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ABSTRACT The genomic prediction of phenotypes and breeding values in animals and plants has developed rapidly into its own research
field. Results of genomic prediction studies are often difficult to compare because data simulation varies, real or simulated data are not fully
described, and not all relevant results are reported. In addition, some new methods have been compared only in limited genetic
architectures, leading to potentially misleading conclusions. In this article we review simulation procedures, discuss validation and reporting
of results, and apply benchmark procedures for a variety of genomic prediction methods in simulated and real example data. Plant and
animal breeding programs are being transformed by the use of genomic data, which are becoming widely available and cost-effective to
predict genetic merit. A large number of genomic prediction studies have been published using both simulated and real data. The relative
novelty of this area of research has made the development of scientific conventions difficult with regard to description of the real data,
simulation of genomes, validation and reporting of results, and forward in time methods. In this review article we discuss the generation of
simulated genotype and phenotype data, using approaches such as the coalescent and forward in time simulation. We outline ways to
validate simulated data and genomic prediction results, including cross-validation. The accuracy and bias of genomic prediction are
highlighted as performance indicators that should be reported. We suggest that a measure of relatedness between the reference and
validation individuals be reported, as its impact on the accuracy of genomic prediction is substantial. A large number of methods were
compared in example simulated and real (pine and wheat) data sets, all of which are publicly available. In our limited simulations, most
methods performed similarly in traits with a large number of quantitative trait loci (QTL), whereas in traits with fewer QTL variable selection
did have some advantages. In the real data sets examined here all methods had very similar accuracies. We conclude that no single method
can serve as a benchmark for genomic prediction. We recommend comparing accuracy and bias of new methods to results from genomic
best linear prediction and a variable selection approach (e.g., BayesB), because, together, these methods are appropriate for a range of
genetic architectures. An accompanying article in this issue provides a comprehensive review of genomic prediction methods and discusses
a selection of topics related to application of genomic prediction in plants and animals.

GENOMIC information is transforming animal and plant
breeding (e.g., Dekkers and Hospital 2002; Bernardo

and Yu 2007; Goddard and Hayes 2009; Hayes et al.

2009a; Heffner et al. 2009; VanRaden et al. 2009a; Calus
2010; Crossa et al. 2010; Daetwyler et al. 2010a; Jannink
et al. 2010; Wolc et al. 2011). Genomic selection can in-
crease the rates of genetic gain through increased accuracy
of estimated breeding values, reduction of generation inter-
vals, and better utilization of available genetic resources
through genome-guided mate selection (e.g., Sonesson et al.
2010; Schierenbeck et al. 2011; Pryce et al. 2012b). However,
its implementation may be outpacing our understanding of
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the underlying biological and statistical mechanisms that
drive the short-, medium-, and long-term impact of genomic
selection. The body of research has grown substantially
since early descriptions of genomic prediction concepts
(Nejati-Javaremi et al. 1997; Visscher and Haley 1998;
Meuwissen et al. 2001). However, direct comparison of
much of this research is difficult because no uniform bench-
marks exist regarding the statistical method used, the design
of validation schemes, and the reporting of genomic predic-
tion results. This issue contains an accompanying review
article of the statistical methods available, which discusses
topics emerging in the empirical application of such methods
and provides a summary of lessons learned from simulations
and empirical studies (GS-CROSS Site /) (de los Campos
et al. 2012). In this article we review simulation methods,
discuss the validation and reporting of prediction perfor-
mance, recommend reporting guidelines, and report results
of the most common genomic prediction methods on some
example data.

Simulation of Genomes and Genetic Values

Both real and simulated genomic data have been used in
genomic prediction studies to investigate various aspects
such as the power of different analysis methods; comparison
of alternative genomic breeding programs; and exploration
of the dynamics of short-, medium-, and long-term genomic
selection. Real data offer the advantage of reflecting
complexity, whereas simulated data allow the researcher
to explore important aspects such as the genetic architecture
of the trait, number of markers used for analysis, and degree
of relatedness between the training and prediction popula-
tions and offer the possibility of evaluating some sources of
variability, such as drift, which cannot be assessed with most
real data. Real data come with limitations such being just
one, possibly nonrandom, sample of a population and
sample size, whereas simulations are limited by their
assumptions. Simulation is useful because it allows rapid
replicated testing of a wide range of hypotheses at low cost,
for example, the initial feasibility of genomic selection or
impact of the reference population size. It lends itself
particularly well to investigating long-term effects of selec-
tion, which are often infeasible using real experiments due
to time and cost requirements. However, the simulation of
genomes and causative mechanisms (genetic architectures)
in livestock and plant species is complex. There are many
different forms of genomic variability and a wide variety of
plausible population histories, as well as considerable un-
certainty about how mutation and recombination rates vary
and about the mode and distribution of gene action.
Therefore it is not possible to propose a single correct model
for simulating data. Thus, we review the three main genome
simulation methods used in the literature: resampling,
backward in time (coalescent) and forward in time. Fur-
thermore, validation strategies for simulated genomes and
the simulation of genetic values are discussed.

Simulation of genomes

Methods based on resampling (e.g., Marchini et al. 2005,
2007; Kizilkaya et al. 2010; MacLeod et al. 2010) sample
existing genome sequences or haplotypes for base individu-
als and generate the genomes present in a population, using
a real or simulated pedigree. These methods excel at retain-
ing allele frequency and linkage disequilibrium information
from existing sequences and haplotypes. In addition, the
simulation of allelic effects onto such known variants can
provide further insight into real data. They are limited in
their ability to introduce new genetic features (such as the
effects of natural selection) and new mutations (Peng and
Amos 2010), although one could choose existing haplotypes
as a base population and add further mutations or selection
pressures through many additional generations of mating.
When based on haplotypes derived from single-nucleotide
polymorphism (SNP) data, the sites that can be chosen to be
causative are limited to those that are on the original SNP
array, which are not a random subset of genomic sites. SNP
arrays suffer from ascertainment bias: they are often se-
lected to have intermediate allele frequencies to capture
maximum variance and genetic diversity between and with-
in breeds and lines (Van Tassell et al. 2008; Matukumalli
et al. 2009; Ramos et al. 2009; Groenen et al. 2011), they
may not have equal density on all chromosomes, and cur-
rent arrays do not fully track structural genetic variation
(e.g., insertions, deletions, copy number variants). Methods
based on resampling may become more important as more
and more individuals are sequenced, because the density of
sequence data will allow causative sites to be chosen from
the true distribution of variants, thereby avoiding SNP
ascertainment bias. While the ascertainment bias will be
alleviated when using resequencing data, frequency spectra
are still likely to deviate from the true distribution of var-
iants until many animals are sequenced. In addition, it is
unlikely that the frequency spectra and linkage disequilib-
rium relationships among causal variants will be identical to
that of all variants, so assumptions will also need to be made
with regard to these factors when using methods based on
resampling.

Methods based on coalescent theory, introduced by King-
man (1982, 2000), are widely used in backward in time
simulation models. They are sample based and provide an
efficient model for the evolution of a population of randomly
mating, neutral, haploid individuals (Marjoram and Wall
2006). In principle the coalescent works by identifying
and coalescing the common ancestors of a given sample of
unknown genotypes, using a stochastic process character-
ized by evolutionary properties such as mutation, recombi-
nation, and migration. This approach has been described by
Nagylaki (1989) as a generalization of Malecot’s identity by
descent to more than two genes (Kingman 2000). The co-
alescent first identifies the most recent common ancestor of
all individuals, running backward in time. It then runs for-
ward in time and assigns genetic information to individuals
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on the coalescent tree (Peng et al. 2007). Coalescent meth-
ods are efficient because they only carry out computations
for individuals that are related to the final sample. However,
they have a number of theoretical weaknesses. They are
based on a series of approximations and equilibrium assump-
tions that are supposed to work only for certain parameter
ranges (Wakeley 2005), such as low recombination and mu-
tation rates. The suitability of the coalescent method for
simulating genomes in livestock populations has been ques-
tioned recently by Woolliams and Combs (2012). They point
out that when the sample size and recombination fraction (i.e.,
simulating large genome segments) are large in comparison
to the effective population size (Ne), the coalescent “cannot
be justified as giving model data,” because the assumption
that the time between the coalescence of lineages is ex-
ponentially distributed no longer holds (Woolliams and
Combs 2012). Furthermore, while advances have been
made that allow simulation of selection under a coalescent
framework (Krone and Neuhauser 1997; Donnelly and
Kurtz 1999; Fearnhead 2003), these methods are still
not as flexible as forward in time simulation approaches.
Woolliams and Combs (2012) highlight this issue as being
of particular importance in livestock where selection is
likely to have been important during the evolution of
the populations that exist today. Further, the coalescent
can simulate only haplotypes and therefore not diploid
individuals; therefore, modeling selection pressures from
dominance is not possible.

