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ABSTRACT Phylogeny-based modeling of heterogeneity across the positions of multiple-sequence alignments has generally been
approached from two main perspectives. The first treats site specificities as random variables drawn from a statistical law, and the
likelihood function takes the form of an integral over this law. The second assigns distinct variables to each position, and, in
a maximum-likelihood context, adjusts these variables, along with global parameters, to optimize a joint likelihood function. Here, it is
emphasized that while the first approach directly enjoys the statistical guaranties of traditional likelihood theory, the latter does not,
and should be approached with particular caution when the site-specific variables are high dimensional. Using a phylogeny-based
mutation-selection framework, it is shown that the difference in interpretation of site-specific variables explains the incongruities in
recent studies regarding distributions of selection coefficients.

MODELING the heterogeneity of evolutionary regimes
across the different positions of genes is of great in-

terest in evolutionary genetics. Among the phylogeny-based
approaches taken are two main formulations. The first ap-
proach is generalized as follows: considering the ith alignment
column, written as Di, one defines a (potentially multivariate)
random variable, denoted here as xi. Then, given a set of
global parameters u, the likelihood for site i takes the form
of an integral over a chosen statistical law V(xi) and is written
as pðDijuÞ ¼

R
pðDiju; xiÞVðxiÞdxi. The random variable is said

to be integrated away. Moreover, the global (multidimen-
sional) parameter u may include elements controlling the
form of the statistical law V. Assuming independence be-
tween the sites of the alignment, the overall likelihood is
a product across all site likelihoods, written explicitly as
pðDjuÞ ¼ R

pðDju; xÞVðxÞdx ¼ Q
i

R
pðDiju; xiÞVðxiÞdxi.

The most well-known instance of the random-variable
approach is the gamma-distributed rates across sites model
proposed by Yang (1993). In this model, the random vari-
able is the rate at a given position—which acts as a branch-
length multiplier—and the statistical law governing it is
a gamma distribution of mean 1, and of variance 1/a. In
a maximum-likelihood framework, the shape parameter a is

included as an element of u, and this overall hypothesis
vector is adjusted to û, which maximizes the likelihood. It
should be noted that in practice, integrating over the statis-
tical law governing a random variable can be difficult, and in
the case of the gamma-distributed rates model most imple-
mentations rely on either a discretization method [which
reduces the integral to a weighted sum (Yang 1994,
1996)] or on MCMC sampling in a Bayesian framework
(e.g., Mateiu and Rannala 2006). In the latter context, the
sampling system straightforwardly enables the evaluation
of posterior distributions of random variables, but analogous
calculations are also possible in a maximum-likelihood
context, through empirical Bayes methods (see, e.g., Anisimova
2012). Other examples of phylogeny-based random variable
approaches are plentiful and include models for heterogeneous
nonsynonymous rates (Yang et al. 2000), for heterogeneous
nonsynonymous and synonymous rates (Kosakovsky Pond and
Muse 2005), and for heterogeneous amino acid profiles
(Lartillot and Philippe 2004).

A second line of work has taken what might be called an
extensive parameterization approach, within which each site-
specific variable xi is itself treated as part of the parameters
of the model, with the likelihood function optimized being
p(D|u, x) so as to obtain estimates û and x̂ (e.g., Bruno 1996;
Halpern and Bruno 1998; Kosakovsky Pond and Frost 2005;
Massingham and Goldman 2005; Delport et al. 2008; dos
Reis et al. 2009; Holder et al. 2008; Tamuri et al. 2009,
2012; Murrell et al. 2012). These articles continue to drive
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several lines of research. For instance, the seminal article by
Halpern and Bruno (1998) has greatly stimulated develop-
ments in population-genetics-based substitution modeling
(see Thorne et al. 2012, for more details) and more recent
studies, such as those of Tamuri et al. (2009, 2012), have
demonstrated promising applications of these modeling ideas.

