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ABSTRACT Although the concept of genomic selection relies on linkage disequilibrium (LD) between quantitative trait loci and
markers, reliability of genomic predictions is strongly influenced by family relationships. In this study, we investigated the effects of LD
and family relationships on reliability of genomic predictions and the potential of deterministic formulas to predict reliability using
population parameters in populations with complex family structures. Five groups of selection candidates were simulated by taking
different information sources from the reference population into account: (1) allele frequencies, (2) LD pattern, (3) haplotypes, (4)
haploid chromosomes, and (5) individuals from the reference population, thereby having real family relationships with reference
individuals. Reliabilities were predicted using genomic relationships among 529 reference individuals and their relationships with
selection candidates and with a deterministic formula where the number of effective chromosome segments (Me) was estimated based
on genomic and additive relationship matrices for each scenario. At a heritability of 0.6, reliabilities based on genomic relationships
were 0.002 6 0.0001 (allele frequencies), 0.022 6 0.001 (LD pattern), 0.018 6 0.001 (haplotypes), 0.100 6 0.008 (haploid
chromosomes), and 0.318 6 0.077 (family relationships). At a heritability of 0.1, relative differences among groups were similar.
For all scenarios, reliabilities were similar to predictions with a deterministic formula using estimated Me. So, reliabilities can be
predicted accurately using empirically estimated Me and level of relationship with reference individuals has a much higher effect on
the reliability than linkage disequilibrium per se. Furthermore, accumulated length of shared haplotypes is more important in de-
termining the reliability of genomic prediction than the individual shared haplotype length.

CURRENTLY, it is feasible in most plant and animal breed-
ing programs to genotype individuals at low costs for

many thousands of single-nucleotide polymorphisms (SNPs)
spread across the whole genome. With a sufficiently large
reference population containing individuals with phenotypes
and genotypes, SNP effects can be estimated. Subsequently,
estimated SNP effects and an individual’s genotype for each
SNP can be used for genomic prediction of breeding values.
Selection based on those genomic breeding values is called
genomic selection (Meuwissen et al. 2001) and this method
has high potential both in animal (e.g., Hayes et al. 2009a)

and plant breeding (e.g., Heffner et al. 2009; Jannink et al.
2010). Many studies demonstrated higher reliabilities for
direct genomic breeding values compared to breeding val-
ues based on pedigree information only, especially for juve-
nile individuals without phenotypic information (e.g.,
Meuwissen et al. 2001; Calus et al. 2008; VanRaden 2008).

The response to genomic selection relies on linkage
disequilibrium (LD) between specific alleles of SNPs and
quantitative trait loci (QTL) (Meuwissen et al. 2001); the
stronger the LD, the higher the reliability of genomic pre-
dictions (Calus et al. 2008; Solberg et al. 2008). Since LD
between QTL and SNP will decrease over generations, re-
liability of genomic prediction is expected to decrease with-
out reestimating SNP effects in more recent generations
(Muir 2007). However, the observed decrease in reliability
of genomic predictions over generations following the gen-
eration in which SNP effects are estimated is higher than the
expected decrease due to the decay of LD between SNP and
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QTL alone (Habier et al. 2007; Habier et al. 2010). This
higher decrease in reliability is a result of decreasing family
relationships (i.e., all nonzero additive genetic relationships)
over generations of the selection candidates with the refer-
ence population, indicating that SNPs used for genomic
selection not only capture LD between SNP and QTL, but
capture family relationships among individuals as well (Habier
et al. 2007; Gianola et al. 2009; Habier et al. 2010). Indeed,
several studies already showed higher reliabilities for genomic
predictions when selection candidates were more closely
related to the reference population (e.g., Meuwissen 2009;
Habier et al. 2010; Makowsky et al. 2011).

Separating effects of LD and family relationships on the
reliability of genomic predictions is difficult because LD and
family relationships are entangled. The extent of LD in
a population is related with effective population size (NeÞ
(Sved 1971); the lower Ne, the higher the kinship level
among individuals and the higher the extent of LD (Falconer
and Mackay 1996). Besides that, LD can differ between
families within breed (Dekkers 2004) and differs even more
between diverged populations or breeds (De Roos et al.
2008; De Roos et al. 2009). A high marker density may en-
able achievement of similar LD between markers and QTL
across breeds (De Roos et al. 2008); however, family rela-
tionships are still absent. Thus far, little is known about the
effect of LD in situations without family relationships on the
reliability of genomic predictions.

Deterministic formulas for predicting reliability of geno-
mic prediction using population and trait parameters, which
can be used before data on selection candidates are collected,
are derived by Daetwyler et al. (2008) and Goddard (2009).
Both formulas assume that selection candidates are unrelated
to individuals from the reference population. Hayes et al.
(2009d) applied the formula of Goddard (2009) to individuals
that were related to the reference population; however, only
simple family structures were used, such as selection candi-
dates with full-sibs, half-sibs, or double first cousins in the
reference population. A deterministic method for predicting
the reliability of genomic prediction that accounts for any
type of family structure, by using all relationships among
animals in a population, was derived by VanRaden (2008).
However, the method of VanRaden (2008) uses genotypes of
selection candidates and reference individuals to predict
individual reliabilities instead of population parameters to
predict the average reliability for a population. Therefore,
this formula can be applied only after genotypic data are
collected on selection candidates in contrast to the previous
two deterministic formulas (Goddard et al. 2011). Family
structures occur in real data and, so far, possibilities of ap-
plying deterministic formulas based on population parame-
ters to predict reliability of genomic prediction are limited in
such situations.