Forward in time simulation methods are simpler to imple-
ment. Perhaps because of their simplicity and their similarity
in spirit to the pedigree-based simulation methods that have
been traditionally used to model populations with pedi-
grees, forward in time methods have tended to dominate
in the animal sciences. Forward in time methods evolve
a population forward in time subject to a specified set of
genetic and demographic factors. As a result, there are no
theoretical constraints so the simulation can closely mimic
the complex evolutionary histories of real populations. These
methods can in theory simulate genetic samples of any
complexity (Peng and Amos 2010). The properties of pop-
ulations simulated using a forward in time approach may
depend on the initial populations that tend to be simulated
under arbitrary equilibrium assumptions. Currently there
are no definite solutions to many of the parameters used
in forward in time approaches. In simulations of livestock
data, a wide variety of variations of forward in time methods
have been used that have taken different approaches to
population initialization, mutation rates, and numbers of
generations of burn-in to reach equilibrium in terms of mu-
tation, drift, and linkage disequilibrium. Studies have used
values of at least 5–10Ne generations of random mating to
initialize a genome linkage disequilibrium (LD) structure
and have reported stable LD and heterozygosity (e.g.,
Meuwissen et al. 2001; Habier et al. 2007; Calus et al.
2008; Daetwyler et al. 2010b). Hoggart et al. (2008) pro-
pose that 10–12Ne is sufficient to ensure that initial genome

parameters have little influence on the final generation. Dur-
ing this period of random mating, genomes are randomly
mutated and recombined. While the recombination rates
applied are generally appropriate (i.e., 1 per morgan) in
most studies, the mutation rates used are often higher than
found in real populations to ensure enough segregating sites
at the end of the simulations. The effects of such departures
from biological reality on, for example, LD profiles have not
been investigated. The age of mutations for which effects
have been sampled and the control of allele frequency of the
mutations with effects are frequently ignored. Some studies
have used an extraordinarily short period of random mating
of 50–100 generations (e.g., Lund et al. 2009). It is very
unlikely that these simulated genomes would have a LD
structure that resembles that of a real population, because
they would lack the short-span LD segments created by
many generations of recombination. In addition, simulated
populations will not have reached mutation–drift equilib-
rium after such a low number of generations.

The large variety of forward in time simulations are likely
to create simulated populations with different properties in
terms of factors that affect the accuracy of genomic selection
in the short, medium, and long terms [i.e., allele frequency
of markers and quantitative trait loci (QTL), linkage disequi-
librium and effective population size, and relationship be-
tween identical by descent and identical by state between
pairs of individuals along the genome] and therefore make
direct comparison between different studies difficult. While
an extensive set of literature exists that describes the theo-
retical and practical strengths and weaknesses, as well as
software implementing the coalescent-based methods [e.g.,
MaCS (Chen et al. 2009) and MS (Hudson 2002)], many
forward in time methods are perhaps more ad hoc and lack
very solid theoretical reasoning for their details. However,
there are some forward in time simulation programs that are
well described in the literature, such as FREGENE (Hoggart
et al. 2008), simuPOP (Peng and Kimmel 2005), HaploSim
(Coster andBastiaansen2009), quantiNemo(Neuenschwander
et al. 2008), and QMsim (Sargolzaei and Schenkel 2009).
Others, such as AlphaDrop (Hickey and Gorjanc 2012),
attempt to combine components of the coalescent [explic-
itly by using MaCS (Chen et al. 2009)] with components
of forward in time simulations, which allow for selection
(most practical only for a relatively short number of recent
generations).

Simulation has and will continue to play an important
role in the study of genomic selection. Within the fields of
genetics that are involved in the study and application of
genomic selection (primarily animal and plant breeding) the
development of methods to correctly simulate data needs
greater research focus. In other fields of genetics (e.g., evolu-
tionary biology) methods to simulate genomes have received
large amounts of research effort for a long time, resulting in
more widespread expertise within these fields and several
software packages that make the application of this exper-
tise relatively easy. However, the populations of interest in
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animal and plant breeding have distinctive features and the
fields of animal and plant breeding would benefit from the
development of more widespread expertise in the area of
simulating genomes for populations with an intensive recent
history of selection.

Validation of simulated genomes

A number of arbitrary assumptions are made during the
simulation of genomes, which makes it necessary to confirm
that characteristics of the simulated data are similar to
expectations. Equations for LD [r2 (Hill and Robertson
1968)] and heterozygosity given some population param-
eters have been described in the literature. Deterministic
predictions for these parameters may not exist for complex
population histories, which may involve expansion or
reductions in Ne. However, in such cases simulation pro-
grams can still be evaluated using a simple population his-
tory before moving on to more complex models. The
expected heterozygosity of loci, He, for a given effective
population size, Ne, and mutation rate, u, is EðHeÞ ¼
4Neu½4Neuþ 1�21 (Kimura and Crow 1964). Similarly,
expected values for LD have been described for scenarios
without mutation, Eðr2Þ ¼ 1½1þ 4Nec�21 (Sved 1971), and
with mutation, Eðr2Þ ¼ 1½2þ 4Nec�21 (Tenesa et al. 2007),
where c is the recombination rate. Hudson (1985) has
shown that expectations are met only when loci with allele
frequency ,0.05 are removed from LD calculations. Fur-
thermore, McVean (2002) noted that Sved (1971) implic-
itly assumed that allele frequencies remain constant and
used Ohta and Kimura’s (1971) Eðr2Þ ¼ ð5þ 2NecÞ½11 þ
26Necþ 8ðNecÞ2�21. Expected LD values diverge slightly
between Sved (1971) and Ohta and Kimura (1971) at
low Ne. Under a neutral model the steady-state distribu-
tion of allele frequencies is expected to be U-shaped [Beta,
a ¼ b,0:5 (Kimura and Crow 1964)], where many loci
are at extreme frequency and proportionally fewer are at
intermediate frequency.

One can also compare realized features of simulated
genomes (e.g., distribution of allele frequencies, LD) with
those of real genomes. However, allele frequencies in real
data based on the current available SNP arrays are subject to
ascertainment bias. For example, the distribution of SNP
allele frequency in commercial arrays has a tendency to
follow an almost uniform distribution (Matukumalli et al.
2009) and this may simply be a consequence of how the
SNPs were selected. If close matching to real marker data
is the aim, it may be best to use empirically derived values
for statistics for a variety of measures such as LD and He to
calibrate the simulations. Schaffner et al. (2005) have out-
lined such an approach, using simultaneous comparison of
several measures on the simulation results to empirical val-
ues. However, hypotheses about the underlying distribution
of causative variants should also be considered, as it may
differ from the distribution of ascertained SNPs. Matching
simulations to marker data alone will not necessarily match
the QTL distribution.

Simulation of phenotypes

The simulation of gene action involves choosing a set of loci
to have effects and sampling these effects from their desired
probability distributions. The complexity of these distribu-
tions is vast. A simple example could involve sampling all
locus effects independently from a Gaussian distribution.
A complicated distribution could involve sampling locus
effects according to interactions that are nonlinear and
based on models of the dynamics of biochemical pathways.
Generally, once a base population’s genomes have been sim-
ulated, a number of generations are simulated in which a
desired population size and structure are achieved. The
structure and size of the reference and validation popula-
tions are chosen at this time, which requires consideration of
the number of parents, family size, number of phenotypes
(NP), heritability (h2), and relatedness between individuals.
While these parameters can strongly influence results of
simulated genomic prediction studies, they are in some
sense less abstract than the simulation of genomes. They
are relatively simple to implement if factors such as epistasis
and epigenetics are ignored. Three companion articles in
this series have provided real (Cleveland et al. 2012;
Resende et al. 2012) and simulated data sets (Hickey and
Gorjanc 2012) that are freely available. The method and
source code used to generate the simulated data combine
coalescent and forward in time procedures in a simple flex-
ible way and the source code may be modified to incorpo-
rate additional aspects.

Estimation and Reporting of Prediction Performance

We begin by reviewing reasons why genomic information is
potentially valuable to breeding programs and subsequently
propose standards for estimating and reporting prediction
performance.

Benefits of use of genomic information for prediction
of breeding values

An individual’s breeding value has two components: the
parent average breeding value and a Mendelian sampling
component due to the sampling of gametes from its parents.
Under an additive model, and in absence of inbreeding and
of assortative mating, the Mendelian segregation term ac-
counts for 50% of interindividual genetic differences in
breeding values. Therefore, prediction of differences due
to Mendelian sampling is important in achieving genetic
gain (e.g., Woolliams and Thompson 1994; Woolliams
et al. 1999). Pedigree-based predictions can yield accurate
estimates of parental average when records from ancestors
are abundant; however, prediction of Mendelian segregation
terms requires use of records from progeny, collecting such
records takes time, and the use of progeny-based predictions
of genetic values increases generation interval, relative to
early selection of candidates. With use of genomic data,
one could predict Mendelian sampling even when an
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individual’s own record or records from progeny are not
available. This enables selection at early developmental
stages (e.g., embryo, juvenile) and constitutes one of the
most attractive features of genomic selection.

Pedigree-based predictions use information from rela-
tives to predict genetic values. However, such an approach
does not exploit genetic similarity among nominally un-
related individuals. Therefore, another potential advantage
of genomic selection resides on its ability to utilize in-
formation from related and more distantly related individ-
uals, and this is possible whenever markers are in LD with
genotypes at causal loci. Genomic prediction utilizes both
linkage and linkage disequilibrium information, although
the distinction between these two components is somewhat
arbitrary. The relative contribution of linkage and of LD to
predictions may depend on factors such as the character-
istics of the reference data set, marker density, and the
statistical method used.

Genomic breeding values that primarily utilize linkage
information will have much more when predicting breeding
values in close relatives, whereas those based on linkage
disequilibrium can be used to predict breeding values more
widely in a population (Meuwissen 2009). Therefore, when
assessing the potential value of genomic prediction for se-
lection, it is important to consider how genomic predictions
will be used and the design of the training and validation
schemes must mimic the ways genomic prediction will be
used in practice. Will genomic information be used to rank
population subgroups, to rank families, or to rank individu-
als within families (i.e., ranking full or half-sibs) or to rank
individuals in the population regardless of clustering such as
subpopulation or family? Prediction of the rank of an indi-
vidual within a family, or in the population, constitutes very
different problems, and the design of the validation scheme
will need to reflect the specifics of the prediction problem of
interest, which depends on how genomics will be used by
breeders to select individuals.