The extensive parameterization approach, however, faces
serious statistical challenges. In contrast to the construction
of the random variable approach, where an observation
consists of an alignment site (Di), and where the form of the
statistical law will be inferred more reliably as more obser-
vations are provided (i.e., as the global-likelihood function
becomes a product across a greater number of site likeli-
hoods), in the extensive parameterization approach, addi-
tional sites also introduce their own new set of xi variables
and thus provide no information for the overall inference of
across-site heterogeneity. Tamuri et al. (2012) suggest that
in such modeling contexts it is the addition of sequences that
is of relevance. However, this view is problematic. The likeli-
hood function depends on the underlying tree topology (in-
voking the pruning algorithm specific to that tree for
computing site likelihoods, as described by Felsenstein
1981); in adding a new sequence, one is not computing
the likelihood based on one more observation. Rather, one
is changing the definition of the likelihood function itself,
since a new sequence implies a new underlying tree, typi-
cally adding a pair of branch length parameters. For this
reason, and as argued by Yang (see, e.g., Yang 2006, p.
190, and references therein), the tree structure is perhaps
best considered as constituting an inherent part of the over-
all model construction. A new sequence implies a new un-
derlying likelihood model, and thus the behavior of such
a system as the number of sequences increases does not
correspond to the usual large-sample conditions of likeli-
hood analysis. Altogether, there is no way to increase the
richness of the data (through further data collection of ei-
ther positions or taxa) in the extensive parameterization
approach without, in so doing, changing the precise para-
metric form of the model, and one is thus left without any
asymptotic conditions to envisage.

These difficulties of extensive parameterization do not
mean that all applications of the approach will necessarily
be statistically misbehaved. Instead, they point to the fact
that the usual theoretical guaranties of likelihood estimation
(e.g., consistency and efficiency) do not directly apply in
such contexts (Felsenstein 2001; Yang 2006), since there
is no way of presenting more data to a given parametric
form—the assumption of asymptotic theory. Also note that
there may be conditions for which subsets of parameters
could be shown to be well estimated, even without proper
asymptotic conditions for the entire set of parameters. These
conditions may be difficult to foresee, however, and in appli-
cations the extensive parameterization approach should
probably be subjected to careful analytical examination
and/or simulation studies. When site-specific variables are
of low dimensionality, previous works have found that

extensive parameterization approaches can provide reliable
inference systems, particularly when these inferences are
not directly based on the values of site-specific variables
themselves (e.g., Kosakovsky Pond and Frost 2005; Massing-
ham and Goldman 2005). However, relatively little work has
been done to examine cases in which site-specific variables
are of high dimensionality. Moreover, a recent application of
the extensive parameterization approach in a high-dimen-
sional case has produced results that conflict with previous
studies employing similar models under random variable
approaches (Tamuri et al. 2012).

To explore the differences between random variable and
extensive parameterization approaches in a high-dimensional
instance, what follows uses a mutation-selection framework
inspired by Halpern and Bruno (1998) in both modeling
contexts. The form of the substitution model is described
elsewhere (e.g., Rodrigue and Aris-Brosou 2011). Briefly,
the motivation behind the form of model of focus here is to
define a substitution process from first principles of population
genetics, based on a global set of mutational parameters and
a set of site-specific variables controlling amino acid fitness.
Such models allow one to calculate the distribution of scaled
selection coefficients from phylogenetic data (see, e.g., Yang
and Nielsen 2008; Tamuri et al. 2012), and the emphasis here
is on contrasting the distributions obtained from real data
under the maximum-likelihood extensive parameterization
approach (Figure 1) and some Bayesian random variable ap-
proaches (Figure 2), while inspecting site-specific inferences
(Figure 3). Simple simulation experiments are also performed
to further evaluate the approaches (Figure 4). Results from the
analysis of the real data set highlight the very different con-
clusions of the approaches in a high-dimensional context and
suggest that the extensive parameterization approach is prone
to overfitting. Results from the analysis of simulated data sets
confirm this and show how the extensive parameterization
approach can lead to markedly erroneous inferences.

Materials and Methods

Data

The PB2 influenza data set (with the tree topology)
analyzed by Tamuri et al. (2012), composed of 401 sequen-
ces, 759 codons, is reanalyzed here for the sake of compar-
ison between the extensive parameterization and random
variable approaches.