The first objective of this study was to examine the effects
of LD and family relationships on the reliability of geno-
mic predictions. The second objective of this study was to
investigate whether deterministic prediction formulas for

the reliability of genomic prediction based on population
parameters can be used in real data sets with a complex
family structure between selection candidates and individ-
uals in the reference population. This article is organized
as follows: first, we start by describing a real reference
population set and the different sets of selection candidates
simulated based on information of the reference population.
Thereafter, the different methods to predict the reliabilities
of the selection candidates are explained. Finally, results are
presented and discussed.

Materials and Methods

In this study, reliability of genomic prediction was predicted
for five scenarios with simulated genotypes for selection
candidates and using a reference population composed of
real individuals with genotypic information. To create
differences in LD and family relationships among the five
scenarios, genotypes for the selection candidates were
simulated using allele frequency, LD pattern, haplotypes,
chromosomes, or family relationships from the reference
population (Table 1). Finally, reliability of genomic predic-
tion for each of the five scenarios was determined using two
methods, namely those presented by: (1) VanRaden (2008),
which explicitly accounts for family relationships between
selection candidates and reference individuals, and (2)
Daetwyler et al. (2008), where we aimed to account for
family relationships by using an alternative way to estimate
one of the parameters. For the last scenario, reliability was
also empirically evaluated using observed phenotypic data
and leave-one-out cross-validation.

Reference population

The reference population consisted of 529 genotyped
Holstein–Friesian cows from the Netherlands. The cows
were genotyped using the Illumina 50K SNP chip (Illumina,
San Diego, CA), containing 54,001 SNPs. During a quality
check, performed on a larger data set including those 529
cows, SNPs with a GCscore #0.2, a GTscore #0.55, a call
rate #95%, a minor allele frequency #1%, deviating from
Hardy–Weinberg equilibrium (x2 $600), and SNP that
could not be assigned to a location on one of the chromo-
somes or were assigned to the X chromosome using the
UMD3.0 bovine genome assembly from the University of
Maryland were deleted. Individuals with Mendelian incon-
sistencies (Calus et al. 2011) between SNP data and pedi-
gree in genotyped parent–offspring pairs and among sibs
were removed. The software package Beagle (Browning
and Browning 2007) was used to simultaneously phase
the SNP data and impute any missing genotypes due to
low call rates using the larger data set. One of the SNPs
from each SNP pair with very high LD (i.e., r2 .0.99) within
the population of 529 individuals was deleted as well, to
avoid problems of nonpositive definite matrices during the
analyses. Finally, 35,002 SNPs remained for the purpose of
the study.

622 Y. C. J. Wientjes, R. F. Veerkamp, and M. P. L. Calus



The data set used in this study contained many close
family relationships. In total, the population contained 117
mother–daughter pairs, 48 full-sib families with on average
2.27 individuals per family, 69 paternal half-sib families with
on average 7.23 individuals per family, and 65 maternal
half-sib families with on average 2.65 individuals per family.

Simulation of selection candidates

In this study, five different scenarios were considered in
which genotypes of 529 selection candidates for 35,002
SNPs were simulated, using either the allele frequency, LD
pattern, haplotypes, chromosomes, or family relationships
from the reference population. The deterministic equations
used to predict the individual reliabilities only used geno-
type information and considered variance components, so
no phenotypes were simulated for the selection candidates.
The last scenario was an exception to this, where we also
used observed phenotypes for an empirical evaluation of the
reliability.

FREQ: The first scenario (FREQ) simulated selection candi-
dates using only allele frequencies of the reference popula-
tion to show the potential reliability of genomic prediction
in the absence of LD and family relationships. This scenario
allocated genotypes to the simulated individuals with prob-
abilities calculated by using the observed allele frequencies in
the reference population, assuming that the loci were inde-
pendent and that the population was in Hardy–Weinberg
equilibrium.

LD: The second scenario (LD) used allele frequency and LD
pattern between the SNPs of the reference population to
simulate selection candidates, resulting in the potential
reliability due to LD in the absence of family relationships.
Only the 50 surrounding SNPs of a certain SNP were taken
into account. To achieve this, a multivariate normal distri-
bution was simulated by drawing one random number per
SNP for each individual from a standard normal distribution,
i.e., N(0,1). Those random numbers were multiplied with
the Cholesky decompositions of the correlation matrices be-
tween the SNPs per chromosome from the reference popu-
lation. Whenever this correlation matrix was not positive
definite, it was bended following Jorjani et al. (2003). The
correlation matrices were calculated from the phased allelic
data and represent LD; i.e., the square of those values is the
well-known LD measure r2 (Hill and Robertson 1968).