Measures of prediction accuracy

The term accuracy is used in different fields to refer to
different statistical properties of an estimator or a predictor.
The Appendix offers a brief review of the concept of mean-
square error and how it relates to accuracy and precision in
the context of estimation and prediction.

The correlation between estimated and true breeding
values (r) has a linear relationship with the response to
selection. Therefore, correlation has emerged as the most
commonly used metric to assess prediction accuracy. How-
ever, bias in the slope of the regression of true breeding
values on estimated breeding values is also important, for
example where individuals are given mating contributions
that are proportional to their estimated breeding values or
where pedigree and genomic information is combined to
produce one breeding value. In all cases, it is important to
estimate and report (in addition to correlation) the slope and
intercept of the regression of observations on predictions as

well as their expectations, because great departures from
expected values should point to deficiencies of the model.

Factors affecting genomic prediction accuracy

The accuracy of genomic prediction has several main dri-
vers, which can be discussed using the framework of
deterministic predictions. If a large number of QTL contrib-
ute to trait variation, the following formula is appropriate to
predict genomic prediction accuracy defined as the Pearson
correlation of true and predicted observed values,
r¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NPh2½Nph2 þMe�21

p
, where NP is the number of individuals

with phenotypes and genotypes in the reference population,
h2 is the heritability of the trait, and Me is the number of
independent chromosome segments (Daetwyler et al. 2008,
2010b; Goddard 2009; Hayes et al. 2009c). The above for-
mula ignores that not all of the genetic variance may be
explained by a SNP array, because of insufficient marker
density. In U.S. Holstein cattle, for the trait Net Merit, the
proportion of the genetic variance explained by the Bovine
SNP50 Array was found to be 0.80 (Daetwyler 2009).
Hence, the above formula is expected to overestimate the
accuracy in this case. A critical parameter is the Me of a pop-
ulation or sample, because as Me increases, accuracy
decreases. The more related a population is, the lower the
Me and the higher the accuracy that can be achieved. Sev-
eral approaches have been proposed for predictingMe; these
can be divided into two main categories. First, population-
based approaches, which are based on variation of realized
relationships (Visscher et al. 2006) and include the param-
eters effective population size (Ne) and the genome length
in morgans (L), resulted in expressions for Me of
2NeL½lnð4NeLÞ�21, 2NeL, and 4NeL (Stam 1980; Goddard
2009; Hayes et al. 2009d). The expression 2NeL½lnð4NeLÞ�21

has been shown to be similar to empirically estimated Me in
a sample of related U.S. Holstein cattle (Daetwyler 2009),
whereas 2NeL is perhaps a more conservative (i.e., greater)
value reflective of less related populations (e.g., Clark et al.
2011b). Second, Me has been derived for close familial rela-
tionships such as full sibs, which is very low at �70, and the
achievable accuracy within such a group is high with relatively
few records (Visscher et al. 2006; Hayes et al. 2009d). Pre-
dictive equations using Me are appropriate when there are
many QTL with small effects affecting a trait. When QTL of
large effect segregate, the accuracy achieved with a variable
selection method may be underestimated when predicted us-
ing Me. More work is necessary to predict the accuracy of
variable selection methods.

A further consideration is the homogeneity of a popula-
tion. In dairy cattle, populations in economically developed
nations tend to be dominated by the Holstein breed, which
has a relatively low Ne, and even animals in different coun-
tries have a moderate degree of relatedness, enabling
within-breed predictions across countries. In other animal
species such as beef cattle or sheep, or in plant breeding
where between-line diversity could be large, the prediction
across breeds or lines has shown limited success at current
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marker densities (De Roos et al. 2009; Hayes et al. 2009b;
Ibanez-Escriche et al. 2009; Toosi et al. 2010; Daetwyler
et al. 2012). The impact of relatedness on accuracy may
decrease once more SNPs or even sequence data are used.
However, individuals closely related to the reference are
always expected to have an advantage in accuracy over dis-
tantly related individuals (e.g., Habier et al. 2007; Goddard
2009; Hayes et al. 2009d). It is worth pointing out that these
formulas relate to the mean accuracy that can be expected
given the parameters in the formulas. For certain individuals
within the population, higher accuracies may be realized if
they are more closely related than the Me chosen to repre-
sent the population sample suggests. Further research is
needed on deriving deterministic prediction equations that
take the effect of specific numbers and levels of these rela-
tionships and the resulting Me into account.

Several studies have highlighted the importance of re-
latedness measures on genomic prediction accuracy (e.g.,
Habier et al. 2007; Clark et al. 2011a, 2012; Pszczola et al.
2012). The effect of relationship on accuracy has been
shown in German Holstein cattle by grouping individuals
into groups according to their maximum relationship and
evaluating the accuracy within each group (Habier et al.
2010). As the relationship decreased, the mean accuracy
per group (Pearson’s correlation of genomic and highly ac-
curate breeding values) decreased. The relationship to the
reference population has also been investigated via regres-
sion of the accuracy derived from the prediction error
variance on measures of relationship [squared genomic
relationship, rel2 (Pszczola et al. 2012); mean of top 10
genomic relationsips, relTop10 (Clark et al. 2012)]. The im-
pact of relationship on both general types of accuracy is
presented later and their differences are highlighted. How-
ever, while we have explored some options, the connec-
tion of relatedness, both distant and close, and genomic
prediction accuracy is an area of research that requires
more attention.

Estimation of prediction accuracy

Genomic selection aims to predict a future genetic value or
phenotypic trait of an individual. Cross-validation has
emerged as the preferred method to estimate the accuracy
of genomic predictions on a particular data set. Two forms of
cross-validation are routinely applied: single or replicated
training–testing and replicated cross-validation. The main
difference between the two approaches is that in replicated
cross-validation all individuals are in the training population
at least once, whereas in training–testing some individuals
are never part of the training population. In many breeding
populations, large volumes of phenotypes and pedigrees
have been collected, enabling traditional BLUP methods to
be used to estimate highly accurate breeding values. For
example, it is not uncommon for elite males in dairy cattle
to have accuracies of estimated breeding values of 0.99.
Single and replicated training–testing schemes calculate cor-
relations between highly accurate traditional BLUP estimated

breeding values (regarded as being close to true breeding
values) and estimated breeding values from the genomic
prediction experiment (e.g., Hayes et al. 2009a; VanRaden
et al. 2009b; Daetwyler et al. 2010a; Cleveland et al. 2012).
Training and testing populations are often separated across
generational lines due to the emphasis on forward predic-
tion. The partitioning of training and testing populations
will affect the accuracy attained. This aspect is discussed
further in the section Deciding the targets of prediction.

Pedigree data may be partially or completely unknown
and highly accurate traditional BLUP breeding values may
not exist. In this case, a replicated cross-validation approach
can be used (e.g., Efron and Gong 1983; Legarra et al. 2008;
Crossa et al. 2010). This form of cross-validation uses all of
the individuals for training the prediction equation and all
for testing it. To implement a 10-fold cross-validation for
example, each individual is randomly assigned into 1 of 10
disjoint folds using an index set (fi) drawn at random from
the set 1, 2, . . . , 10. For the jth fold, lines with fi ¼ j are
assigned to testing, and their phenotypes are masked. The
phenotypes of the remaining lines, i.e., those with fi 6¼ j, are
used for training. The genomic estimated breeding values
are estimated for the individuals in fi ¼ j, and the accuracy
of these genomic breeding values is assessed by comparing
them with their corresponding observed phenotypes. This is
repeated for j ¼ 1; :  :  : ; 10 so that each line was used for
testing in 1 fold and for training in 9 folds. The mean and
standard deviation of the Pearson correlation can then be
calculated across the 10 folds.

It is important to have testing populations that are of
sufficient size in either approach. The sampling variance of
the correlation is expected to be approximately varðrÞ ¼
ð12r2Þ2N21, for a set of N individuals (Hooper 1958). Using
this formula, or Fisher’s transformation (Fisher 1915), yields
confidence intervals for the correlation, depending on N and
the expected correlation. Thus, the size of the testing sets
should be large enough to limit the sampling variance of
correlations. However, large testing sets will reduce the ref-
erence population size and reduce accuracy (e.g., Erbe et al.
2010). When the testing set is too small, assessing differ-
ences in accuracy between methods for a particular data set
may not be possible.

Deciding on the targets of prediction

Here we discuss two targets of prediction and the issues
influencing their choice: target predictand (observed values)
and target individual. Most of the models used in genomic
selection are designed to predict breeding values; therefore,
the predictand should be the true breeding value. However,
true breeding values are generally available only in simula-
tion studies. Therefore, an important decision to be made is
what should be the predictand in real-data studies. Some of
the most commonly used predictands are individual pheno-
types (raw or adjusted for factors such as fixed effects), averages
of offspring performance (e.g., daughter yield deviations in dairy
cattle or progeny means in poultry), and estimated breeding
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values (EBV). Different predictands contain different signal-
to-noise ratios and this requires consideration when assessing
an estimate of predictive performance. A common practice to
accommodate this problem is to divide the estimated corre-
lation by the square root of the heritability of the predictand,ffiffiffiffiffi
h2

p
, or more generally, by the square root of the proportion

of variance of the predictand that can be attributed to addi-
tive effects. In general, the use of EBVs as predictands is not
recommended as they are regressed toward the mean
depending on their accuracy, whereas other predictands
such as phenotypes or averages of offspring performance
are not. When only EBVs are available, however, a common
practice is to “deregress” them, by dividing each EBV by its
reliability calculated from the prediction error variance, to
remove the regression toward the mean that occurs during
breeding value estimation using BLUP and to also remove
information from relatives that will be included with infor-
mation in subsequent analysis (Jairath et al. 1998).

