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Redox Regulation of Sodium and Calcium Handling
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Abstract

Significance: In heart failure (HF), contractile dysfunction and arrhythmias result from disturbed intracellular Ca
handling. Activated stress kinases like cAMP-dependent protein kinase A (PKA), protein kinase C (PKC), and
Ca/calmodulin-dependent protein kinase II (CaMKII), which are known to influence many Ca-regulatory
proteins, are mechanistically involved. Recent Advances: Beside classical activation pathways, it is becoming
increasingly evident that reactive oxygen species (ROS) can directly oxidize these kinases, leading to alternative
activation. Since HF is associated with increased ROS generation, ROS-activated serine/threonine kinases may
play a crucial role in the disturbance of cellular Ca homeostasis. Many of the previously described ROS effects on
ion channels and transporters are possibly mediated by these stress kinases. For instance, ROS have been shown
to oxidize and activate CaMKII, thereby increasing Na influx through voltage-gated Na channels, which can lead
to intracellular Na accumulation and action potential prolongation. Consequently, Ca entry via activated NCX is
favored, which together with ROS-induced dysfunction of the sarcoplasmic reticulum can lead to dramatic
intracellular Ca accumulation, diminished contractility, and arrhythmias. Critical Issues: While low amounts of
ROS may regulate kinase activity, excessive uncontrolled ROS production may lead to direct redox modification
of Ca handling proteins. Therefore, depending on the source and amount of ROS generated, ROS could have
very different effects on Ca-handling proteins. Future Directions: The discrimination between fine-tuned ROS
signaling and unspecific ROS damage may be crucial for the understanding of heart failure development and
important for the investigation of targeted treatment strategies. Antioxid. Redox Signal. 18, 1063–1077.

Introduction

Heart failure (HF) can result from myocardial contrac-
tile dysfunction and is associated with increased pro-

pensity for arrhythmias. Beside detrimental changes in the
extracellular matrix, the vasculature or the connective tissue,
severe alterations of the functional core of the heart, the car-
diomyocyte, are essentially involved in the development of
HF. Excitation–contraction coupling is central to the function
of cardiomyocytes (see review (88)).

Excitation is initiated by opening of voltage-gated Na
channels. The generated current (INa) is large in amplitude
( >10 nA). Due to its short in duration (*10 ms), the amount of
Na ions entering the cell is not sufficient to change intracellular
Na concentration greatly. Its large amplitude leads to the fast
upstroke of the action potential (AP). Fast Na current inactiva-
tion and reduced driving force at positive potentials, together
with activation of transient outward rectifying K current (Ito),

limits AP amplitude and generates the AP notch. During the AP
plateau phase, L-type Ca channels open, resulting in ICa, which
maintains AP plateau until delayed rectifying K currents initiate
repolarization. Mainly during the AP plateau phase, Ca ions
enter the cell via ICa into the dyadic cleft very close to the Ca
release channel (ryanodine receptor, RyR2) of the sarcoplasmic
reticulum (SR). This relatively small Ca influx results in a Ca-
induced Ca release from the SR, which is mainly responsible for
the transient increase in cytosolic Ca concentration (Ca tran-
sient), resulting in myofilament activation and contraction. For
Ca removal, two major pathways are involved: SR Ca ATPase
(SERCA2a) and sarcolemmal Na–Ca exchange (NCX1) transfer
Ca either into the SR or into the extracellular space, respectively.

There is substantial evidence that disturbed Ca han-
dling is central for contractile dysfunction in HF (17). The
mechanisms, however, are incompletely understood but in-
volve activation of stress kinases such as cAMP-dependent
protein kinase A (PKA), protein kinase C (PKC), and Ca/
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calmodulin-dependent protein kinase II (CaMKII) (17). Under
pathological stress, excessive and/or protracted phosphory-
lation of target proteins like the L-type Ca channel, phos-
pholamban, and RyR2 appear to contribute to dysregulation
of normal intracellular Ca homeostasis. In addition, expres-
sion patterns of Ca regulatory proteins are altered.

SERCA2a expression (and activity), for instance, is reduced,
which reduces SR Ca content, Ca transients, and impairs sys-
tolic contractile function (17). Increased diastolic RyR2 open
probability contributes to reduced SR Ca load and increased
diastolic Ca (89). Since intracellular Na and Ca handling are
tightly interrelated, changes in Ca handling are accompanied
by disturbed Na handling. Accumulation of intracellular Na
has been observed in HF (105), mainly due to enhanced Na
influx through voltage-gated Na channels (135) and Na/H-
exchanger (NHE, 12, 13). Increased intracellular Na enhances
Ca entry via reverse mode NCX activity during the AP, while
it compromises NCX-mediated Ca export during diastole (9,
11, 18, 38, 104, 141–143). Thus, increased NCX expression as
shown in HF (57, 122), together with increased activation upon
ROS (52) may partly compensate for decreased SR Ca load by
contributing to the systolic Ca transient (18).

However, increased NCX-mediated Ca influx and reduced
Ca efflux may also lead to cytosolic Ca accumulation (137).