The random numbers drawn from the multivariate
normal distribution were translated into genotypes by
calculating two cut-off values on the normal distribution for
each SNP using the allele frequency (pi) of the reference
population: (1) a cut-off value with an area of size ð12piÞ2
to the left of it and (2) a cut-off value with an area of size
ðpiÞ2 to the right of it. When the random number was below
the first cut-off value (above the second cut-off value), the
genotype of the individual for that SNP was set to 21 (1).
When the random number was in between the two cut-off
values, which was the case for a proportion of 2pið12 piÞ of
the individuals, the genotype was set to 0.

HAP: Two individuals coming from the same population are
expected to share some haplotypes, even if they do not share
a common ancestor in the recent past. In this third scenario
(HAP), the reliability due to sharing haplotypes with
individuals in the reference population was investigated.
The number of haplotypes used was equal to the number of
effective chromosome segments, Me, present in the refer-
ence population (estimation of Me is explained later). For
simplicity, all haplotypes were assumed to have an equal
length in basepairs, although in reality haplotype length
depends on LD structure of the genome. For each haplotype,
1058 (529 · 2Þ haploid copies were present in the reference
population. Simulating selection candidates was done by
randomly drawing two copies per haplotype from those
1058 copies and combining them across haplotypes to form
the genome of the simulated individual. The number of hap-
loid haplotypes shared between a simulated individual and
a specific reference individual was divided equally over the
529 reference individuals. Note that this scenario is a theo-
retical scenario and used as an intermediate between the LD
and FAM scenario.

CHR: VanRaden (2009) suggested a hypothetical scenario
in which individuals are created by combining the best chro-
mosomes present in a population to further increase the
genetic progress. Although, e.g., chromosome substitution
lines exist in mice by successive backcrossing of inbred lines
(Nadeau et al. 2000; Singer et al. 2004), the scenario sug-
gested by VanRaden (2009) is currently not feasible in prac-
tice for most animal and plant species. The reliability of
those hypothetical individuals was investigated in this
fourth scenario (CHR). As an alternative to picking the
best chromosomes, we simulated individuals by randomly

Table 1 Overview of the information from the reference population used in the simulations of the different
scenarios

Scenarios Allele frequencies LD pattern Haplotypes Chromosomes Family relationships

FREQ X
LD X X
HAP X X X
CHR X X X X
FAM X X X X X

Effect LD and Relations on Reliability 623



picking chromosomes from the reference population. Selec-
tion candidates in this scenario were in general simulated in
the same way as in the HAP scenario, but instead of haplo-
types, haploid chromosomes were used. The maximum
number of haploid chromosomes shared between a simu-
lated individual and a reference individual was restricted
to one.

FAM: For this last scenario (FAM), instead of simulating
genotypes of selection candidates, genotypes of real indi-
viduals were used to include family relationships. Each of
the selection candidates had at least one genomic relation-
ship of at least 0.125 with one of the individuals in the
reference population, which is equal to the relationship of
an individual with its great-grandparent. Reliabilities for this
scenario were predicted by deleting each individual once
from the reference population and using the remaining 528
individuals as reference population. This approach is also
known as leave-one-out cross-validation and the effect due
to differences of the composition of the reference popula-
tion by one individual on the reliability is expected to be
negligible.

For an empirical evaluation of the reliability of genomic
prediction in this scenario, precorrected phenotypes on milk
production were used. For all 529 cows used as selection
candidate and reference individual, precorrected pheno-
types were available. A detailed description of the precor-
rection is given by Veerkamp et al. (2012).

All scenarios were set up such that allele frequencies
across simulated selection candidates were expected to
be similar to the allele frequencies observed in the
reference population. Inspection of the simulated data
showed that this was indeed the case. See supporting
information, File S1, for the (simulated) genotypes and
phenotypes.

Predicting reliability

Reliabilities were predicted in all scenarios using two
different deterministic methods at a heritability of 0.1 and
0.6. One of the deterministic methods was also used to study
the effect of size of the reference population on the
magnitude of effects of LD vs. family relationships on the
reliability of genomic prediction.

Besides both deterministic methods, reliabilities were
also predicted using phenotypes on milk production in
the FAM scenario. For a good comparison of the empirical
and deterministic predicted reliabilities, the estimated
heritability for milk production based on the empirical
data was used as well to predict the reliability of genomic
prediction in the FAM scenario using the deterministic
methods.

VanRaden (2008): The first method to predict reliability
was derived by VanRaden (2008) and predicted reliability of
genomic prediction separately for each selection candidate
as

r2VR ¼ c
�
Gþ I

�
s2
e

s2
a

��21

c9; (1)

in which c is a vector of genomic relationships of the selec-
tion candidate with each of the individuals in the reference
population, G is the genomic relationship matrix of the ref-
erence population, I is an identity matrix, s2

e is the residual
variance, and s2

a is the additive genetic variance. The heri-
tability (h2) of the trait is reflected by ð12 h2Þ=h2 ¼ s2

e=s
2
a.