Codon substitution

The basic form of the codon substitution process is based
on global mutational parameters and site-specific amino acid
variables. The mutational parameters, consisting of a set of
(reversible) nucleotide exchangeabilities, @ ¼ ð@abÞ1# a;b# 4,
with the constraint

P
1# a, b#4@ab ¼ 1, and a set of nucleotide

propensity parameters, u ¼ ðuaÞ1# a# 4, with
P4

a¼1ua ¼ 1,
govern the rates of synonymous point-mutation events—altering
only one of the three positions of a codon, going from nucleotide
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state a to b; the synonymous substitution rates are thus pro-
portional to @abub. This factor also applies to nonsynony-
mous rates, but the site-specific amino acid variables
further modulate nonsynonymous events; for site i, the
amino acid variables are denoted fðiÞ ¼ ðfðiÞ

l Þ1# l# 20, withP
1# l# 20f

ðiÞ
l ¼ 1 and define the scaled selection coefficient

SðiÞlm ¼ ln  fðiÞ
m 2 ln  fðiÞ

l associated with replacing amino acid

l with m (the scale is the effective chromosomal population
size). The scaled selection coefficient in turn defines the
fixation factor—the ratio of the fixation probability of the
amino-acid-replacing mutation to the fixation probability of
a neutral mutation—given as SðiÞlm=ð12 e2SðiÞlmÞ, which is mul-
tiplied to the mutational factor to give the nonsynonymous
codon substitution rate (also see Yang and Nielsen 2008, for

Figure 1 Distribution of scaled
selection coefficients at stationar-
ity of the codon substitution pro-
cess (see, e.g., Tamuri et al.
2012). The distributions are for
the PB2 data set studied in
Tamuri et al. (2012). (Left) The
results from the extensive param-
eterization approach (in the max-
imum-likelihood context); the top
left is the distributions for all pos-
sible mutations, and below it is
the distribution for all substitu-
tions (i.e., those mutations that
reached fixation). (Left, bottom
two) Like the top two left, but
consider only nonsynonymous
events. (Right) The same distribu-
tions as the left, but evaluated
while excluding events to unob-
served amino acid states.
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more details). The model closely resembles the one recently
studied by Tamuri et al. (2012), in the extensive parameter-
ization context.

Markov chain Monte Carlo sampling

A simulated annealing algorithm was used to perform
maximum-likelihood estimation for the extensive parame-

terization approach. The algorithm is described in Rodrigue
et al. (2007), and works as follows. Update operators are
applied on u and x (see, e.g., Rodrigue and Lartillot 2012, for
explanations on Markov chain Monte Carlo (MCMC) update
operators), but when these operators propose changes to u9
and x9 that result in a decrease in the likelihood score, the
proposed change is accepted with a probability proportional

Figure 2 Distribution of scaled
selection coefficients at stationar-
ity of the codon substitution pro-
cess, as in Figure 1. (Left) From
a random-variable interpretation,
in a Bayesian context, with a flat
Dirichlet prior on amino acid var-
iables (as used in Lartillot and
Philippe 2004; Rodrigue and
Aris-Brosou 2011). (Right) A free
set of hyperparameters control-
ling amino acid variables (e.g.,
as used in Lartillot 2006). Rows
are as in Figure 1.

560 N. Rodrigue



to ½pðDju9; x9Þ=pðDju; xÞ�t, where t is the inverse temperature
parameter of the simulated annealing procedure. As t

increases, the MCMC sampler freezes, meaning that pro-
posals that decrease the likelihood have a progressively
lower probability of acceptance. A linear cooling schedule
is applied, starting at t = 1, increasing in steps of 500 every
5 cycles; each cycle includes 10 multiplicative updates to
each branch length, 10 profile updates to mutational param-
eters (u and @), and 15 profile updates to each of the site-
specific amino acid variables (f). The algorithm’s cooling is
terminated at t = 10, 001, and the chain is allowed to pro-
ceed for another 1000 cycles. Each simulated annealing run
requires about 4 weeks on one hyper-threaded core of an
Intel i7 processor.

For Bayesian posterior sampling, a data-augmentation
MCMC sampling system (see, e.g., Rodrigue et al. 2008b)
was applied. Such a system, which is not compatible with
the simulated annealing algorithm, is much more efficient
than a full pruning-based MCMC sampler and, critically for
sampling from the posterior, allows for many more updates
per cycle. The basic reason for this is that, conditional on
a particular data augmentation, MCMC updates can be per-
formed without invoking costly matrix exponentiation or

pruning algorithms. These costly operations need only be
done once per cycle, before drawing a new data augmenta-
tion. Altogether, each cycle includes 200 multiplicative
updates to branch lengths, 100 profile updates to mutational
parameters, 100 profile updates on site-specific amino acid
variables, 100 updates on hyperparameters, and a (Gibbs-
based) data-augmentation update. Draws were saved every
five cycles until reaching a sample size of 1100, and the first
100 draws were discarded as burn-in. Bayesian MCMC runs
require about 5 weeks of CPU time. Priors (under the
approaches in the Bayesian alternatives subsection below)
not discussed herein are as in Rodrigue et al. (2008a).

