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Abstract: We explore the use of diffuse optical tomography (DOT)

for the recovery of 3D tubular shapes representing vascular structures
in breast tissue. Using a parametric level set method (PaLS) our method
incorporates the connectedness of vascular structures in breast tissue to
reconstruct shape and absorption values from severely limited data sets.
The approach is based on a decomposition of the unknown structure into
a series of two dimensional slices. Using a simplified physical model that
ignores 3D effects of the complete structure, we develop a novel inter-slice
regularization strategy to obtain global regularity. We report on simulated
and experimental reconstructions using realistic optical contrasts where our
method provides a more accurate estimate compared to an unregularized
approach and a pixel based reconstruction.
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1. Introduction

A wide range of applied imaging problems are concerned with the determination of a three-
dimensional (3D) structure in a larger field of regard. For example, in the context of medical
imaging, there is great interest of estimating vascular structures using non-ionizing modalities
such as diffuse optical tomography(DOT) [1, 19]. Vessels in breast tissue are predominantly
tubular structures and recovering structure and absorption values of these vessels give important
information useful for breast cancer detection and determining oxygenation of the breast [1, 6].
Considering the geometry of the breast and limitations of optical modalities, reconstruction
algorithms are required to handle severely limited data sets, where very few detectors are used
for each source location. These challenges need to be addressed, especially considering the
move of DOT to a clinical setting where data obtained from multiple patients are restricted by
limited sets of source-detector pairs [1, 3, 10].

Diffuse optical tomographic image reconstruction is known to be a challenging inverse prob-
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lem. The physics involved with the transport of photons through biological tissue, along with
the fact that traditional measurement geometries are limited in the number of data points ac-
quired makes the problem ill-posed, resulting in reconstructions that are sensitive to noise and
un-modeled effects. Additionally, the nonlinear relationship between the parameters of interest
and the measured data create significant challenges for DOT. The ill-posedness requires expen-
sive regularization schemes or constraints on the optimization problem, while the non-linearity
is traditionally addressed with linear approximations or computationally intensive non-linear
forward models.

Traditionally, ill-posedness of the DOT problem has been addressed by posing image forma-
tion as the solution to an optimization problem. In this context, regularization schemes [2,4,16]
are used to dampen high frequency artifacts in the recovered image. Methods such as Tikhonov
and total variation regularization have been used along with L-curve methods or general cross
validation to choose optimal parameters for successful regularization. Another approach is to
increase the amount of data used to solve the problem. Our previous work has shown the benefit
of employing hyperspectral information for accurate image recovery [12]. The non-linearity of
the problem is usually dealt with by designing highly accurate numerical models, often involv-
ing finite element or finite difference methods. These approaches, although accurate, tend to
impose a high computational burden, especially when the imaging moves towards the recovery
of 3D structures of absorption or chromophore concentration in the breast.

In this paper we expand on our previous work of [15] where we introduced a shape-based
approach based on a parametric level (PaLS) formulation for the image recovery. In that paper,
under the Born approximation we assumed the absorption and reduced scattering coefficient to
be known in the background, and estimated chromophore concentrations and diffusion prop-
erties of a compactly supported object of interest. A basis function expansion was used to
provide a low order representation of the level set function and yielded accurate results for a
highly ill-posed inverse problem. The method in [15] required no explicit regularization, and
the low order nature of the model was tractable to Newton-type inversion algorithms known to
converge more rapidly than gradient based schemes.

An alternative approach to shape reconstruction is presented in [5]. In this paper the authors
represent a 3D object by a collection of vertically stacked unit height cylinders, which they
refer to agprimitives. The cross sectional density of each primitive, y) is represented as a
function of a position vector and a vector of shape parametgrsSpecifically, the function
f(r,y) is the indicator on an elliptical support where the shape of each primitive is defined
by a parameter vector that holds the radius of the ellipse, the ratio of its semi-axes and the
orientation angle between its semi-axes. Under this model, each object primitive is centered
at a point, which corresponds to the vertical positioning of the center axis for that primitive.
However, since this model was developed for generalized cylinders it is most effective when
the objects are modeled as such [5].