The genomic relationship matrix is calculated as
G ¼ XX9=n (Yang et al. 2010), in which n is the number of
SNPs. The X matrix contains standardized genotypes calcu-
lated as xij ¼ ½gij 2 2ðpi 2 0:5Þ�= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pið12 piÞ
p

, in which gij
codes the genotype at SNP locus i for individual j as 21
for a homozygote, 0 for the heterozygote, and 1 for the
opposite homozygote and pi is the allele frequency of the
second allele at locus i (for which the homozygote genotype
is coded 1). Subtraction of 2ðpi 2 0:5Þ from the genotype
code sets the average value of the estimated allele effects
per locus to zero. Division by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pið12 piÞ

p
results in unbi-

ased estimates of the relationships among individuals using
XX9. Diagonal elements were calculated in the same way as
off-diagonal elements, following Goddard et al. (2011) and
Meuwissen et al. (2011).

Another common approach is to calculate G as
ZZ9=2

P​ pið12 piÞ, in which Z is calculated as
gij 2 2ðpi 2 0:5Þ (e.g., VanRaden 2008; Legarra et al.
2009). This approach gives less weight to alleles with
a low allele frequency, resulting in a weighted G. Meuwissen
et al. (2011) suggested that the approach of Yang et al.
(2010), i.e., G ¼ XX9=n, would result in the best, un-
weighted, estimate of G when a high proportion of loci with
low minor allele frequencies are used. Therefore, the ap-
proach of Yang et al. (2010) was used to calculate G in this
study.

The vector including genomic relationships of the selection
candidate with each of the individuals in the reference pop-
ulation is computed as c ¼ x2X9=n (VanRaden 2008; Yang
et al. 2010). In this calculation, X is the Xmatrix of the reference
population and x2 is the X matrix of the selection candidates,
which becomes a vector when only one selection candidate at
a time is evaluated. Similarly, c becomes a vector as well.

The calculated G and c are biased, because G and c are
based on a sample of segregating loci from the whole ge-
nome of an individual (Powell et al. 2010; Goddard et al.
2011). For an unbiased estimate of G (i.e., Ĝ), we assume
that (Yang et al. 2010)

Ĝ ¼ Gþ E ¼ A þ ðG2AÞ þ E (2)

in which E is a matrix with error terms due to sampling of
the SNPs from the genome. The variances for those matrices
are VarðĜ2AÞ ¼ VarðG2AÞ þ VarðEÞ in which VarðEÞ is
equal to 1/n.

The unbiased Ĝ was calculated by regressing G back to A
as (Yang et al. 2010; Goddard et al. 2011)
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Ĝ ¼ A þ b ðG2AÞ (3)

in which

b ¼ VarðG� AÞ
½VarðG� AÞ þ VarðEÞ� ¼

Var
�
Ĝ� A

�
2 ð1=nÞ

VarðĜ� AÞ
: (4)

The sampling error on the elements in Ĝ depend on the level
of family relationships, which is accounted for by calculating
the regression coefficient b separately for bins of family re-
lationships in A (0–0.10, .0.10–0.25, .0.25–0.50, and
.0.50) with calculated b’s of respectively 0.973, 0.976,
0.990, and 0.997. All parent–offspring relationships were
expected to be 0.5 and those relationships were excluded
from the regression. Besides that, only off-diagonal elements
were regressed.

Elements of c were regressed back to A as well, resulting
in unbiased ĉ. For the FAM scenario, the regression for c was
done in the same way as for G, because ĉ was directly
obtained from Ĝ. For the other scenarios, all family relation-
ships between selection and reference individuals were zero,
resulting in an A matrix where all elements were zero.
Therefore the regression coefficient used for regressing
c reduced to b ¼ VarðCÞ=½VarðCÞ þ 1=n�, in which C is a ma-
trix containing all c vectors with genomic relationships be-
tween selection and reference individuals.

Daetwyler et al. (2008): The second formula for predicting
the reliability of genomic predictions was derived by
Daetwyler et al. (2008),

r2D ¼ Nph2

Nph2 þ Ng
; (5)

in which h2 is the heritability of the trait, Np is the number of
individuals in the reference population, and Ng is the num-
ber of independent loci underlying the trait. Assumptions
underpinning this equation were: (1) loci are independent,
(2) all loci have an effect, and (3) there are no family rela-
tionships between selection candidates and reference popu-
lation. To account for the fact that segregating loci in real
population are not independent, Ng was replaced by Me in
our study, as suggested by Daetwyler et al. (2008, 2010).
Estimation of Me is explained later. The formula of Daetwyler
et al. (2008) provides one reliability that applies to the
whole group of selection candidates, whereas r2VR provides
a single reliability for each selection candidate.

Impact of reference population size: The size of the
reference population affects reliability of direct genomic
values and, therefore, may also affect the magnitude of the
effect of LD vs. family relationships on the reliability. For this
reason, we predicted the reliability using the formula of
Daetwyler et al. (2008) for all five scenarios with different
reference population sizes, ranging from 100 to 60,000 indi-

viduals. Heritability and Me were assumed to be constant
across different sizes of the reference population, reflecting
a situation where reference individuals and selection candi-
dates are a representative sample of the whole population.

