedules tailored

according to patient, tumor type and size, and drug. How-

ever, to bridge the gap between these theoretical predic-

tions and clinical recommendations, substantial more

effort must be made in (i) experimental identification of

model parameters (which would identify the relevant

regime for each tumor type and drug combinations) and

(ii) model validation through experiments and detailed

clinical data analysis of tumor evolution in vivo. In the fol-

lowing, we discuss the recent development of novel experi-

mental techniques that may be used to carry out these

goals.

Our studies have quantified the impact of the mutational

fitness landscape on the composition of recurrent tumors

and underscore the importance of experimental efforts to

quantify mutation rates and the distribution of random fit-

ness effects of mutations in cancer. Quantification of these

parameters has been largely elusive due to experimental

limitations, despite our recognition of their importance in

understanding tumor evolution. However, currently many

single-cell analysis platforms are being developed to quan-

tify the heterogeneity in cell populations. These technolo-

gies include microfluidics systems, such as the microscale

cantilever described in (Son et al. 2012), which is capable

of measuring single-cell mass changes as a function of cell

cycle progression, and high-content automated imaging

systems, which are being used to quantify phenotypic vari-

ability (i.e., growth rate, migration, etc.) between individ-

ual cells (Quaranta et al. 2009). These novel and powerful

experimental techniques can be utilized to determine fit-

ness distributions of growth rate changes conferred by spe-

cific mutations under a variety of environmental

conditions. The availability of such data in the future will

be instrumental in making clinical predictions using evolu-

tionary models of tumor progression.

Clinical and experimental validation of model predic-

tions of relapsed tumor composition over time and recur-

rence timing are important for correct calibration and

refinement of our model. However, intratumoral heteroge-

neity is traditionally difficult to dynamically quantify in

vivo. Recently, there has been renewed interest in the

impact of tumor heterogeneity and adaptation on patient

outcome (Gerlinger et al. 2012). For this reason, significant

emphasis has been placed on the development of tools to

globally assess the dynamic state of a tumor (i.e., changes

in tumor complexity and composition) rather than single

snapshots that fail to capture the overall tumor behavior.

Circulating tumor DNA, serum protein biomarkers, and

circulating tumor cells are a few of these promising nonin-

vasive diagnostic tools being used to monitor disease pro-

gression (Taniguchi et al. 2011; van de Stolpe et al. 2011).

A recent study by Diaz et al. (2012) demonstrated the util-

ity of circulating tumor DNA in identifying and tracking

the levels of rare mutant KRAS alleles throughout the

course of treatment in 28 colorectal cancer patients using

serial serum sampling. Thus, noninvasive techniques for

the quantification of the evolution of heterogeneous tumor

cell populations over time are now becoming more widely

available.

Ultimately, tumors are complex adaptive systems that

should not be evaluated as static objects. Our evolution-

ary modeling has provided insights into the factors driv-

ing the timing and composition of recurrent tumors and

how clinically observable factors such as recurrence time

or size may reveal useful information about the compo-

sition of relapsed tumors. In conjunction with recent

novel experimental advancements in single-cell profiling

and dynamic tumor profiling, we believe these results

may contribute to a better understanding of tumor

recurrence and eventually help in guiding treatment

decisions in the clinic.
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