Inspired by [5], we introduce a new, flexible approach to the modeling and estimation of 3D
shapes. We define a 3D object using a set of 2D shapes, which we also refer to as primitives [5].
Our model defines each primitive as a cross-section, an infinitesimally thin area, whose struc-
ture is defined by a vector of parameters that consist of a collection of PaLS basis functions
defined by their center locations, weighting factors and axis length, or dilation. The overall 3D
object structure is defined by “stacking” the primitive images together, creating a parametrized
approximation to a 3D object. Specifically, in 3D Cartesian coordinates (denoted Yy z),
if zis assumed to correspond to the “vertical”, then each PaLS primitive resides-im plane.

This takes advantage of the tubular nature of vessels found in breast tissue [6]. The reconstruc-
tion algorithm is capable of “deactivating” any unnecessary PalLS basis functions and thereby
discovering the required number of active and passive primitives to effectively reconstruct the
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Fig. 1. The setup of sources and detectors for simulation reconstructions. Same orientation
of axes is used for experimental data. The aggtepresents the angle between the axis of
the inclusion, along in the figure, and the scanning direction, alorig the figure.

object’s shape structure. As such, the model can effectively image multiple spatially separate
anomalies, without previously defining the number of anomalous regions. Correlating adjacent
slices we implement a regularization approach to augment the optimization method with a cost
term associated with the assumed linear relationship between adjacent primitives. The source
detector setup used for the purpose of this paper relates to an optical mammography device that
we are currently designing.

The remainder of this work is organized as follows. Section 2 is devoted to a description of
the forward model of the problem. Section 3 details the inverse problem and iterative technique
we employ for the optimization problem. Image recovery method is discussed in Section 4
while reconstruction results using simulated and experimental data are detailed and presented
in Sections 5, 6, and 7 respectively.

2. Forward problem

A 3D illustration of the basic sensing geometry for the tomography problem we consider is de-
picted in Fig. 1. In this setup, each source is scanned in tandem with detectors avexibe
acquiring data in slices along tge@xis, where detectors are restricted to the sameplane as
the source. The medium is considered to consist of a nominal and generally homogeneous back-
ground and a collection of localized structures such as blood vessels in our application. Taking
advantage of this arrangement the forward model is simplified by employing a linearization of
the forward model adapted to the problem of recovering 2D slice information. Linear approxi-
mations used in DOT have been proven to produce reasonable good images in cases where the
variation in optical properties within the medium is relatively small, which is the scenario often
encountered in breast imaging [15, 28].

For our specific application of DOT, we implement a diffusion approximation to the radiative
transport equation to model light propagation in highly scattering medium. This is given by

0
2, VHa(r) _ v
(D +- )q:(r)_ =0 @)
where®(r) is the photon fluence at positiondue to light injected into the mediuna,is the
electromagnetic propagation velocity in the mediut(r) is the spatially varying absorption
coefficient, andS(r) = o(r) represents a point source. LasByis the diffusion coefficient,
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given byD = v/(3us) wherep is the reduced scattering coefficient. Here we consider uniform
scattering properties that mimic those of breast tissue, hence we assulesticanstant with
respect to the spatial variabie

Under the Born (single scatter) model, we decompose the absorpflpinto a constant
background absorption,, and a spatially varying perturbatidxua(r). This entails defining
the fluence as the sum of the incident fie®d(r), and a scattered fluenc®{(r). To obtain a
linear relationship between the measurements and the absorption concentrations, we subtract
Eqg. (1) from the perturbed version which leaves us with an equation for the scattered fluence

(0% +KGJ@°(r) = —K(r)(r) @)

wherek3 = —Va /D andAk?(r) = (v/D)Apa(r). For a wide variety of unbounded and bounded
geometries, the Green’s functio@{(r,r’), for the operator on the left hand side of Eq. (2) can
be obtained [20]. Therefore we write Eq. (2) as

®S(ry) ~ /G(rd,r’)dni(r’,rs)Aua(r’)dr’ A3)

whereAk? = v/DAu, in Eqg. (2),rq is the location of the detector ari}(r’,rs) denotes the
incident field at positiom and due to a source locatedrat