Empirical estimation: In the FAM scenario, reliability of
genomic prediction was empirically evaluated using precor-
rected phenotypes on milk production. Genomic breeding
values for milk production were calculated for all individuals
using a GBLUP model in ASReml (Gilmour et al. 2009) and
leave-one-out cross-validation. The GBLUP model used the
same genomic relationship matrix as used for the determin-
istic prediction of the reliabilities and explicitly estimated
variances for the trait in the model. The average reliability
across all individuals in the reference population was calcu-
lated as the squared correlation between the phenotypes
and the genomic breeding values, divided by the heritability,
as explained in Verbyla et al. (2010). The heritability for this
trait was estimated from the same GBLUP model when all
529 reference individuals were included.

Estimating Me

The Me was estimated for each scenario using the genomic
relationship matrix and the additive genetic relationship ma-
trix. Only for the last scenario, FAM, we estimated Me based
on the estimated Ne as well, because this was the only sce-
nario with a generation structure.

Based on the G and A matrix: Goddard et al. (2011)
showed that the variance of off-diagonal elements of G for
unrelated individuals, all having expected values of zero,
is about equal to the average of r2LD (i.e., r2LD) as a measure of
LD over all pairs of loci. This r2LD, and therefore the variance
of G as well, is related withMe asMe ¼ 1= r2LD ¼ 1=VarðGÞ.
For related individuals, we can use D ¼ G� A, in which G is
the genomic relationship matrix and A the additive genetic
relationship matrix, where the expected values for all ele-
ments of D are zero. This suggests that VarðDÞ is related to
r2LD over all pairs of loci and, therefore, that Me for a specific
population with related individuals can be estimated as

Me ¼ 1
VarðDÞ: (6)

In the formula for calculating D, G should contain the ge-
nomic relationships between reference individuals and se-
lection candidates (Goddard et al. 2011). Following our
earlier notation, here we use the Ĉ matrix, containing all ĉ
vectors with the relationships between selection and refer-
ence individuals. For the FAM scenario, A was calculated
based on the pedigree. In the other scenarios, individuals
were simulated without family relationships with the refer-
ence individuals and therefore lacked pedigree information.
For those scenarios, additive genetic relationships between
selection candidates and reference individuals were as-
sumed to be zero.
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Based on Ne: For the FAM scenario, Me was also estimated
based on Ne. In this study, we used the two most frequently
used formulas, namely Me ¼ 2NeL=lnð4NeLÞ (Goddard
2009) and Me ¼ 2NeL (Hayes et al. 2009d). In those formu-
las, L was the genome size that was assumed to be 31.6 M
(Ihara et al. 2004). The required value for Ne was estimated
for the reference population. For each t generations back, Ne

is correlated with a mean r2LD (i.e., r2LD) as a measure of LD
over a chromosome segment with length c ¼ 1=2t (Hayes
et al. 2003), in which c is the length of the chromosome
segment in morgans. All r2LD of SNP intervals in between
the chromosome segment length using ðt2 0:1Þ and
ðt þ 0:1Þ and assuming 1 cM = 1 Mb were averaged to
calculate r2LD, which is used to estimate Ne following
r2LD ¼ 1=ð4Necþ 1Þ (Sved 1971). For t the values 1–5 were
used and the final Ne of the population was estimated as the
mean Ne over those last 5 generations.

Results

Reliabilities of the different scenarios

The different scenarios showed predicted reliabilities of
0.002 6 0.0001 (FREQ), 0.022 6 0.001 (LD), 0.018 6
0.001 (HAP), 0.100 6 0.008 (CHR), and 0.318 6 0.077
(FAM) using the formula of VanRaden (2008) at a heritabil-
ity of 0.6 (rel_VR; Figure 1A). This indicates that reliability
of selection candidates that share only allele frequencies
with the reference population was almost zero. Adding the
LD pattern or haplotype information as information source
used for simulating selection candidates slightly increased
the reliability. Using chromosomes from the reference pop-
ulation to simulate selection candidates showed an increase
in reliability of about 0.1. Adding family relationships
between selection candidates and reference individuals
resulted in a relatively high increase in reliability compared
to the other scenarios (an increase of .0.3 compared to the
FREQ scenario and .0.2 compared to the CHR scenario).
So, the average reliabilities of genomic predictions increased
by simulating selection candidates using an increasing
amount of information from the reference population and
this increase was highest when family relationships were
added as an information source.

Next to the increase in reliability when more information
from the reference population was used to simulate selec-
tion candidates, variation in reliability among selection
candidates increased as well (Figure 1A). Especially the var-
iation in the FAM scenario, using family relationships be-
tween selection candidates and reference individuals, was
high compared to the other scenarios and the reliabilities in
that scenario ranged from 0.13 to 0.72. The distributions of
the reliabilities overlapped between the HAP and CHR sce-
nario. For the other scenarios, the distributions were not
overlapping.

For all scenarios, rel_VR was lower at a heritability of 0.1
compared to a heritability of 0.6, but relative differences

between and standard deviations of reliabilities within
groups were similar to those observed at a heritability of
0.6 (Figure 1B).