The ultimate target individuals of genomic prediction are
the selection candidates, but their accuracy of prediction
cannot be computed due to the lack of predictands (e.g.,
phenotypes). Hence, a testing population needs to be se-
lected, which requires giving thought to a number of factors.
Cross-validation gives information on accuracy only for
the data set it is applied in. Likely the most important
principle of selecting a testing population is that it should
mimic the relationship of the selection candidates to the
training population. Relatedness is an important component
of prediction accuracy, as pointed out above. If the testing
population is more related to the training population than
the selection candidates, then the estimate of prediction
accuracy will be inflated. For example, in a training–testing
scheme, it is not adequate to test the accuracy only in
individuals one generation removed from the training pop-
ulation, if the selection candidates are mostly grand-prog-
eny. Similarly, in replicated cross-validation, the manner in
which individuals are assigned to particular folds affects
accuracy. Drawing random subsets is simple to implement,
but if full- and half-sib families are present in the reference
population, then prediction implicitly contains a within-
family component that increases accuracies. Achieved accu-
racy may be significantly lower than within-family accuracy
if individuals in selection candidates do not share full- or
half-sib families (Legarra et al. 2008). A more rigorous test
would be to randomly assign whole families to subsets to
make prediction explicitly across families. Being cognizant
of the impact of relationships on the accuracy of genomic
estimated breeding values allows cross-validation proce-
dures to be modified so that the accuracy can be calculated
within and across groups of individuals such as families,
generations, genetic groups, strains, lines, and breeds.
Saatchi et al. (2011) proposed an approach for designing
cross-validation schemes that uses k-means clustering based
on genomic relationships to partition the data into the var-
ious folds to minimize the relationships between training
populations and testing populations.

The independence of data sets used for calculating the
predictand and genomic breeding values is an additional
important factor. Prediction accuracies may be biased up-
ward when the phenotypes used to estimate the genomic
breeding values are also included in calculation of adjusted
progeny means or when estimated breeding values for
training and testing that are obtained from the same
evaluation (e.g., Amer and Banos 2010).

It is also important to consider the presence and effect of
population structure (e.g., breeds, lines of common origin)
when designing the testing scheme. While genomic selection
can make use of otherwise unknown structure to increase
the response to selection, similar to applications in associa-
tion mapping (e.g., Pritchard et al. 2000), it is more often the
case that the structure is already captured by some other
means (breeder’s knowledge or pedigree information, for
example) (Malosetti et al. 2007). The accuracy of a struc-
tured data set may be higher than the accuracy within its
subgroups, because the “structured data” accuracy contains
a component discerning individuals based on mean genetic
level of each subgroup. If the genomic EBV (GEBV) are going
to be used to make selection decisions within family (i.e.,
choose between a number of full sibs on the basis of their
Mendelian sampling terms), an effort should be made to
obtain the accuracy with which this decision can be made.

Some studies have attempted to evaluate the accuracy of
the estimation of the Mendelian sampling term. For example
VanRaden et al. (2009b), Lund et al. (2011), and Wolc et al.
(2011) compared the accuracy of estimated breeding values
predicted from parent average or genomic information. If
the accuracy of the parent average is high (close to its limit
of

ffiffiffiffiffiffiffi
0:5

p
), then any increase in accuracy must relate mostly

to the Mendelian sampling term (Daetwyler et al. 2007). If
the accuracy of the parent average is low, then genomic in-
formation may be useful for predicting parent average as
well as Mendelian sampling, so the distinction becomes less
important. Mendelian sampling term accuracy can also be
predicted by comparison of accuracies of GEBVs predicted
from average genotypes of the parents and actual individual
genotypes, as shown by Wolc et al. (2011), or by correlating
the residuals of GEBV and predictand when both are cor-
rected for the parent average estimated breeding values. In
the future the contribution of genomic information to evalu-
ating the accuracy of the Mendelian sampling term needs to
become more prominent in the validation of genomic predic-
tion. For example, validation data sets could be created that
contain several (e.g., 50) full-sib families with each of these
full-sib families comprising several (e.g., 30) individuals. Plant
breeding data sets may be particularly suited to this purpose
because large numbers of full sibs can easily be generated.

Regardless of the applied testing strategy, comparison
with accuracies obtained with pedigree-based models (if
available) is generally a reasonable approach to assess the
additional accuracy obtained from using marker information
on top of pedigree information. This difference may be
evaluated at the level of reliabilities (accuracy squared),
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since this is a measure of the additional variance explained
by the markers, on top of the variance explained by the
pedigree-based model. It should be noted that an accuracy
obtained by testing using the Pearson correlation is never
“context-free” and this makes comparison of accuracies
across studies difficult.

Reporting Guidelines

Drawing from the discussion above we suggest that genomic
prediction studies report the following statistics. First, the
population used should be described by reporting estimates
of Ne, L, NP, and the general family and sample structure
that may exist within the data. Heat maps of the genomic
relationship matrix (e.g., Pryce et al. 2012a) are useful to
report, as in many cases any true structure contained within
the data set can be visualized. In some populations Ne may
be unknown, but efforts should be made to thoroughly de-
scribe the genetic makeup of the sample. Second, features of
the genome and trait should be stated, such as pairwise r2 at
various genomic distances, the number of markers used for
the analyses, the quality-control procedures performed on
the marker data, and the h2 of the trait. In the case of
simulation, assumptions made during simulation should be
stated, r2 should be compared to expected values, and the
number of QTL simulated should be reported. Third, the
validation design needs to be clearly described and we sug-
gest that studies report accuracy (Pearson’s correlation) and
the slope of the regression of observed variables on pre-
dicted variables. If cross-validation is used, the mean of ac-
curacy and regressions across folds should be stated along
with their SD. Given that the impact of relationships on
genomic accuracy has not been formally derived, we suggest
that some measure of relationship is reported. In the simu-
lated data used here, rel2 and relTop10, which can be based
on either A or G, have best predicted accuracy. Due to the
different versions and scales of G, we suggest that the aver-
age observed value for a half-sib relationship is reported for
a particular version of G along with rel2 and relTop10.

Benchmarking of Methods for Genomic Prediction

A wide array of methods have been presented in the
literature and their similarities and differences are reviewed

in the accompanying article in this issue (GS-CROSS SITE
/) (de los Campos et al. 2012). Early genomic prediction
studies concluded that (Bayesian) methods with the capa-
bility to model loci-specific variances were superior to meth-
ods that assign equal variances to all loci. This conclusion
was later found to be true only when few QTL have a large
contribution to the genetic variation, indicating the impor-
tance of testing genomic architectures with many QTL. Sim-
ilarly, new variable selection methods have on occasion been
compared to nonvariable selection methods in genetic archi-
tectures with few QTL, and, thus, the conclusions drawn
were of limited utility. Nonuniformity of simulation of
genomes, descriptions of data, and reporting of results have
further complicated comparison of methods and results. In
previous sections, we gave suggestions for reporting details
on the simulation of genomes (Table 1) and validation and
reporting performance (Table 2). In this final section we
analyze some example simulated and real data sets with
a wide array of parametric methods.

Methods

Genomic prediction models

A variety of methods were compared in simulated (Hickey
and Gorjanc 2012) and real data (de los Campos and Perez
2010; Resende et al. 2012). The statistical methods used to
derive predictions were partial least squares [PLS (Raadsma
et al. 2008; Solberg et al. 2009)], ridge regression [RR-BLUP
(Calus and Veerkamp 2011)], Bayesian stochastic search
variable selection [BayesSSVS (Calus et al. 2008)], BayesA
[BayesA1 (Nadaf et al. 2012) and BayesA2 (Meuwissen et al.
2001)], BayesB [BayesB1 (Nadaf et al. 2012), BayesB2
(Meuwissen et al. 2001; Nadaf et al. 2012), and BayesB3
(Pong-Wong and Hadjipavlou 2010; Nadaf et al. 2012)],

Table 1 Description of simulated genomes and traits

Effective population size
Size of genome
No. markers
No. quantitative trait loci
Distribution of QTL effects, simulation of genetic values, and chosen

heritability
Heterozygosity and concordance with expected values
Linkage disequilibrium between markers and concordance with expected

values
Parameter assumptions

Recombination and mutation rate
No. generations of random mating (forward in time)

Table 2 Validation and reporting of performance

Trait heritability
No. markers
Report all quality-control measures

Size of reference and validation populations
Structure of reference and validation set
Family structure, inbred lines, etc.

Accuracy (Pearson’s correlation)
Regression of observed on predicted variables
Type of observed variable and its accuracy if appropriate
A measure of relationship of validation individuals to the reference set

Table 3 Summary of simulated traits and number of SNPs used
for analysis

N QTL N SNPs Allele effects QTL MAF , 0.1

Trait 1 9000 60,000 Normal No
Trait 2 900 60,000 Gamma No
Trait 3 9000 60,000 Normal Yes
Trait 4 900 60,000 Gamma Yes

MAF, minor allele frequency.
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BayesC (Habier et al. 2011), Bayesian Lasso [Lasso1 (Nadaf
et al. 2012) and Lasso2 (de los Campos and Perez 2010)],
and genomic best linear unbiased prediction (GBLUP)
implemented in ASReml (Gilmour et al. 2009) with a geno-
mic relationship matrix as in Yang et al. (2010). All genomic
prediction methods and specific implementations used are
described in detail in de los Campos et al. (2012) (GS-
CROSS Site /). Here we provide only information on
hyperparameters and length of chains run for the various
methods (Supporting Information, Table S3).