In order to approximate a 3D tubular structure using the model described in Eqg. (3) we aim
to reconstruct slices of a 3D medium and combine them together to estimate the underlying
geometry. The physical setup is described in Fig. 1, where the source and detector are moved
in tandem along the axis, yieldingK scans along thg axis. Using our forward model we
definec, € R\ as the vector of discretizeg, associated with the™" slice in the rectangular
region, whereN, is number of pixels in each slice image, a®d the data collected from
the corresponding slice. Using this notation we can write the forward model for the whole
rectangular region in matrix vector notation as

CD? K1 0 0 C1

CDS 0 Ky ... 0 C2

=1 ... .| & ®*=Kc (4)
(-Dﬁ 0 0 ... Kk Ck

where the(m, )" element of thék represents thei" source-detector pair and pixel in
thek!" slice of the 3D medium. Assuming that for a given experimdégtsource-detector pairs
are used for alK slices then ifN, is the number of pixels in each slice the dimensions of the
whole matrixK is NsgK x NpK.

It should be noted that in our model of Eq. (4), each slice reconstruction ignores the 3D
effects of the complete structure, where the primitive in each slice is assumed to be invariant
along they-axis. This has a significant impact on the accuracy of the forward model where “out-
of-plane” effects on the photon migration from the overall tubular structure are not modeled by
the forward model. Our method, detailed in Sections 3 and 4, of parameterizing the shape and
regularization is able to recover accurate 3D structures in spite of this, even with limited data
sets. Additionally this approach is easily expandable, by filling in the off-diagonal elements of
K which will be considered in future developments discussed in Section 8.

3. Parametric level-set method

To counter the ill-posedness of the DOT problem we employ a Parametric Level-Set Method
(PaLS). Expanding on our previous work in [15] for each slice in the 3D medium we represent
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the domain of the tumor & C .#, where.Z represents the homogeneous background which
the primitive is located in, shown in Fig. 2(a).
We then define the support of the anomaly with a characteristic function, which describes the

shape as
)1 if(xy) €Q,
X(y) = {o if (xy) € 7\Q. ®)

Using x(x,y) we then represent each slice image to be reconstructed as

Gk(X,Y) = Xk (X,Y) +[1— X, (X, y)]cp (6)

wherek = 1,2 ... K. For the purpose of reconstructing absorption concentration the unknown
value in this formulation is the constant concentration values of the primifyeand back-
ground vaIua:E takes the value of the background absorpiign

The characteristic functiog(x,y) is defined to be the level set of a Lipschitz continuous
object functiond : .# — R such thaty' > 1in Q(x,y), 0 < 1in #\Q and'(x,y) =1in Q.
Using &'(x,y), x(x,y) is written as

X(xy)=H(o(r,[k,B]) - 1) (7)

whereH is the step function where in practice we use smooth approximations of the step func-
tion and its derivative, the delta function [21].

The object functior?(x,y) is represented parametrically, so instead of using a dense collec-
tion of pixel or voxel values [22], we represent it by using basis functions

L
o(r,[k,Bl) = ZKilM(Bin—riH) ©)

wherek;’s are the weight coefficients wheredigx,y) are the functions which belong to the
basis set of”? = {yn, Y»,..., Yy }. Possible choices for the&” basis set include polynomial or
radial basis functions, where for the purpose of this paper we use compactly supported radial
basis function [18, 27]. In Eq. (& defines the dilation factor of the radial basis function.

In our previous work, we reported results using the PaLS method on a fixed grid of basis
functions. In that framework the goal was to strictly estimate the weightof each basis
function keeping their position fixed. To ensure the adaptability of the method to different
shapes we now allow each basis function to “roam” within the imaging medium. As discussed
in [15] the number of basis functionk, used in a fixed grid framework directly affected the
results, and sometimes resulted in reconstruction errors. By removing the fixed grid, and instead
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estimating the centers of the basis functions allows for greater accuracy and adaptability for the
method We represent the center point of ffebasis function as; = (x;,y;).

In this new formulation, all the parameters of the model are gathered in one @cter
(2,2, (KT, k)T, (BT, -, BR)T, (rT,....,rk)T] whereK represents the number of slices,
whereL basis functions reside giving = [K1,...,kL] T, By = [B1, -, BL]T andrg = [ri,...,r.]".

Now our forward model in Eq. (4) can be expressed as

S =K(8) =Kc(0) ©)

This parameterization of the forward model contains far fewer unknowns than a pixel based
method and allows for high adaptability with the movable basis functions. As an example,
a single image with 4544 pixels is reconstructed using 21 basis functions, requiring only 85
unknowns.