Results and Discussion

Extensive parameterization

First, adopting the extensive parameterization approach for
the moment, branch lengths, mutational parameters, and
site-specific amino acid variables were jointly adjusted to
near-maximum-likelihood values. Near is used in the sense
that although the simulated annealing runs converged
quickly for the mutational parameters, and did so to values
closely matching those reported by Tamuri et al. (2012) (at

Figure 3 Amino acid logo checks, for the first 50 positions of the PB2
data set. First row: the site-specific frequencies of amino acids observed in
the translated alignment. Second row: the site-specific variables inferred
under the maximum-likelihood extensive parameterization approach
(closely corresponding to the approach used in Tamuri et al. 2012). Third
and fourth rows: the posterior mean site-specific random variables (under
a model with a flat Dirichlet prior, in the third row, and under a model
with a free set of hyperparameters controlling site-specific random vari-
ables, in the fourth row).

Figure 4 Distribution of scaled selection coefficients for all mutations at
stationarity of the codon substitution process. The distributions are for
simulated data. (Top) The data analyzed are simulated from random
draws from the posterior under the flexible Bayesian model (the distribu-
tion of S based on the parameters inferred from the real data are shown
as a black histogram, whereas the distributions obtained from the infer-
ence applied to the simulated data, for 50 replicates, are shown as a red
lines for the extensive parameterization approach and green lines for the
flexible Bayesian model). (Bottom) Data simulated using a simple muta-
tional model (i.e., which considers all amino acids as equivalent at all
positions, also for 50 replicates).
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@̂AC ¼ 0:069, @̂AG ¼ 0:358, @̂AT ¼ 0:037, @̂CG ¼ 0:016,
@̂CT ¼ 0:438, and @̂GT ¼ 0:081 for the exchangeability
parameters, and ûA ¼ 0:392, ûC ¼ 0:177, ûG ¼ 0:216, and
ûT ¼ 0:214 for the propensity parameters), branch lengths,
and especially site-specific amino acid variables, were diffi-
cult to optimize. Using a dozen simulated annealing runs, it
was found that, although having a sharply defined area of
high likelihood, the likelihood surface has a weak gradient,
particularly so with respect to amino acid variables, within
this high-likelihood area. For the amino acid variables, this
area has low values for those variables corresponding to
amino acids unobserved in the alignment (see Figure 3, first
and second rows). This property is another indication of
a potential statistical problem: the guaranties of likelihood
theory break down when the optimum is approached by
having parameters tend to the boundary of the permissible
space of values (e.g., to 0, in the present formulation) or
having them grow unbounded (e.g., to 2N in the formula-
tion of Tamuri et al. 2012), since this is assumed not to be
the case in traditional asymptotic derivations (e.g., Wald
1949). Proceeding regardless, small differences obtained
across the simulated annealing runs did not substantially
affect the distribution of selection coefficients inferred at
stationarity, and the results from one run are displayed on
the left side of Figure 1.

These distributions match well with those reported in
Tamuri et al. (2012) and have the feature of a large pro-
portion of highly deleterious mutations (scaled selection co-
efficient S # 210, for instance, in Figure 1, top left).
However, as argued herein, this feature is a result of the
extensive parameterization approach leading to exaggerated
conclusions in a high-dimensional case.

Within the extensive parameterization approach, each
codon site i has its own substitution model, distinguished
from other codon sites by its amino acid variables; in this
way the model at site i is tailored to observation Di. At first
sight it may appear that the use of 401 rows (codons) for
each Di represents a large amount of information. However,
one of the most important points of phylogenetic analysis is
that sequences are not considered independent realizations
of a substitution process. Instead, they are considered as
related realizations of that process, and these relations are
accounted for in the use of a tree structure. In practice, for
typical alignments, many sites are observed to be in the
same state for a large proportion of the sequences at hand.
For the data set studied here, 679 of the 759 sites have more
than half the 401 codons in an identical state. Averaging
across all sites, the mean number of codon states required
to cover 95% of a site’s empirical codon frequency profile is
�3.2. Presented with this limited signal from which to infer
the 19 degrees of freedom modulating the rates of all pos-
sible nonsynonymous point mutations at a given site, the
model will tend to consider unobserved amino acids as
highly deleterious or lethal (although there can be excep-
tions for cases in which unobserved amino acids facilitate
substitution trajectories between certain amino acids; see

Holder et al. 2008). As a result, events from observed to
unobserved amino acids will tend to have large negative
scaled selection coefficients. Indeed, evaluating the distribu-
tions while discounting events to unobserved amino acids
(Figure 1, right) does not produce a large peak at S # 210.