Simulation of genomes and genetic values

The simulated data sets used here are the example data from
Hickey and Gorjanc (2012). Briefly, a population history of
Holstein cattle was simulated. There were 1,670,000 loci seg-
regating on 30 chromosomes and 60,000 sites were chosen as
SNPs. While results using the 300,000-SNP array are not pre-
sented, these data are available (Hickey and Gorjanc 2012).
The 10 replicates of data consisted of four traits, each with
different models of additive genetic variation (Table 3). The
number of QTL were 9000 for trait 1, reflecting a complex trait,
and 900 for trait 2. Traits 3 and 4 had the minor allele fre-
quency of the QTL restricted to be ,0.1. Once a steady-state
base population had been simulated, 10 more generations were
created. Individuals in generations 4 and 5 were combined into
a reference population of size 2000 to predict genomic breeding
values for 500 individuals each in generations 6, 8, and 10 (i.e.,
N = 1500). The heritability of the traits was 0.25. Summary
statistics regarding the simulated traits are given in Table 3.

The simulator of Hickey and Gorjanc (2012) attempted to
combine favorable features of both coalescent and forward
in time simulation approaches. While it has been recently
pointed out (Woolliams and Corbin 2012) that the coales-
cent is not fully suited to application in livestock populations
with population histories like those simulated in these data
sets (large ancient and small current effective population
sizes), the data do appear to match reasonably well to the
theoretical expectations of such genomic data (see below).
Furthermore, the results of analysis of the data with various
genomic prediction algorithms also match reasonably well
with those observed in real data sets. In addition, almost
identical approaches to simulating genomic data have been
used in a number of studies that compare simulated and real
data analysis for a number of applications, including the
understanding of genomic prediction (Clark et al. 2011a,
2012) and the phasing (Hickey et al. 2011) of genotypes.
The results for the analysis of simulated and real data in
these and other relevant studies showed very similar trends.

However, despite the data appearing to be reasonably well
behaving, it is important to recognize that there may be
some theoretical weaknesses with the approach taken to
simulate the data. In generating the example simulated data
sets, the forward in time approach was used for the last 10
generations of the pedigree.

Pine and wheat data

The pine tree data are described in Resende et al. (2012)
and contained 850 individuals with phenotypes (two traits:
DBH, diameter at breast height; HT, height; age = 6 years,
predicted and validated only in location Nassau) and geno-
type (4698 markers) data. The following additional edits
were performed on the pine data set, and missing SNPs were
filled in by sampling alleles from a Bernoulli distribution
with variance equal to the locus allele frequency. Individuals
and loci were removed if they contained .20% missing
values. The wheat data [available through R package BLR
(de los Campos and Perez 2010)] contained 599 lines with
phenotype (four traits) and genotype (1279 markers) data
and no further edits were performed.

Validation schemes

In the simulated data, true breeding values were generated
and used for validation. In the pine and wheat data highly
accurate observed values were not available and, therefore,
10-fold cross-validation was used. Both data sets were

Table 4 Actual (mean and SE of 10 replicates) and expected heterozygosity, He, and linkage disequilibrium between adjacent loci, r2, in
simulated data

Actual Expected

Mean 6 SE Ne = 100 Ne = 1,256 Ne = 4,350 Ne = 43,500

He 0.00016 6 1.6·1027 0.00001 0.00013 0.000435 0.004331
LD (r2) 0.5173 6 9.0·1024 0.4201 0.1476 0.0539 0.0059

Figure 1 Linkage disequilibrium (r2) at various genomic distances in rep-
licate 1 of the simulated data.
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randomly assigned to one of 10 folds. Each fold was dropped
once from the reference set and predicted. Accuracy (Pearson’s
correlation) and regressions were calculated within each
fold and the mean and SE across all folds are reported.

Indexes for reporting relationships

All relationship measures were calculated for each valida-
tion individual. Mean relationship is ð1=  NPÞ

PNP
j¼1relði; jÞ,

where relði; jÞ is the relationship in A or G of validation
individual i and reference individual j, and NP is the num-
ber of reference individuals. Mean of squared relation-
ships is ð1=  NPÞ

PNP
j¼1relði; jÞ2 and mean of top 10 relationships

is ð1=10ÞPTop10
j¼1 relði; jÞ, where Top10 are the 10 largest

relði; jÞ. In each replicate validation individuals were sorted
based on these relationship measures from lowest to highest

and Pearson’s correlations were calculated between esti-
mated and true breeding values in bins of 50 individuals.
These empirical accuracies were then regressed onto the
mean relationship measure per bin. Accuracies from the pre-
diction error variance were calculated as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12SE2½VarðGÞ�21

p
,

where SE is the standard error of prediction per individual
obtained from the GBLUP analysis and Var(G) is the addi-
tive genetic variance from GBLUP.

Results

Evaluation of simulated genomes

The mean minor allele frequency of the 60,000-SNP array
across all simulated replicates was 0.2076 (SE = 3.0 · 1024).
The mean heterozygosity and r2 of all replicates was

Figure 2 Accuracy of breeding values estimated with different methods of genomic selection (mean for validation animals in generations 6, 8, and 10).
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compared to expected values. The heterozygosity of the ran-
domly selected markers in the 60,000-SNP set was 0.2815
(SE = 2.9 · 1024). Given a genome of 3 billion bp and 1.68

million segregating sites in the base population, the mean
heterozygosity (He) across all sites was 0.00016 (Table 4).
Calculation of the expected value was complicated by

Figure 3 Regression of true breeding value on breeding values estimated with different methods (mean for validation animals in generations 6, 8, and 10).

Table 5 Mean (rel), mean squared relationships (rel2), and mean of top 10 relationships (relTop10) in matrices A and G of validation to
reference individuals in generations 6, 8 and 10 of simulated data

pBVrel
A

gBVrel
A

gBV
rel G

pBV
rel2 A

gBV
rel2 A

gBV
rel2 G

pBVrelTop10
A

gBV
relTop10

A

gBV
relTop10

G

Gen 6 0.0185 0.0185 20.0006 0.0013 0.0013 0.0013 0.2744 0.2744 0.2671
Gen 8 0.0185 0.0185 20.0035 0.0006 0.0006 0.0006 0.1382 0.1382 0.1216
Gen

10
0.0185 0.0185 20.0049 0.0004 0.0004 0.0004 0.0710 0.0710 0.0654

R2 0.00 0.00 0.22 0.40 0.27 0.31 0.45 0.32 0.31

R2 is coefficient of determination from regressing correlations of breeding values (pedigree, pBV; and genomic, gBV) and true breeding values in bins of similarly related
individuals onto the respective relationship measure. Gen, generation.
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changes in Ne across the simulated population history. Using
Ne = 100, the expected He was 0.00001, or an order of
magnitude smaller. However, this ignores that He would
have been higher in ancestral generations with greater Ne.
It is expected that some ancestral alleles would still be seg-
regating, thereby increasing He. The expected r2 using the
formula with mutation (Tenesa et al. 2007) was 0.4201,
which is lower than the pairwise r2 of 0.5173 in the simu-
lations with loci ,0.05 allele frequency removed. The
higher r2 may be partially explained by the Ne , 100 in
the pedigree used for the last 10 generations. Figure 1
shows the drop-off in r2 as distance between SNPs increases.

Estimates of prediction accuracy and relatedness

The genetic architectures of the example simulations were
chosen so the differences between the methods were apparent.
In traits 1 and 3, 9000 QTL contributed to the genetic
variation whereas in traits 2 and 4 only 900 QTL were
simulated. Additionally, in traits 3 and 4 the maximum
minor allele frequency of the QTL was restricted to ,0.1.
Expectedly, most genomic methods had very similar
accuracy in traits 1 and 3, once SEs were considered. In
generation 6, the range of accuracy observed was 0.530–
0.554 in trait 1 and 0.447–0.497 in trait 3, as can be seen
in Figure 2 and Table S1. The exception was PLS, which
showed slightly lower accuracy. The trend to similar accu-
racy with a high number of QTL has been observed before in
several studies (e.g., Daetwyler et al. 2010b; Hayes et al.
2010; Clark et al. 2011a). More diverse accuracies were pro-
duced in traits 2 and 4. For these examples, variable selec-
tion methods (e.g., BayesB) performed better than shrinkage
methods (e.g., GBLUP, Lasso), which, in turn, outperformed
PLS. The ability to either model locus-specific variances or,
in addition, set some variances to zero seems to be of ad-
vantage when the number of QTL is low. This has also been
found in other studies (e.g., Meuwissen et al. 2001; Habier
et al. 2007; Lund et al. 2009). The decay in accuracy across
generations was very similar across methods in traits 1 and 3.
However, in traits 2 and 4 shrinkage methods exhibited
greater decay in accuracy as the number of generations in-
creased. Accuracies using a BLUP pedigree model were in all
cases lower than genomic accuracies, but were quite high in
generation 6 because both parents of each individual were
included in the reference population. Regressions of true on
predicted breeding values varied more than accuracies,
ranging between 0.429 and 1.186 across all traits in gener-
ation 6. PLS, in particular, had low regression coefficients.
Among the other genomic methods there was less variation.
Regression coefficients of most methods were not signifi-
cantly different from 1, considering their SE (Figure 3, Table
S2), and regression intercepts were close to 0 for all
methods.