We denote the total number of 2D PaLS primitiveskyand the plane in which thig"
primitive resides ay = yx, wherek = 1,...,K and the number of basis functions byn each
plane wheré =1,...,L. For simplicity, we assume that the primitives are equally spaced, though
this assumption can be easily relaxed. Thus far, our model only defines the obifepbaits
on they-axis, where in essence the primitives may be interpreted as cross section of the overall
3D object. The object description at all other points onytlais is recovered independently,
and then combined to represent the 3D structure.

4. Imagereconstruction

The image reconstruction method, recovegrigpm @3, is formed as a regularized optimization
problem of the form

6 = argmin||W (®°—Kc(6)[3+a|lL 6> (10)

whereW represents the structure of the noise corrupting the data. The first term in Eq. (10)
requires that the estimated valueait consistent with the observed measuremerbofThe

second term of Eq. (10) is a regularization term that correlates the parameter vector between
slices. Considering the prior information of tubular structure anatomy of breast tissues, it en-
courages correlating reconstructions between slices in the cost functional. Therefore the second
term Eq. (10) ensures that a reconstruction between slices will result in connected structures,
which provides better approximation of the structure than a unregularized function. We struc-
tureL to penalize the difference between similar parameters on adjacent primitives. That is to
say, we impose a penalty for the difference between cemteandr; 1 fori=1,.... K -1, the

value of absorptior;? and weightk; so thatL is given by.

L=Lg®lI (11)

Wherel is a diagonal matrix where number of diagonal elements are the same as number of
elements irf, andA @ B is the Kronecker product [13] & andB andL 4 is written as

1 -1 0 .. 0 O
01 -1 .. 0 0

La= |1 o = oo (12)
0 ... 0 1 -1 0
0 .. 0 0 1 -1

In order to demonstrate the effectiveness of our regularization method, we evaluate a tomo-
graphic reconstruction over a range of values for the regularization parametsio is varied
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the algorithm trades off the cost associated with the regularization penalty against the cost as-
sociatedwith the data. To select the optimal regularization parameter we employ the commonly
used L-curve method, detailed in Section 7 [7].

TheW matrix reflects the structure of the noise corrupting the data [9]. We employ a Gaus-
sian noise in which independent, zero mean Gaussian noise is assumed to corrupt each datum.
Letting 02 denote the variance of the noise corruptingrfiféelements ofp, W is constructed
as a diagonal matrix with I, the m" element along the diagonal. For the experimental and
simulated data the variance is calculated from

02 = Q(m)10~ 10", (13)

whereQ(m) corresponds to the photon count for each source-detector pair. The SNR for each
element of® is then calculated from

SNRy = 10log;o(Q(m)/+/Q(m)). (14)

In experimental data/Q(m) is the standard deviation of the Poisson noise distribution.
The minimization of the cost function is then achieved by the Levenberg-Marquardt algorithm.
For that purpose an error vectar,= [e], 1] is introduced where each term relates to the
corresponding term in Eqg. (10) given as

g1 = W(K(B)— (15)
Er = \/ELQ (16)

In order to employ the Levenberg-Marquardt algorithm, the calculation of the Jacobian ma-
trix J is required. The Jacobian contains derivatives @fith respect to each element in the
parameter vectof

0e(0)

a 0{0‘1‘, ...,Cﬁ,(K—{, "'7K-|£)T7(B-{7"'5[31K—)T7 (r-{a "'arE)T}

The solution is then obtained by updatigt each iteration a8""* = 8"+ h whereh is the
solution to the following linear system

(17)

(ATJ+phh=—-JTewithp >0 (18)

wherel is the identity matrix,p is the damping parameter affecting the size and direction of

h and found via and appropriate line search algorithm [23]. The stopping criteria used when
iterating Eq. (18) is the discrepancy principle [24], in that the iterations are stopped when the
norm of the residual has reached the noise level within a certain tolerance.