Applying the formula of Daetwyler et al. (2008) to
populations with a complex family structure

Another method used to predict reliability of genomic
prediction is the formula of Daetwyler et al. (2008). A dis-
advantage of this formula is the inability to predict reliabil-
ities for populations with a complex family structure. In this
study, this disadvantage was overcome by estimating Me in
the formula based on the genomic and additive genetic re-
lationship matrix. At the same heritability, reliabilities pre-
dicted with the formula of Daetwyler et al. (2008), denoted
as rel_D hereafter, were in good agreement with rel_VR
presented before, being 0.003 (FREQ), 0.027 (LD), 0.021
(HAP), 0.129 (CHR), and 0.275 (FAM; Table 2). Those pre-
dicted rel_D values at a heritability of 0.6 were almost equal
to rel_VR for the FREQ scenario and the difference was
highest for the FAM scenario (0.043). At a heritability of
0.1, predicted rel_D and rel_VR were equal for the FREQ
and LD scenario and the maximum difference was 0.044
(FAM).

The formula of Daetwyler et al. (2008) was also applied
to study the effect of size of the reference population on the
magnitude of effects of LD vs. family relationships on the
reliability of genomic prediction. Reliabilities at a heritability
of 0.6 of all five scenarios using different sizes of the ref-
erence population are shown in Figure 2. For the FAM

Figure 1 Histograms depicting distributions of reliabilities of genomic
preditions using a reference population of 529 genotyped individuals at
a heritability of 0.6 (A) and 0.1 (B) over the five different scenarios using
different information sources from the reference population (from left to
right). Red: Selection candidates simulated based on allele frequency of
the reference population (FREQ). Yellow: Selection candidates simulated
based on 837 haplotypes of equal length segregating in the reference
population (HAP). Light blue: Selection candidates simulated based on LD
pattern of the reference population (LD). Green: Selection candidates
simulated based on haploid chromosomes segregating in the reference
population (CHR); Dark blue: Individuals from the reference population
(FAM).
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scenario, reliability shows a steep marginal increase by in-
creasing reference population size at small initial sizes of the
reference population. At reference population sizes of about
5000-10,000, when reliability approaches the maximum re-
liability of 1, the marginal increase in reliability starts to
decline. For the LD scenario, the marginal increase is more
gradual, so less steep at small sizes of the reference popula-
tion and more steep at bigger sizes of the reference popula-
tion. The increase in reliability is, however, still higher at
small initial sizes of the reference population compared to
bigger sizes. For the CHR, the pattern is in between the ones
from the FAM and LD scenario, and for the HAP scenario,
the pattern is more or less the same as for the LD scenario.
For the FREQ scenario, the increase in reliability is almost
linear across the considered range of reference population
sizes. Those results indicate that the effect of LD vs. family
relationship does indeed depend on the size of the reference
population.

Empirical estimation

In the FAM scenario, empirical estimation of the reliability
using leave-one-out cross-validation for milk production
resulted in an estimated reliability of 0.291. At the herita-
bility estimated for milk production in this data set (0.56),
the FAM scenario showed a rel_VR of 0.305 and rel_D of
0.261. So, both deterministic predictions were very close to
the empirically estimated reliability.

Calculating Ne and Me

The Ne of the reference population was estimated to be 123
and this value was used to approximate the Me of the FAM
scenario using two different formulas. The first formula,
Me ¼ 2NeL=lnð4NeLÞ (Goddard 2009), resulted in almost

the same Me as based on the genomic and additive genetic
relationship matrix and, therefore, predicted reliability using
this value was in good agreement with rel_VR and rel_D
(Table 2). The second formula, Me ¼ 2NeL (Hayes et al.
2009d), showed an almost 10 times higher value for Me,
resulting in a much lower predicted reliability compared to
rel_VR and rel_D.

Genomic relationship vs. reliability

Since the reliability predicted with the formula of VanRaden
(2008) was predicted separately for each individual, it was
possible to evaluate the relation between genomic rela-
tionship and reliability. Average squared genomic relation-
ship, which was found to be an accurate indicator of
reliability in the study of Pszczola et al. (2012), also showed
a high correlation with reliability in our study (Figure 3); the
higher the average squared relationship with the reference
population, the higher the reliability of genomic prediction.
Fitting a linear regression line through the data presented in
Figure 3A resulted in a model R2 ranging from 0.51 to 0.60
(FREQ = 0.57, LD = 0.54, HAP = 0.58, CHR = 0.60, FAM =
0.51) at a heritability of 0.6. The mean and variance of the
average squared genomic relationship within a scenario were
both affected by the relationship with the reference popu-
lation; i.e., using more information from the reference pop-
ulation to simulate the selection candidates resulted in
a higher mean and variance of the average squared geno-
mic relationship.

The relation between average squared relationships and
reliability at heritability values of 0.1 and 0.6 was very

Table 2 Comparison of average reliabilities of genomic predictions
at different heritabilities for five different scenarios obtained with
the deterministic formulas of VanRaden (2008) (rel_VR) and
Daetwyler et al. (2008) (rel_D), using the estimated number of
effective chromosome segments (Me)

h2 Scenario Me
a Rel_VR Rel_D

0.6 FREQ 122116 0.002 0.003
0.6 LD 11458 0.022 0.027
0.6 HAP 14627 0.018 0.021
0.6 CHR 2139 0.100 0.129
0.6 FAM 837 0.318 0.275

805b 0.283
7774c 0.039

0.1 FREQ 122116 0.0004 0.0004
0.1 LD 11458 0.004 0.005
0.1 HAP 14627 0.003 0.004
0.1 CHR 2139 0.021 0.024
0.1 FAM 837 0.104 0.059

805b 0.062
7774c 0.007

a Me estimated based on the genomic and additive genetic relationship matrices
(Equation 6).

b Me estimated as Me ¼ 2NeL=ðlnð4NeLÞÞ (Goddard 2009).
c Me estimated as Me ¼ 2NeL (Hayes et al. 2009d).