In the simulated data, three relationship measures were
calculated for both A and G, being rel, rel2, and relTop10
(Table 5). Mean rel varied little across generations and this
was especially pronounced in A. A heat map of A (replicate 1

of simulated data) is shown in Figure S1. Mean rel2 and
relTop10 decreased as validation individuals became further
removed from the reference population. Relationships were
similar in A and G because G as implemented according to
Yang et al. (2010) is scaled similarly to A. Consequently, the
relationship between half-sibs in this version of G is �0.25.
Mean relTop10 shows that individuals in generation 6 had
a number of close relatives comparable to a half-sib rela-
tionship level and this yielded high accuracies. The accu-
racy was then calculated in bins of 50 validation individuals
that were grouped according to similarity of relatedness to
the reference population. The sensitivity of rel2 and relTop10

Figure 4 Regression of accuracy from prediction error variance (PEV-Ac-
curacy) on mean of top 10 genomic relationships per validation individual.

Figure 5 Regression of correlation of pedigree and genomic accuracy on
mean of top 10 relationships of validation to reference individuals in
pedigree (A) and genomic (G) relationship matrices.
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was reflected in increased R2 when accuracy was regressed
onto them (Table 5). Regression of pedigree-based accuracy
exhibited a better fit to data than genomic accuracy, as
expected.

As an effort to quantify the effect of relationships on the
accuracy of genomic prediction, three relationship measures
were calculated using both the numerator relationship matrix
and the genomic relationship matrix: rel, the mean relation-
ship; rel2, the mean of squared relationships; and relTop10, the
mean of the top 10 relationships, where relationship refers to
relationship of validation to reference individuals. Previous
work has shown that rel2 and relTop10 correlated well with
the accuracy from prediction error variance (PEV), while rel
was less predictive (Clark et al. 2012; Pszczola et al. 2012).
This was confirmed in our simulated data set (Figure 4). Re-
gression of accuracy from Pearson’s correlations onto these
three measures had a lower R2 than when the accuracy from
PEV was used in both the numerator relationship matrix (A)
or the genomic relationship matrix (G) (Table 5, Figure 5). A
baseline relationship of empirical accuracy and relationship
measures was established using accuracy of a pure pedigree
model in the regression. The R2 of this regression is higher
than with genomic breeding value accuracy, but not substan-
tially so. In addition, the slope of the regression using geno-
mic accuracy is lower than with accuracy from pedigree
prediction, as expected (Figure 5). This demonstrates that
both rel2 and relTop10 can provide some insight when report-
ing genomic selection results.

Other relationship measures that correlate better with
accuracy may exist, and which relationship measure corre-
lates best with accuracy may depend on population structure.

Note that while we were able to show a relationship of
relatedness and accuracy at the “macro” level (i.e., large
changes in relationship across generations), we were not
able to investigate this at the “micro” level (i.e., small
changes in relationships within a generation) due to large
sampling variances of correlations when few individuals
were used in correlation bins (Figure 1). Nevertheless,
Figure 5 also shows that the impact of relationships on the
accuracy of genomic breeding values seems to be less than
with a pedigree-based model for these examples. Further
research is needed on the impact of relatedness on the ac-
curacy of genomic breeding values.

The accuracies and regressions achieved in pine and
wheat with the various methods were not significantly
different from each other, considering SE between folds
(Tables 6, 7, and 8). The mean accuracies and regressions
(in parentheses) across all methods achieved in pine DBH
and HT were 0.48 (1.06) and 0.38 (1.07), respectively.
Mean accuracies (and regressions) of all methods in wheat
for traits 1–4 were 0.53 (1.06), 0.50 (1.07), 0.39 (0.94),
and 0.46 (0.998), respectively. Intercepts of the regressions
were in all the above cases close to zero (results not shown).
The relationship measures rel2 and relTop10 were 0.0072
and 0.4048 for pine and 0.0086 and 0.2614 for wheat, re-
spectively. Molecular markers were SNPs for pine and the
genomic relationship of half-sibs using Yang et al. (2010)
was �0.25. In contrast, DArT markers [only two possible
genotypes (Jaccoud et al. 2001)] were used in wheat, which
yields an approximate half-sib genomic mean relationship of
0.125, using the Yang algorithm. It is clear therefore that the
relationships between reference and validation individuals

Table 6 Accuracy of prediction and regressions for the pine data using 10-fold random cross-validation for traits
diameter at breast height (DBH, age = 6 years) and height (HT, age = 6 years)

DBH: HT: DBH: HT:
Acc(SD) Acc(SD) Reg(SD) Reg(SD)

BayesA1 0.477 (0.063) 0.376 (0.108) 1.070 (0.262) 1.060 (0.398)
BayesB1 0.476 (0.066) 0.373 (0.108) 1.068 (0.266) 1.057 (0.402)
BayesC 0.478 (0.066) 0.375 (0.108) 1.061 (0.262) 1.043 (0.392)
BayesA2 0.477 (0.063) 0.376 (0.108) 1.068 (0.266) 1.059 (0.398)
BayesB2 0.475 (0.066) 0.373 (0.108) 1.068 (0.266) 1.057 (0.408)
Bayesian Lasso1 0.479 (0.066) 0.378 (0.108) 1.050 (0.259) 1.024 (0.382)
GBLUP 0.477 (0.060) 0.384 (0.095) 1.070 (0.259) 1.060 (0.351)
Bayesian Lasso2 0.481 (0.066) 0.382 (0.107) 1.105 (0.288) 1.079 (0.376)

Acc, accuracy; Reg, regression.

Table 7 Accuracy of prediction for the wheat data, using 10-fold random cross-validation

Trait 1: Trait 2: Trait 3: Trait 4:
Acc(SD) Acc(SD) Acc(SD) Acc(SD)

BayesA1 0.524 (0.098) 0.503 (0.130) 0.392 (0.136) 0.468 (0.149)
BayesB1 0.520 (0.098) 0.502 (0.130) 0.391 (0.136) 0.465 (0.149)
BayesC 0.525 (0.104) 0.503 (0.130) 0.390 (0.140) 0.468 (0.145)
BayesA2 0.527 (0.101) 0.504 (0.130) 0.392 (0.136) 0.469 (0.150)
BayesB2 0.523 (0.101) 0.502 (0.130) 0.392 (0.136) 0.465 (0.150)
Bayesian Lasso1 0.530 (0.101) 0.504 (0.130) 0.393 (0.136) 0.471 (0.150)
GBLUP 0.518 (0.149) 0.493 (0.139) 0.397 (0.130) 0.437 (0.187)
Bayesian Lasso2 0.548 (0.098) 0.502 (0.139) 0.412 (0.130) 0.470 (0.139)
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found in the plant data were high and this is likely the main
reason for the moderately high accuracies achieved despite
the quite limited number of reference individuals and
markers. Lack of significant differences between method ac-
curacies may have resulted from limited numbers of individ-
uals and markers and the possibility of a genetic architecture
of the traits where many loci contribute to the genetic var-
iance and the high relationships present in the plant data
sets.

Benchmarking of methods

We have investigated a few example simulated data sets
and two real data sets for the most widely used genomic
prediction methods. The simulated data from Hickey and
Gorjanc (2012) were modeled after the population history
of Holstein cattle and the real data sets were of pine and
wheat (de los Campos and Perez 2010; Resende et al.
2012). This encompasses two outbreeding plant and animal
populations and an inbreeding plant species, as well as dif-
ferent genome ploidies. We strongly recommend further
benchmarking in other populations, which may differ in
population history, genome structure, and other aspects rel-
evant to genomic prediction.

In the simulated data examples, traits 1 and 3 had genetic
architectures where many loci affected the traits and all
methods performed similarly. A slight advantage of variable
selection methods was observed in traits 2 and 4, where fewer
loci contributed to genetic variation. In the real data sets, all
methods also achieved similar accuracy. This indicated that
the traits are likely complex or that our real data sets were too
small to show differences. This change in ranking depending
on genetic architecture has also been observed in other
studies, both in real (e.g., Hayes et al. 2009a; VanRaden
et al. 2009b) and simulated (e.g., Daetwyler et al. 2010b;
Clark et al. 2011a) data. Due to this dependency, no single
method emerges that could serve as a benchmark for newly
developed methods. We suggest that two methods, one where
loci are weighted equally (e.g., GBLUP) and one where some
loci are given greater emphasis (e.g., Bayes B), be used when
comparing new approaches. This will ensure a rigorous com-
parison of new methods to commonly used methods regard-
less of trait genetic architecture. Ideally, the implementations
of GBLUP and BayesB would be previously validated to avoid
comparisons to suboptimal implementations, as there are

many small details related to implementation that can affect
performance. However, the main point is to test new methods
in varying genetic architectures to ensure that dependencies
are known.

We recommend further benchmarking and testing of
methods in many more real animal and plant populations as
well as simulation studies with extensive replication. Our
results for these examples should be confirmed with higher
marker densities and, eventually, with resequencing data. It
will remain important that a variety of genetic architectures
are explored when benchmarking methods in dense marker
data or in other variants such as small insertions and
deletions. Genomic prediction has grown to be a scientific
area of considerable impact in both animal and plant breeding.
We have no doubt that further advances are possible to
improve not only the accuracy of genomic prediction, but also
the efficiency with which such predictions can be made. The
utility of such advances will be evaluated with a toolkit
containing results from real and simulated data, which are
rigorously validated.
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Appendix
Here we discuss several performance criteria and how they relate to two definitions of accuracy as well as to bias. In addition,
we outline validation procedures, the factors that affect accuracy, and discuss conceptual ways in which the accuracy could
be decomposed into its components.