5. Simulation analysis

Simulations are done to demonstrate the benefit of combining simple 2D reconstructions of
more than one slice to approximate 3D structure. In this paper, simulated data are generated
using a standard finite difference discretization scheme for a rectangular box with dimensions
7 cmx 7 cm x 6.3 cm discretized into a 7% 71 x 64 grid. Two simulated phantoms are
created, phantom 1 with three cylinders placed close to the center, and phantom 2 with a single
branching structure. phantom 2 is used for preliminary testing of our method to recover branch-
ing cylinders, which are commonly found in vascular structures. Boundary conditions on the
source and detector planes are Robin type conditions, and Dirichlet conditions are applied the
sides of the box in the — x andz—y planes. The true geometries of phantoms 1 and 2 are
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Fig. 3. (a) Example L-curve used to select optiraalor the reconstruction in Fig. 7. (b)
Ground truth used to generate phantom 1, with multiple overlaying cylinders. (c¢) Ground
truth image used to generate phantom 2, with a single branching structure.

shown in Fig. 3(b) and (c), respectively. Each cylinder in the mediumpas= 0.04 cni !
where the background hag = 0.02, giving absorption contrast of 2:1, comparable to what is
found in a clinical setting [25]. Diffusion coefficient is assumed to be constant throughout the
medium and inclusion gt = 10.1 cn ! at 690 nm [26]. For the simulated data the Green’s
functions in (2) are obtained by computing the finite difference solution for each light source
position and detector for the homogeneous background.

The alignment of sources and detectors is the same as for the experimental setup shown in
Fig. 1. Two different cases are considered, to demonstrate the effect of limited data for our
method. In case 1 we use 2 detectors per source position and 26 source locations along each
slice for a total of only 52 measurements per slice. In case 2 we implement 10 detectors for each
source position, giving 260 source detector pairs for each slice. These two cases demonstrate
the effectiveness of our method even when working with severely limited data such as in case
1. We demonstrate reconstruction results for phantom 2 only using 10 detectors.

In order to obtain a quantitative measure of comparison between the actual and estimated
shapes and absorption values, we employ two performance metrics, as follows. Designated by
St the 0— 1 characteristic matrix corresponding to the estimated shapeS¥%hthe 0— 1
characteristic matrix corresponding to the actual object.Nyalenote the number of overall
voxels in the region of interest withdenoting thei" element ofS®st and S, Symmetric
Difference,dsg, is the fraction of entries i8°t where the corresponding entriesS#f! are not
equal. Mathematically, this is expressed as

1
dsg(S*, ) = N Y Liga s (19)
I

where 1, is the indicator function. Another metric to judge shape estimation the Dice coeffi-
cient,dgi, measures the similarity betwe&f™ andS*“ judge how well the concentrations are

located by computing
2|S*st N 2
i Sest Sact — 20
dl( 9 ) |Se5(‘+|sact| ( )
where a perfectly reconstructed image gidgs— 1 and failure giveslyi=0. Finally the Mean
Square ErrorMSE, measures how well the reconstructed structurecovers the true absorp-

tion values and shape computed by
lc—Cll2

MSE= ——=.
llcll2

(21)
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The symmetric distance is an important measure of the quality of reconstruction because it
measureshe overall quality of shape reconstruction, by penalizing errors in detecting object
voxels as background and similarly background voxels as object voxels. Symmetric difference
assigns an equal penalty to an erroneous voxel, irrespective of whether it is detected as back-
ground or object. An important limitation of the symmetric difference measure is that it does
not reflect well on how close the estimated absorption concentration value in the reconstructed
image is to the true value. The mean square error fills this gap by providing a measure on the
guantitative accuracy for each slices that measures both how well the shape and value of the
ALy is recovered.

As discussed in Section 1 our method constrains the image formation problem and reduces
the number of unknowns when compared to a traditional pixel-based approach. To demonstrate
the effectiveness of our approach we perform pixel-based reconstructions for the simulation
cases presented in Section 7. We employ a pixel-based optimization method using Levenberg-
Marquardt algorithm where we modify Eqg. (10) so that the regularization term takes the form
of traditional Tikhonov regularization, wheke= |. Tikhonov regularization is widely used for
image reconstruction for multiple imaging modalities and provides a suitable comparison for
our method [4, 16, 29].

6. Experimental analysis

10x cuboid 3x cuboid 3x cuboid 10x cuboid

Fig. 4. Calculated ground truth images for phantom anglgd-a9(° and¢ = 30° relative
to scanning direction along theaxis.