Figure 2 Predicted reliability of genomic prediction, at a heritability of 0.6
and different sizes of the reference population, obtained with the determin-
istic formula of Daetwyler et al. (2008) for the five different scenarios using
different information sources from the reference population (from bottom
to top). Red: Selection candidates simulated based on allele frequency of the
reference population (FREQ). Yellow: Selection candidates simulated using
837 haplotypes of equal length segregating in the reference population
(HAP). Light blue: Selection candidates simulated based on LD pattern of
the reference population (LD). Green: Selection candidates simulated based
on haploid chromosomes segregating in the reference population (CHR).
Dark blue: Individuals from the reference population (FAM).
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similar (Figure 3B). Nevertheless, average squared relation-
ship predicted the reliabilities more accurately at a heritabil-
ity of 0.1, with a R2 of the regression model ranging from
0.92 to 0.94 (FREQ = 0.92, LD = 0.92, HAP = 0.92, CHR =
0.94, FAM = 0.93).

Discussion

Effect of LD and family relationships on reliability

The first aim of this study was to investigate the effects of LD
and family relationships on the reliability of direct genomic
values. The results indicate that family relationships be-
tween selection candidates and reference population can
have a large effect on the reliability of genomic predictions
compared to linkage disequilibrium per se.

The difference in reliability between selection candidates
distantly and closely related to the reference population in
our study was .0.5 at a heritability of 0.6. For breeding
practices, it is therefore advisable to predict reliability for
each selection candidate individually. However, it should be
noted that both the general level and the variation of rela-
tionships within the data set used in our study was high, and
the reference population was small. In data sets used for

breeding practices, the difference in relationships among
selection candidates may be lower and the size of the refer-
ence population may be higher, resulting in smaller differ-
ences in reliability.

The size of the reference population influences the
relative effect of LD and family relationships on the re-
liability of genomic prediction; small reference populations
result in a higher effect of family relationships compared to
LD, and larger reference populations result in a higher effect
of LD on reliability. Those results are in agreement with the
results of Clark et al. (2012), who stated that the effect of
family relationships is reduced at an increasing size of the
reference population. Size of the reference population com-
bined with the high general level of relationships between
selection candidates and reference individuals in our study
also explains at least part of the difference between our
results and results of Habier et al. (2007), who found that
less than half of the reliability of a population one genera-
tion younger than the reference population, including both
parents, was due to family relationships.

Both deterministic approaches used in this study to
predict the reliability of genomic prediction are based on
a genomic relationship matrix. The genomic relationship
matrix is quite consistent over different numbers of SNPs,
with a correlation .0.98 when anywhere between �10,000
and 40,000 SNPs are used to set up the matrix (Rolf et al.
2010). Therefore, the conclusions of our study are supposed
to be independent from the number of SNPs used to set up
the genomic relationship matrix, provided that at least
10,000 SNPs are used.

The reliabilities achieved in the LD and HAP scenario are
very similar. This indicates that most of the information
coming from the considered haplotypes in the HAP scenario
coincides with the information captured by the LD pattern in
our data. Decreasing the number of haplotypes, and thereby
increasing the haplotype length, will result in a higher
additional amount of information captured in the HAP
scenario compared to the LD scenario. The most extreme
scenario of haplotypes in terms of their length is represented
by the CHR scenario, which showed a considerably higher
reliability than LD and HAP.

Length of haplotypes identical by descent between two
individuals is related to the number of generations diverged
from the common ancestor (Chapman and Thompson 2003;
Browning 2008). The length of chromosome segments
shared between individuals is, therefore, expected to be cor-
related with the level of family relationships between indi-
viduals (Sved 1971; VanRaden et al. 2011) and also with
the reliability of genomic prediction. The results in our study
do not completely agree with these expectations. In the CHR
scenario, simulated individuals shared whole unrecombined
chromosomes with the reference population. The genomic
relationship and reliability was, however, lower than
achieved in the FAM scenario, where individuals had shorter
haplotypes in common with reference individuals. In the
CHR scenario, selection candidates had only one long