Measures of Performance

Estimating how accurate genomic predictions are is relevant for at least three reasons. First, response to selection is
proportional to accuracy (e.g., Falconer and Mackay 1996); second, the accuracy of an estimated breeding value reflects the
credibility of an individual’s estimated breeding value and this is relevant for selection decisions. Finally, estimation of the
prediction accuracy of models is useful for model comparison.

We begin by reviewing the concept of mean-squared error (MSE) of an estimator and its connection to accuracy and
precision. Subsequently, we extend the concept to address the problem of prediction of random variables (e.g., unknown
breeding values or phenotypes). In this context we discuss prediction mean-squared error (PMSE) and PEVs.

Mean-squared error of estimates

The MSE of an estimator is the expected value (over conceptual repeated sampling of the data, D) of the squared
difference between the estimator (û) and the true value of the parameter (u); that is, MSEðûÞ ¼ EDju½ðû2uÞ2�; here, û
is random because it is a function of the sampled data and u represents a fixed quantity. The MSE of an estimator equals
the sum of the variance of the estimator, Var½û� ¼ EDjuf½û2EDjuðûÞ�2g, plus the square of its bias, Bias½û�2 ¼ ½u2EDjûðûÞ�2;
therefore, MSEðûÞ ¼ Var½û� þ Bias½û�2. A good estimator, in the sense of small MSE, is one that is precise (i.e., it has small
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variance over conceptual repeated sampling of the data) and accurate (i.e., it has small squared bias; in other words, if we
average the estimator over conceptual repeated sampling of the data, the average is close to the true value).

Prediction

In the MSE formula discussed above, u is regarded as a fixed quantity. When u is a random variable (e.g., u represents
a breeding value, hereinafter denoted as u), we can derive a PMSE by averaging the MSE over possible realizations of the
random variable that we wish to predict (u); that is, PMSE ¼ EufEDju½ðû2uÞ2�g.

The PEV is the variance (over conceptual repeated sampling of the data) of prediction errors; that is, PEV ¼ Varðû2 uÞ ¼
E½ðû2uÞ2�2 fE½ðû2uÞ�g2; here û2 u is a prediction error and the expectations are taken with respect to the joint density of
the phenotypes and of u.

In linear models, the PEVs are given by the diagonal elements of the inverse of the matrix of coefficients, Ciis2 (Henderson
1984). Also in these models Ciis2 equals the variance of predicted breeding values, VarðûijuiÞ ¼ Ciis2 and it is also equal to
the conditional variance of breeding values given phenotypes; that is, VarðuijyÞ ¼ Ciis2. Importantly, the interpretations of
PEV, variance of predictions, VarðûijuiÞ, and conditional variances VarðuijyÞ are very different. Moreover, these equivalences
do not hold outside of the multivariate linear model with known variance components; for instance, it has not been shown
that these equivalences hold for most of the models commonly used in Genomic Selection with the exception of GBLUP with
known variance parameters.

Precision

The inverses of the variances described above are commonly referred to as precision; e.g., 1=  PEV can be regarded as
a precision. Although these are sometimes referred to as accuracies of estimated breeding values, such measures do not
quantify accuracy in the strict sense (see above for a definition of accuracy).

R2

The prior variance of a given breeding value is given by VarðuiÞ ¼ ð1þ FiÞs2
u, where s2

u is the additive variance of the trait
and Fi is the inbreeding coefficient of the ith individual. The reduction in uncertainty achieved by observing data (y) can be
quantified by comparing the prior and posterior variances, VarðuiÞ and VarðuijyÞ, respectively. The proportional reduction in
variance can be quantified using the following R2 measure, R2

i ¼ 12VarðuijyÞ=ð1þ FiÞs2
u. Again in the linear model

VarðuijyÞ equals the PEV; therefore, an r2 measure can be defined as R2
i ¼ 12 PEV=ð1þ FiÞs2

u. All these quantities can be
derived for individuals both with and without records; therefore, in principle these quantities could also be used to assess
predictive performance of estimates of breeding values of candidates of selection.

In multivariate linear models with known variance components all the above quantities can be readily obtained from the
diagonal entries of the inverse of the coefficient matrix. However, it is important to realize that these are model-derived
features. As such, these are valid only if the assumptions of the model are correct. However, in practice, many assumptions
may not hold and model-derived quantities are likely to overestimate precision and accuracy (e.g., Bijma 2012).

Model-free estimates of predictive performance can be obtained using Monte Carlo methods; essentially we estimate the
desired quantities (variances, precision, bias) using methods of moment estimates computed from samples obtained
using some resampling procedure. For instance, if fyi; ŷig constitute pairs of samples of phenotypes and predictions, we
can estimate prediction error variances of phenotypes, using the average of the squared-prediction residuals (PMSR):
PMSR ¼ n21Pn

i¼1ðyi2ŷiÞ2. In a simulation context, where we know true breeding values, we can estimate PEV of
genetic values using PEV ¼ n21Pn

i¼1ðui2ûiÞ2. This can be done within the same data set that was used to train the
model, in which case we are measuring PEV of individuals with records or in validation data sets. Note, however, that
when using these formulas the training data set is kept fixed; therefore, we are not exactly estimating PEV but rather
the variance of prediction errors conditional on the training data set used for prediction. Further discussion about
marginal and conditional prediction errors can be found in Hastie et al. (2009).

Alternative measures of performance

Other commonly used measures of predictive ability are the R2, correlation, and the regression of phenotypes on predictions.
From the PMSR ¼ n21Pn

i¼1ðyi 2 ŷiÞ2 we can derive an R2 statistic, using R2 ¼ 12 PMSR=PMSR0, where PMSR0 is the
prediction mean-squared error of some baseline (or null) model (e.g., for an intercept-only model, PMSR0 ¼ n21Pn

i¼1
ðyi 2 �ytrnÞ2, where �ytrn is the mean of the phenotypes in the training data set).

The statistic R2 quantifies the proportion of unexplained (by the null model) variability accounted for by the genomic
model. Importantly, this quantity is mean and scale dependent (i.e., it is not invariant under linear transformations of either
yi or ŷi). Also, note that this R2 statistic is conceptually different from R2

i ¼ 12VarðuijyÞ=ð1þ FiÞs2
u. R

2 compares how
well two models predict future outcomes, and R2

i measures reduction in uncertainty of breeding values relative to prior
uncertainty.
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Pearson’s product-moment correlation is commonly used as a measure of predictive ability in GS. This statistic is computed
as the ratio of the sample covariance of y and ŷ, divided by the product of the (sample) standard deviations; that is,
r ¼ Covðy; ŷÞ=SDðyÞSDðŷÞ. This statistic is scale and mean invariant. In most cases (with the exception of the case where
ŷi is a prediction derived from a linear model with coefficients estimated using ordinary least squares) r2 6¼ R2 and often r2 ,
R2 because r2 ignores differences between predictions due to location or scale effects. To see this consider the case where
y ¼ aþ bŷ; here, r2 ¼ 1 regardless of the value of a and b; however, R2 ¼ 1 only if a ¼ 0 and b ¼ 1; otherwise, R2 ,1.
Therefore, when Pearson’s product moment correlation or r2 is reported it is good practice to estimate and to report the slope
and intercept of the regression between the predictand and the predictor.

Ideally the slope and the intercept should be close to one and zero, respectively. However, many reasons, including
deficiencies of the model and nonrandom choice sampling of training and validation samples, may induce a slope different
from one. Patry and Ducrocq (2011a,b) offer a discussion of the effects that selection of individuals in the training data set
have on the slope and Mantysaari et al. (2010) discuss the effects that having a validation set consisting of selected animals
have on the expected value of the slope.
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Figure S1   Pedigree relationship heat map of the 2000 reference (top left) and 1500 validation (bottom left) 
individuals in replicate 1 of the simulated dataset 
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Table S1   Accuracy of genomic prediction in simulated data estimated with different methods, where PLS is 
Partial Least Squares, BayesSSVS is Bayesian Stochastic Search Variable Selection, RR-BLUP is Ridge Regression, 
and BLUP (GBLUP) is (Genomic) Best Linear Unbiased Prediction. 

 
 Trait 1 
 All Generations Generation 6 Generation 8 Generation 10 

Method cor se cor se cor se cor se 
Mean Genomic 0.449 0.002 0.551 0.003 0.418 0.003 0.360 0.002 
PLS 0.431 0.011 0.530 0.011 0.398 0.016 0.348 0.015 
BayesSSVS 0.449 0.013 0.550 0.014 0.419 0.019 0.361 0.016 
BayesC 0.452 0.013 0.554 0.013 0.422 0.018 0.362 0.016 
BayesB1 0.451 0.013 0.553 0.012 0.420 0.018 0.362 0.016 
BayesA1 0.453 0.013 0.555 0.013 0.422 0.018 0.363 0.016 
Lasso1 0.453 0.013 0.555 0.013 0.422 0.018 0.363 0.016 
Lasso2 0.453 0.013 0.555 0.013 0.422 0.018 0.363 0.016 
RR-BLUP 0.453 0.013 0.555 0.013 0.422 0.018 0.363 0.016 
GBLUP 0.448 0.013 0.552 0.013 0.418 0.018 0.352 0.017 
BLUP 0.290 0.014 0.440 0.020 0.212 0.025 0.110 0.023 
         