A silicon phantom was constructed in the shape of a 5 cm thick homogeneous slaf, with
0.16 cnmt and !, = 10.1 cn ! at 690 nm. Embedded in the slab are two absorbing cuboids,
each with a height and width of 1 cm and length of 4.5 cm, separated by 1.6 cm. The geometry of
the inclusions embedded in the phantom is shown in Fig. 4. In this experimental setup we utilize
analytical Green'’s functions for the forward model in Eq. (4). The cuboid inclusions have the
samey as the slab and their, is ten and three times higher than the background, respectively.
The 10xabsorption results in a highly absorbing rod, where we defime= 1.28 cnt ! for
ground truth comparison, where the 8uboid has\u, = 0.33 cnt 1. The 10 xabsorbing rod
has high absorption, mimicking the strong absorption of blood where theo@:s close to
realistic values for breast cancer. This experimental setup allows us to test our algorithm to
recover realistic tubular structures accurately even when highly absorbing areas, exceeding the
Born approximation limit, are present in the medium [8, 25].

Two different measurements are performed to test the robustness of the approach when in-
clusions are angled with respect to the scanning direction. The gnigldefined as the angle
between the direction of the cuboids and the scanning direction, as shown in Fig. 1. The first set
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is obtained where the inclusions are exactly perpendicular to the scanning direécto®0’°,

and a second set whege= 30°. These two setups are demonstrated in Fig. 4. The instrument
performs a two dimensional planar scan, with an illumination and detection fiber operating in
transmission geometry. For three different detector positions=af+1,0} cm a light source

is placed on the opposite side of the phantom using a 4 mm diameter fiber. For each scan 32
light sources are considered wittRdncrements resulting in 96 source-detector pairs for each
slice, where slices are space@ @m along they-axis. Using a Xenon arc lamp light source
emitting a power of 13 mW, optical data is then found by spatially sampling 25 poirfts/cm

at wavelengths from 650-900 nm. The light is collected by an optical fiber that delivers light
to a spectrograph (Model No. SP-150, Acton Research Corp., Acton, MA) with a 2 mm wide
slit entrance. The wavelengths are resolved by a cooled CCD Camera (Model No. DU420A-
BR-DD, Andor Technology, South Windsor, CT) giving a spectral sampling rate of 0-3.nm
Reconstructions are performed at a wavelength of 690 nm. Considering the geometry of the
phantom we use the Green'’s functions for slab geometry [14], computed by

_y Mt exP[‘/v‘eff PZ+(Z—Z$)2] eXp[—IJeff P2+(Z—Zr?1)2}
6M=75 Y { - ——— | (@2
4D £, P2+ (z—7n)? V0% + (z—7m)?

wherepest = \/Ha/(D/V) = \/3tapll , p = /X2 +Y2, 7, andz;, representhe negative and
positive sources used for calculation, respectively.

7. Results
7.1. Simulations

Reconstruction results from simulated phantom 1 are presented in Figs. 6, 7 using 2 detectors
and 10 detectors for each source location, respectively, and Fig. 9 shows reconstruction re-
sults for phantom 2 using 10 detectors. Examining the reconstructions visually and with the
error metrics presented in Table 1 it is evident that the impact of correlation regularization is
very important. Especially notable is where unregularized reconstruction, shown in Figs. 6(a)
and 7(a) recovers a structure with gaps, due to the fact that the connected nature of the tubular
structure is not being enforced. Additionally, as is made evident by the shape rdgtangdsg

the middle rod is recovered as a separate structure when the regularization is present. Recon-
struction results for the branching structure of phantom 2 is shown in Fig. 9 with corresponding
error metrics are shown in Table 1.

Pixel-based reconstruction using traditional Tikhonov regularization is shown in Fig. 5 for
both the 2 detector and 10 detector setup. It is evident both by visual inspection and error
metrics shown in Table 1 that the constrained model in PaLS and regularizing between slices
results in a far more accurate estimation of the structure. It should be noted that pixel based
reconstructions for DOT can be very accurate, however as mentioned above the work in this
paper presents results using a severely limited dataset. Pixel-based methods traditionally require
significant number of data points, resulting in the errors in the reconstruction shown here.