Previous works have referred to the extensive parame-
terization approach’s inherent high potential for overfitting
as the infinitely many parameters trap (Felsenstein 2001;
Yang 2006, p. 272). Several aspects of the present applica-
tion suggest the conditions of such a trap: the values of sites’
amino acid variables appear highly data specific (comparing
the first and second rows of Figure 3); the distribution of
selection coefficients of substitutions is of very high com-
plexity (Figure 1, bottom); and finally, the approach is of
very high dimensionality (the amino acid variables alone
introduce 14,421 degrees of freedom to the model) relative
to the data set’s size. A careful comparison with other
approaches seems warranted.

Bayesian alternatives

Strategies based on penalized likelihood or smoothing might
be applicable and pertinent in extensive parameterization
applications, but perhaps the simplest alternative is to adopt
a random variable interpretation instead (Felsenstein 2001;
Yang 2006), within which one can define the parametric
form of a model without requiring a count of the number
of data columns. However, the discretization approaches to
handling the integration of site-specific variables over a sta-
tistical law—as called for under the random variable ap-
proach—do not easily extend to multivariate cases, such
as that studied by Tamuri et al. (2012) and reprised above,
making it more challenging to adopt a random variable in-
terpretation in a maximum-likelihood context. One could
rely on MCMC sampling to estimate the gradient of the
likelihood surface with respect to the parameter governing
the statistical law on site variables and follow that gradient
to a maximum (e.g., Rodrigue et al. 2007). On the other
hand, the MCMC approach lends itself naturally to a Bayes-
ian context, where the random variable interpretation is in-
trinsic. Briefly, in the Bayesian MCMC context, the sampling
methodology for the random variable interpretation falls
into a class of methods known as parameter expansion
(Liu et al. 1998), which simply exploits the fact that any
inferences relying on u, and based on the posterior prob-
ability p(u|D), can equivalently be based on the joint posterior
of u and the random variables x, written as p(u, x|D);
the marginal and joint distributions relate as pðujDÞ ¼R
pðu; xjDÞdx} R

pðDju; xÞVðxÞdx, and u follows the same
distribution in both cases. With parameter expansion, x is
considered an auxiliary variable, with MCMC updates ap-
plied to it to effectively integrate over V, and the posterior
distribution of x is thus available as a by-product of the
sampling system used for integration.

A few simple Bayesian models are explored, keeping with
the mutation-selection formulation. A first model has a flat
Dirichlet prior as the statistical law governing site-specific
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amino acid variables (Lartillot and Philippe 2004; Rodrigue
and Aris-Brosou 2011); this model is referred to as the rigid
model. In a second model, the parameters governing the
prior statistical law are treated as free parameters (often
referred to as hyperparameters in such cases, and here con-
sisting of a concentration parameter and a center profile, as
in Lartillot 2006); this model is referred to as the flexible
model. The distributions of scaled selection coefficients
obtained using the posterior mean parameter and random
variable values of the post-burn-in MCMC runs under these
models are displayed in Figure 2.

Under the random variable interpretation of a Bayesian
framework, no peak of highly deleterious mutations at S #

210 is inferred (e.g., Figure 2, top rows). In this framework,
the posterior means of site-specific random variables are far
less committal with regard to unobserved amino acids (Fig-
ure 3, third and fourth rows), resulting in few mutations
with large, negative, scaled selection coefficients. The dis-
tributions obtained under the rigid model (Figure 2, left
columns) are much less contrasted than those obtained un-
der the flexible model (Figure 2, right columns). This is not
surprising. Assuming a uniform base distribution is analo-
gous to arbitrarily setting, say, a = 10 in gamma-distributed
rates across sites model; in most cases where such a model is
warranted, treating a as a free parameter, part of the overall
inference, will better capture the underlying rate heteroge-
neity. Here, the flexible model infers a more biologically
plausible proportion of deleterious mutations, although
not to the point of the extensive parameterization approach;
posterior means of amino acid variables are correspondingly
more focused under this model (Figure 3, fourth row).