Figure 3 Average squared relationships to the reference population vs.
the reliability of genomic predictions at a heritability of 0.6 (A) and 0.1 (B)
for the five different scenarios using different information sources from
the reference population (from left to right). Red: Selection candidates
simulated based on allele frequency of the reference population (FREQ).
Yellow: Selection candidates based on 837 haplotypes of equal length
segregating in the reference population (HAP). Light blue: Selection can-
didates simulated based on LD pattern of the reference population (LD).
Green: Selection candidates simulated based on haploid chromosomes
segregating in the reference population (CHR). Dark blue: Individuals
from the reference population (FAM).
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haplotype in common with any one reference individual;
while in the FAM scenario, more shorter haplotypes were
shared between a selection candidate and the same refer-
ence individual resulting in a higher relationship due to
a higher accumulated length of shared haplotypes and,
therefore, a higher reliability of genomic prediction. More-
over, this indicates that reliabilities of individuals composed
of the best chromosomes present in a population, assuming
this would be possible without going through the usual
process of meiosis and recombination, as suggested by
VanRaden (2009) and Cole and VanRaden (2011), may be
substantially lower compared to individuals that have some
degree of family relationship to one or more reference indi-
viduals. So, accumulated length of shared haplotypes between
selection candidates and individuals in the reference pop-
ulation is more important than individual length of shared
haplotypes.

Predicting the reliability for populations with a complex
family structure

The second aim of this article was to investigate whether
deterministic prediction formulas for the reliability of
genomic prediction using population parameters can be
used in situations with a complex family structure between
selection candidates and the reference population. The
results show that the formula of Daetwyler et al. (2008),
using Me estimated based on the difference between geno-
mic and additive genetic relationship matrices, yields similar
predicted reliabilities for populations with a complex pedi-
gree structure as using the formula of VanRaden (2008) and
a cross-validation method based on observed phenotypes.

The formula of VanRaden (2008) can be used to predict
the reliability of genomic prediction for populations with
a complex family structure. Previous studies that performed
an empirical evaluation of the formula of VanRaden (2008),
which is equal to predicting the reliability based on the pre-
diction error variance as shown by Strandén and Garrick
(2009), in general overestimated the reliability (Hayes
et al. 2009b; Lund et al. 2009; Thomasen et al. 2012). This
overestimation can be reduced by regressing the genomic
relationship matrix back to the additive genetic relationship
matrix calculated from pedigree information (Goddard et al.
2011). In our study, using such a regressed genomic rela-
tionship matrix resulted in good agreement between the
reliability predicted with the formula of VanRaden (2008)
and the empirically estimated reliability.

Previous empirical evaluations of the formula of Daetwyler
et al. (2008) all showed good agreement between empiri-
cally and deterministically derived reliabilities (Hayes et al.
2009c; Clark et al. 2012; Pryce et al. 2012). This formula
assumes that selection candidates and reference individu-
als are unrelated. In our study, family structure between
reference and selection individuals was taken into account
in the prediction of Me. Agreement between empirically es-
timated reliability and the reliabilities predicted with the
formulas of VanRaden (2008) and Daetwyler et al. (2008)

shows that the formula of Daetwyler et al. (2008) can also
be applied to populations with a complex family structure,
by using a value for Me that represents the family structure
in the population.

The Me estimated as 2NeL (Hayes et al. 2009d) was
much higher, resulting in an unrealistically low reliabil-
ity, compared to the Me and reliability estimated with
Me ¼ 1=VarðG2AÞ. The other formula used to estimate
Me, Me ¼ 2NeL=lnð4NeLÞ (Goddard 2009), resulted in a sim-
ilar value for Me as using Me ¼ 1=VarðG2AÞ, indicating
that the reliabilities of genomic prediction using Me ¼ 1=
VarðG2AÞ were similar to those using Me ¼ 2NeL=
lnð4NeLÞ in the formula of Daetwyler et al. (2008).

Implications

Currently, more and more research is focused on the use of
multibreed or multiline reference populations to enable
genomic selection for smaller breeds or lines. Compared to
within-breed genomic prediction, reliability of across-breed
predictions may be lower due to differences in allele frequen-
cies, LD pattern, and haplotypes among breeds (e.g., De Roos
et al. 2008; Pryce et al. 2010; Goddard 2012) and because
family relationships among full-bred individuals of different
breeds are absent (VanRaden et al. 2011). In addition,
breed-specific allele effects might exist (Spelman et al.
2002; Thaller et al. 2003), which further reduces the re-
liability of genomic prediction for multibreed populations.

A high marker density is expected to increase the
consistency of LD between SNPs and QTL across breeds
and the corresponding reliability (De Roos et al. 2008;
Ibánẽz-Escriche et al. 2009). The problem of different al-
lele frequencies and breed-specific allele effects can, how-
ever, not be solved by a higher marker density. Therefore,
the expected reliability using a reference population of
another breed is supposed to be lower than the reliability
in the LD scenario in our study. Estimating Me for such
scenarios, as shown in this study for populations with
a complex family structure, is a potential starting point
for predicting the reliability for those multibreed population
structures.

Conclusion

In conclusion, our results showed that the level of family
relationship between selection candidates and the refer-
ence population has a higher effect on the reliability of
direct genomic values than linkage disequilibrium per se.
Furthermore, accumulated length of shared haplotypes
across a reference individual and a selection candidate
are more important in determining the reliability of genomic
prediction than individual length of shared haplotypes. And
finally, existing deterministic formulas using population
parameters can accurately predict the reliability of genomic
prediction using reference populations with complex family
structures by estimating the number of effective chromo-
some segments based on genomic and additive genetic re-
lationship matrices.
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