As mentioned in Section 4, to estimate a near optimal regularization parametey
implement the L-curve method. In this method, we generate a plot of|la@j(®) against
log(||W (K (8) — ®)||?) asa is varied. Fig. 6(a) depicts the reconstructed object winen0,
where no regularization is being applied. From visual observation as well as examining error
metrics defined in Section 5, it is clear that some degree of regularization is beneficial. The
L-curve plot for the reconstruction of the simulated phantom is shown in Fig. 3(a). Note the
encircled point on the curve denotes the “best” reconstruction given the data. The pammeter
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was obtained in a similar fashion in all our experiments. However, here in order to save space,
we have only demonstrated our results for a single case.

Representative slice image from the 10 detector reconstruction is shown in Fig. 8. Along
with the MSE it allows for visually judging the methods ability to recover the valuesLgf
As expected using the Born Approximation, the absorption values are underestimated, but these
results are encouraging, considering the limited data sets being employed, and how each slice
reconstruction is not modeled to incorporate effects from the total 3D structure.

These results are especially encouraging considering the method is able to estimate the struc-
ture even with a severely limited data set, shown in Fig. 6, where only 2 detectors are used for
each 26 source locations, and only a single wavelength is used. This demonstrates the ability
of the slice based PaLS method to accurately recover 3D tubular structures even with linear ap-
proximations and limited data sets. Additionally the PaLS method is able to recover branching
structures without decision making or prior information, by taking advantage of correlation in
between slices.

35 x
cm

(a) Pixel-based reconstruction using 2 detectars; 820
|

6.4 !

35 y 7
cm
(b) Pixel-based reconstruction using 10 detectars; 300

Fig. 5. Reconstruction results for a simulated data, phantom 1, with realistic optical con-
trast. Recovered absorption values Arg = 0.018 andApu, = 0.022, for Fig. (a) and (b),
respectively.

Table 1. Error metrics used to judge image reconstructions for simulated reconstructions.
[ Fig. | #detectors [ a [ dy [ dw[%] [ MSE

5(@) | 2(pixel-based) | 820 | 0.07 76 9.50
5(b) | 10(pixel-based)| 300 | 0.08 74 8.30
6(a) 2 0 0.43 11 1.20
6(b) 2 15 | 0.83 10 0.90
7(a) 10 0 0.57 12 1.10
7(b) 10 0.5 | 0.82 9 0.89

9 10 1.2 | 0.78 10 0.92
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(a) Image reconstruction using 2 detectars= 0
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(b) Image reconstruction using 2 detectars= 1.5

Fig. 6. Reconstruction results from simulated data, phantom 1, with realistic optical con-
trast, using 2 detectors for each source location. Recovered absorption valdgsg, are
0.015 andAp, = 0.019, for Fig. (a) and (b), respectively.

7.2. Experimental validation

Reconstruction results for relative absorption reconstructions are shown in Figs. 10 and 11
for inclusions angled at 90and 30, respectively. As demonstrated in simulations, including
correlation between adjacent slices greatly improves accuracy and allows for recovery of the
underlying structure. Examining the images along with the error metligsdsq and MSE

shown in Table 2 it is clear that this method allows for recovery of tubular structures in a re-
alistic breast phantom. It is notable that the 1@bsorbing inclusion is recovered as a larger
structure, whereas the 3cuboid is recovered close to its true shape with more accurate ab-
sorption value. This is demonstrated in an example slice image fa@r th80° case in Fig. 12.

This is expected due to the aforementioned limitations of the Born Approximation [17] but it

is interesting to see, that the higher absorbing structure does not dominate the optimization and
our method correctly locates and recovers thecdikoid. Although the recovered absorption
contrast does not improve greatly for the= 30° case, although shape is recovered much better
when regularization is introduced. For the 2@se improvements in both absorption values and
shape are evident and examining Fig. 11 shows clearly that we are able to recover structures
even though they are angled close to the scanning direction. The correlation term in Eq. (10)
is shown to be as important for experimental reconstructions as in simulations, both in error
metrics in Table 2 and visually, in Fig. 11(a). For both experimental sets, the primitive 3D PaLS
method resolves the location and the shape of the inclusion more accurately, which is verified
by all metrics. It should be noted in Table 2 thigt is computed strictly for regions where the
inclusions are present. This is due to the Dice coefficient not being a useful metric to judge
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(a) Image reconstruction using 10 detectors—= 0
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(b) Image reconstruction using 10 detectars= 0.5

Fig. 7. Reconstruction results from simulated data, phantom 1, with realistic optical con-
trast, using 10 detectors for each source location. Recovered absorption valigs are
0.021 andAug = 0.026, for Fig. (a) and (b), respectively.
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a

Fig. 8. (a) Slice reconstruction, shown on the bottom, located at y = 5 cm in Fig. 7(b),
compared to (b) ground truth, shown on top, demonstrating absorption perturldgtion,

reconstructions when the ground truth is an empty set image.