Simulations

Analyses of the PB2 data set under extensive parameteriza-
tion and random variable approaches lead to different
conclusions: whereas the extensive parameterization ap-
proach considers unobserved amino acids as highly delete-
rious, the Bayesian random variable approaches are less
conclusive in this regard. Theoretical arguments aside, it
remains unclear which aspects of the results are features of
the inference system and which are features of the data. As
a simple experiment to emphasize the differences between
the two approaches, 50 random draws from the posterior
sample obtained under the flexible Bayesian model were
used to simulate artificial data sets. Each artificial data set
was then analyzed, using the extensive parameterization
approach and the flexible Bayesian model, and the distri-
butions of scaled selection coefficients for all mutations are
displayed for all replicates in Figure 4, top. The distribution
obtained under the original inference on the true data set is
displayed to serve as a reference (Figure 4, top black
histogram)

The flexible Bayesian random variable model (Figure 4,
top, green lines) provides relatively good performance, but
the results show the difficulty in estimating very low values
for amino acid variables; although a small secondary mode

is inferred around S � 27 (although graphically barely vis-
ible), reflecting the secondary mode of the distribution
obtained based on the real data, its lesser prominence is
indicative of too weakly peaked amino acid variables. None-
theless, in terms of overall shape and location of the distri-
butions, the results of the random variable approach appear
more sensible than those obtained under extensive param-
eterization. With the latter, the distribution (Figure 4, top,
red lines) indicates a large proportion of mutations with S #

210, qualitatively matching that obtained on the real data
when using this same approach, but far from matching the
simulation conditions. Such a distribution further indicates
that the results of the extensive parameterization approach
on the real data may not be reliable.

Repeating this experiment using a pure mutational model
(i.e., a version of the mutation-selection model that treats all
amino acids as equivalent at all sites) to simulate the artifi-
cial data sets also yields a disappointing result for the exten-
sive parameterization approach (Figure 4, bottom, red lines),
again, with a large peak at S # 210. This result again con-
firms the inappropriate statistical properties of the extensive
parameterization approach in high-dimensional contexts. The
flexible Bayesian model, in contrast, appropriately leads to
a tight distribution around S = 0 (Figure 4, bottom, green
lines), essentially recovering the simulation conditions.

Hierarchical modeling directions

Although the extensive parameterization utilized in Tamuri
et al. (2012) leads to the inference of a biologically plausible
large proportion of highly deleterious mutations, which, as
discussed by these authors, better matches results from pre-
vious experimental and population-level studies, such infer-
ences rest on what appear to be conditions of overfitting and
lead to overly contrasted inferences. As discussed previously,
if one wishes to present the model with a larger amount of
data, one finds that the model itself becomes a “moving
target,” changing parametric forms as the data set grows
in size. Because of this asymptotic deficiency, the approach
should be treated with great caution.

When a random variable approach is adopted, large
proportions of highly deleterious mutations are not inferred,
at least not to the level of the extensive parameterization
approach. That the distributions of scaled selection coef-
ficients under the random variable approaches studied here
still do not seem to be compatible with experimental studies,
showing a large proportion of highly deleterious mutations,
begs for future investigations. Indeed, while the random
variable approach will not be prone to overfitting, it will
exhibit only statistical consistency inasmuch as the true
distribution of across-site heterogeneity is a member of the
family of distributions considered under the prior specifica-
tions on hyperparameters. Correspondingly, the distribu-
tions of scaled selection coefficients obtained in practice
when the hyperparameters are fixed to a flat Dirichlet prior
(the rigid model) do not seem biologically plausible, and the
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fact that model with free hyperparameters (the flexible
model) produces somewhat more sensible results suggests
that further work aimed at suitably capturing heterogeneity
in the mutation-selection framework could be worthwhile.

The range of models worthy of inclusion in future
investigations could be broad. Combining mixture modeling
ideas with the parametric framework adopted herein, one
could envisage a model with a mixture of base distributions
governing site-specific amino acid random variables; in line
with the first example mentioned in the opening section, an
analogous idea was used by Mayrose et al. (2005), in
a model with the rates across sites governed by a mixture
of gamma distributions. The nonparametric system based on
the Dirichlet process (Rodrigue et al. 2010) also constitutes
a promising and generalizing direction along these lines. A
site-heterogeneous modeling project thus becomes an explo-
ration of alternative hierarchical formulations governing
a random-variable interpretation.
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