 Trait 2 
 All Generations Generation 6 Generation 8 Generation 10 

Method cor se cor se cor se cor se 
Mean Genomic 0.483 0.017 0.580 0.012 0.447 0.019 0.401 0.022 
PLS 0.424 0.011 0.527 0.014 0.387 0.021 0.331 0.016 
BayesSSVS 0.517 0.027 0.603 0.020 0.489 0.040 0.448 0.029 
BayesC 0.542 0.027 0.624 0.020 0.511 0.038 0.481 0.030 
BayesB1 0.544 0.027 0.624 0.021 0.517 0.038 0.482 0.029 
BayesA1 0.539 0.028 0.621 0.021 0.510 0.038 0.472 0.031 
Lasso1 0.447 0.013 0.558 0.012 0.405 0.023 0.352 0.017 
Lasso2 0.447 0.013 0.557 0.012 0.405 0.023 0.351 0.016 
RR-BLUP 0.447 0.016 0.558 0.013 0.405 0.026 0.354 0.020 
GBLUP 0.437 0.011 0.551 0.010 0.392 0.021 0.337 0.019 
BLUP 0.297 0.016 0.463 0.011 0.206 0.030 0.099 0.019 
         
 Trait 3 
 All Generations Generation 6 Generation 8 Generation 10 

Method cor se cor se cor se cor se 
Mean Genomic 0.386 0.003 0.484 0.005 0.339 0.002 0.306 0.003 
PLS 0.366 0.009 0.447 0.016 0.325 0.018 0.304 0.018 
BayesSSVS 0.378 0.010 0.480 0.015 0.333 0.021 0.290 0.016 
BayesC 0.390 0.010 0.490 0.015 0.343 0.020 0.308 0.017 
BayesB1 0.383 0.009 0.483 0.015 0.338 0.020 0.298 0.015 
BayesA1 0.388 0.010 0.488 0.015 0.342 0.020 0.305 0.018 
Lasso1 0.390 0.010 0.490 0.015 0.342 0.020 0.309 0.018 
Lasso2 0.390 0.010 0.490 0.015 0.342 0.020 0.309 0.018 
RR-BLUP 0.390 0.010 0.490 0.015 0.342 0.020 0.309 0.018 
GBLUP 0.398 0.010 0.497 0.014 0.347 0.019 0.323 0.017 
BLUP 0.257 0.010 0.406 0.015 0.160 0.025 0.094 0.028 

 

 
 

Trait 4 
 All Generations Generation 6 Generation 8 Generation 10 

Method cor se cor se cor se cor se 
Mean Genomic 0.448 0.016 0.559 0.013 0.409 0.016 0.339 0.021 
PLS 0.391 0.017 0.507 0.018 0.350 0.028 0.273 0.012 
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BayesSSVS 0.480 0.014 0.586 0.012 0.442 0.027 0.381 0.018 
BayesC 0.505 0.017 0.604 0.011 0.470 0.031 0.413 0.023 
BayesB1 0.504 0.016 0.605 0.012 0.466 0.029 0.416 0.022 
BayesA1 0.495 0.019 0.596 0.014 0.458 0.033 0.402 0.023 
Lasso1 0.412 0.017 0.532 0.018 0.372 0.027 0.289 0.014 
Lasso2 0.411 0.017 0.532 0.018 0.372 0.027 0.289 0.014 
RR-BLUP 0.413 0.017 0.533 0.018 0.373 0.027 0.290 0.014 
GBLUP 0.418 0.016 0.537 0.018 0.376 0.027 0.298 0.013 
BLUP 0.287 0.017 0.449 0.019 0.204 0.027 0.043 0.029 
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Table S2   Slope of regression of true on predicted breeding values in simulated data estimated with different 
methods, where PLS is Partial Least Squares, BayesSSVS is Bayesian Stochastic Search Variable Selection, RR-
BLUP is Ridge Regression, and BLUP (GBLUP) is Genomic Best Linear Unbiased Prediction. 

 
 Trait 1 
 All Generations Generation 6 Generation 8 Generation 10 

Method slope se slope se slope se slope se 
Mean 
Genomic 1.028 0.065 1.023 0.065 1.057 0.067 1.008 0.063 
PLS 0.519 0.014 0.513 0.015 0.534 0.019 0.519 0.023 
BayesSSVS 1.202 0.068 1.186 0.058 1.243 0.078 1.192 0.089 
BayesC 1.057 0.044 1.058 0.040 1.083 0.051 1.030 0.058 
BayesB1 1.062 0.043 1.063 0.038 1.087 0.050 1.035 0.058 
BayesA1 1.071 0.045 1.071 0.041 1.096 0.050 1.046 0.057 
Lasso1 1.085 0.047 1.083 0.041 1.112 0.054 1.061 0.062 
Lasso2 1.078 0.044 1.076 0.038 1.105 0.052 1.053 0.060 
RR-BLUP 1.082 0.044 1.080 0.040 1.109 0.052 1.059 0.059 
GBLUP 1.093 0.048 1.074 0.041 1.140 0.056 1.081 0.067 
BLUP 1.018 0.057 1.002 0.044 1.036 0.133 1.059 0.212 
         
 Trait 2 
 All Generations Generation 6 Generation 8 Generation 10 

Method slope se slope se slope se slope se 
Mean 
Genomic 0.961 0.059 0.953 0.059 0.958 0.058 0.966 0.061 
PLS 0.503 0.013 0.493 0.015 0.511 0.032 0.504 0.026 
BayesSSVS 1.006 0.095 0.981 0.077 1.012 0.110 1.038 0.124 
BayesC 1.039 0.049 1.022 0.036 1.036 0.064 1.066 0.077 
BayesB1 1.049 0.041 1.031 0.030 1.051 0.059 1.072 0.065 
BayesA1 1.051 0.043 1.030 0.030 1.054 0.062 1.070 0.068 
Lasso1 1.032 0.045 1.035 0.031 1.020 0.063 1.015 0.084 
Lasso2 1.040 0.044 1.044 0.032 1.028 0.060 1.022 0.081 
RR-BLUP 0.902 0.078 0.915 0.062 0.886 0.091 0.883 0.111 
GBLUP 1.030 0.045 1.021 0.031 1.029 0.064 1.028 0.096 
BLUP 1.041 0.051 1.059 0.048 0.960 0.114 0.880 0.149 
         
 Trait 3 
 All Generations Generation 6 Generation 8 Generation 10 

Method slope se slope se slope se slope se 
Mean 
Genomic 0.887 0.058 0.912 0.061 0.854 0.056 0.871 0.055 
PLS 0.429 0.013 0.429 0.019 0.413 0.024 0.449 0.031 
BayesSSVS 0.988 0.062 1.030 0.049 0.963 0.107 0.932 0.077 
BayesC 0.924 0.042 0.953 0.039 0.888 0.081 0.901 0.059 
BayesB1 0.902 0.043 0.942 0.041 0.870 0.083 0.854 0.046 
BayesA1 0.923 0.046 0.954 0.039 0.892 0.085 0.894 0.067 
Lasso1 0.949 0.043 0.977 0.040 0.910 0.082 0.932 0.065 
Lasso2 0.946 0.041 0.973 0.038 0.906 0.080 0.931 0.063 
RR-BLUP 0.946 0.045 0.973 0.041 0.908 0.082 0.931 0.068 
GBLUP 0.973 0.042 0.973 0.036 0.934 0.078 1.017 0.065 
BLUP 0.896 0.053 0.925 0.036 0.764 0.132 0.951 0.289 
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Trait 4 

 All Generations Generation 6 Generation 8 Generation 10 

Method slope se slope se slope se slope se 
Mean 
Genomic 0.929 0.061 0.985 0.064 0.893 0.058 0.855 0.059 
PLS 0.454 0.026 0.481 0.022 0.440 0.044 0.410 0.027 
BayesSSVS 1.091 0.056 1.142 0.067 1.055 0.072 1.033 0.055 
BayesC 0.960 0.038 1.014 0.042 0.931 0.061 0.894 0.035 
BayesB1 0.963 0.035 1.019 0.040 0.929 0.063 0.903 0.034 
BayesA1 1.005 0.036 1.050 0.047 0.968 0.059 0.959 0.039 
Lasso1 0.969 0.043 1.043 0.056 0.925 0.059 0.862 0.048 
Lasso2 0.967 0.049 1.041 0.061 0.925 0.067 0.858 0.050 
RR-BLUP 0.968 0.041 1.041 0.054 0.925 0.059 0.863 0.048 
GBLUP 0.981 0.040 1.030 0.053 0.942 0.059 0.910 0.038 
BLUP 0.966 0.053 1.020 0.053 0.895 0.119 0.287 0.259 
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Table S3   Length of chains, burn-in and hyper-parameters for Bayesian methods. 

 

Method Length of Chain Burn-in π 
Effect dist. and 

parameters 

BayesSSVS 100,000 10,000 0.999 
Normal 

Var estimated 

BayesC 
160,000 

5,200,000* 
30,000 

200,000* 
Estimated 

Normal 
Var estimated 

BayesB1 
160,000 

5,200,000* 
30,000 

200,000* 
Estimated 

Scaled Student-t 
df= estimated 

Scale= estimated 

BayesB2   5,200,000* 200,000* estimated 
Scaled Student-t 

df=4 
Scale= estimated 

BayesA1 160,000 30,000 - 
Scaled Student-t 

df= estimated 
Scale= estimated 

BayesA2 5,200,000* 200,000* - 
Scaled Student-t 

df= 4 
Scale= estimated 

Lasso1 
160,000 

5,200,000* 
30,000 

200,000* 
- 

Laplace 
rate=estimated 

Lasso2 100,000 10,000 - Laplace 

RR-BLUP 100,000 10,000 0.0 
Normal 

Var estimated 

* chain used for analysis of pine and wheat dataset 

 
 
 