8. Conclusion

Using both simulations and experimental measurements we have shown that 3D tubular struc-
tures can be recovered by implementing a parametric primitive PaLS method by taking ad-
vantage of correlation of adjacent slices. Using an augmented cost function and optimizing
regularization results in better performance compared to pixel based and unregularized shape
based approach measured in terms of MSE and spatial localization as measured using the Dice
coefficient and Symmetric difference. This shows that even with implementing linear approx-
imation and using severely limited data sets, the underlying structures can be recovered with
accuracy.
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Fig. 9. Reconstruction results from simulated data, phantom 2, using 10 detectors for each
sourcelocation. Recovered absorption valuég, = 0.020.
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Fig. 10. Reconstruction results using experimental data and 3 detectors. Inclusions are an-
gled90r relative to scanning directio, = 12. Recovered absorption contrast is 2.75, slice
image shown in Fig. 12.

Table 2. Error metrics used to judge image reconstructions for experimental reconstruc-
tions.

[ Fig. [ ¢ [ a ] ds [ dsa[%] [ MSE |
10(@) | 90° | O | 0.23 8.6 0.99
10(b) | 90¢° | 12 | 0.55 6 0.97
11(a) | 30° | O | 0.31 13.6 1.10
11(b) | 30° | 80 | 0.65 10 0.98

Based on the results reported on in this paper we want to improve on this method by testing
it with more cases of silicon phantoms, as well as complicated multiple branching structures,
exploring how the effect of low absorption contrasts changes the recovery of structures. Fur-
thermore the plan is to develop system that combines optical mammography measurements
with depth information of vascular structures and the method presented here to serve as ini-
tial guesses for a full 3D non-linear reconstruction. Providing an accurate initial guess for a 3D
non-linear reconstruction would not only improve accuracy but significantly speed up computa-
tion time commonly found in those types of reconstructions. Additionally our method is readily
expandable to a model where interpolation functions can be applied to the primitives between
slices, whera™ order hold functions, sinc functions, or spines could be used to interpolate the
primitives to represent the 3D structures. Future work will also expand the algorithm to recover
images of multiple chromophore concentrations, as well as scattering amplitude. This can be
achieved with minor changes to our method, and has been previously demonstrated with the
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Fig. 11. Reconstruction results using experimental data and 3 detectors. Inclusions are an-
gled 30 relative to scanning directiom, = 80. Recovered absorption contrast is 2.30.
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Fig. 12. Slice reconstruction, shown on the right, located at y = 3 cm in Fig. 10, compared
to ground truth, shown on the left, demonstrating absorption contrast.
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PaLS method [15].

As discussed in Section 2 our model assumes that for each slice the primitive is invariant
along they-axis. This of course significantly affects the mismatch between the model and the
true scenario, but our method demonstrated that correlating the slice images and parameterizing
the reconstruction allows for accurate recovery of the vessel like structures. Future efforts will
examine the effect of computing the off diagonal elements of Eq. (4) where it would be see how
results would change if a certain segment alongythagis would be modeled in 3D. This would
physically represent stacking 3D slices with a certain thickness to recover a larger 3D structure
and examining reconstruction accuracy versus computational intensity is a natural progression
of our research.

Acknowledgments

We thank Geethika Weliwitigoda for help with initial testing of the algorithm and experimental
data. This research is supported by the National Institutes of Health grant RO1 CA154774.

#178747 - $15.00 USD  Received 26 Oct 2012; revised 21 Dec 2012; accepted 22 Dec 2012; published 17 Jan 2013
(C) 2013 OSA 1 February 2013/ Vol. 4, No. 2/ BIOMEDICAL OPTICS EXPRESS 286





