Skip to main content
. 2013 Feb;193(2):327–345. doi: 10.1534/genetics.112.143313

Table 1 . Prior density of marker effects, prior variance of marker effects, and suggested formulas for choosing hyperparameter values by model.

Model Prior variance Solution for scale/variance parameter
p(βj|ω) Hyperparameters Var(βj|ω)
Bayesian ridge regression
N(βj|0,σβ2) σβ2 σβ2 σβ2=h2σp2MSX
Bayesian LASSO
DE(βj|σ2,λ2) {σ2,λ2} 2σ2λ2 λ=2(1h2)h2MSX
BayesA
t(βj|d.f.β,Sβ) {d.f.β,Sβ} d.f.βSβ2d.f.β2 Sβ2=(d.f.β2)d.f.βh2σp2MSX
Spike–slab
π×N(βj|0,σβ2τ)+(1π)N(βj|0,σβ2),(τ>1) {π,σβ2,τ} σβ2×[1+π(1τ)τ] σβ2=[ττ+π(1τ)]h2σp2MSX
BayesC
π×1(βj=0)+(1π)N(βj|0,σβ2) {π,σβ2} σβ2×(1π) σβ2=1(1π)h2σp2MSX
BayesB
π×1(βj=0)+(1π)t(βj|d.f.β,Sβ) {π,d.f.β,Sβ} (1π)d.f.βSβ2d.f.β2 Sβ2=1(1π)(d.f.β2)d.f.βh2σp2MSX

MSx=n1i=1nj=1p(xijxj)2where xijε(0,1,2) represents number of copies of the allele coded as one at the jth (j = 1,…,p) locus of the ith (i = 1,…,n) individual, and xj is the average genotype at the jth marker.