Intriguingly, HF is also associated with increased oxidative
stress defined as excess production of reactive oxygen species
(ROS) and/or reduced antioxidative capacity. Mallat and
colleagues showed that levels of lipid peroxides and 8-
iso-prostaglandin F2a, the major biochemical markers of ROS
generation, were elevated in the plasma and pericardial fluid
of patients with HF and correlated with disease severity (92).
Electron spin resonance (ESR) spectroscopy provided direct
evidence for increased ROS production in HF (69).

It is known that ROS can impair the function of Ca-
regulatory proteins. The mechanisms, however, are incom-
pletely understood but involve direct modification of target
proteins (i.e., ion channels and transporters) as well as activation
of serine/threonine kinases. The latter may act as second mes-
sengers translating the ROS signal into an altered function of ion
channels and transporters (Fig. 1). Both these pathways may be
involved in the initiation and progression of HF.

This review will focus on the redox-regulation of intracel-
lular Ca. However, ROS may also play an important role in
prohypertrophic and maybe proapoptotic signaling and thus,
structural remodeling. Therefore, the reader is encouraged to
see references 4, 5, 130, and 131 for a more complete picture of
ROS effects on the heart.

The Redox System of the Heart

The redox system of the heart consists of a delicate balance
of ROS-generating proteins and antioxidative capacities.

Sources of ROS and antioxidative capacities
of the heart

ROS are generated from several intracellular sources in-
cluding mitochondria, NADPH oxidase, xanthine oxidase,
and uncoupled nitric oxide synthase (Fig. 1).

Physiologically, small amounts of superoxide (O2
-) occur

upon mitochondrial oxidative phosphorylation but are rap-
idly inactivated by superoxide dismutase (SOD) into H2O2.
O2

- has very limited diffusion distance, in the range of only a

few nanometers due to its high reactivity. H2O2, on the other
hand, is less reactive and can reach the cytoplasm. H2O2 itself
is reduced by gluthathione peroxidase, catalase, and the
thioredoxin (Trx) system (Trx reductase and Trx peroxidase)
into H2O (73, 127, 148). Gluthathione peroxidase requires
gluthathione, the major cytosolic redox buffer. The ratio of
reduced to oxidized gluthathione (GSH/GSSG) is usually
> 10 but can become significantly decreased under patholo-
gical conditions (102). Gluthathione peroxidase is present in
high amounts in mitochondria and cytosol.

Under conditions of enhanced superoxide production, in-
creased amounts of H2O2 may overwhelm the antioxidative
capacities and may lead to the formation of highly reactive
hydroxyl radicals (OH-) via Haber–Weiss reaction (with a
second molecule O2

-) or via Fenton reaction. Alternatively,
superoxide may lead to the generation of peroxynitrite
(ONOO-) by reaction with NO (101).

In HF, it has been shown that increased amounts of su-
peroxide are generated in mitochondria (69, 71, 103). In ad-
dition, NADPH oxidase (Nox) 2 and 4 are richly expressed in
cardiomyocytes, and myocardial Nox activity has been
shown to be increased in human HF (59, 87, 119). Stimuli
relevant to the pathophysiology of HF (mechanical stretch,
endothelin-1 and angiotensin II) are known to induce Nox
activity (2, 82). Interestingly, recent evidence suggests that
there may be a connection between Nox activation and mi-
tochondrial ROS production. Nox-dependent ROS produc-
tion may be amplified by mitochondria in a ROS-induced
ROS release manner (32–35). The role of Nox 4, however, is
controversially discussed. It was proposed that upregulation
and translocation of Nox 4 to mitochondria may augment
mitochondrial ROS production and contribute to the pro-
gression of heart failure (2, 82). On the other hand, it was
shown that genetic deletion of Nox 4 aggravated heart failure

FIG. 1. Sources of ROS in heart failure, and potential
pathways for ROS-dependent oxidative regulation of tar-
get proteins. Left panel: indirect pathway with activation of
serine/threonine kinases by oxidation, which in turn phos-
phorylate target proteins. Right panel: direct pathway with
oxidation of target proteins. (To see this illustration in color,
the reader is referred to the web version of this article at
www.liebertpub.com/ars.)
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development, which was attributed to beneficial effects of
Nox 4 on angiogenesis (152).

The third source of ROS, xanthine oxidase, has also been
shown to be increased in expression and activity in HF (27).
Finally, nitric oxide synthase (NOS) that is exposed to oxi-
dative stress becomes structurally unstable and generates
ROS (NOS uncoupling). It was shown that uncoupled NOS
contributes to myocardial remodeling upon pressure over-
load in mice (126). Interestingly, endothelial NOS (eNOS) was
shown to co-localize with L-type Ca channels in caveolae, and
neuronal NOS (nNOS) was reported to co-localize with RyR2
in the SR (14). This suggests that NOS may play an important
role for ROS-dependent Ca handling (25, 154).

Controversy exists with respect to antioxidative capacity in
HF. While it was shown in HF following myocardial infarc-
tion that antioxidative capacity was reduced (62), others re-
ported increased activity of gluthathione peroxidase in hearts
with pacing-induced HF (129). Because of the very short half-
life of ROS, there are very different effects on ion channels or
ion transporters depending on the source and localization of
ROS generation.

Redox-modification of proteins

ROS are known to oxidize sulfhydryl (SH) groups of cyste-
ine residues in proteins, which can lead to the formation of
disulfide bonds. The latter affects the tertiary and quaternary
structure of proteins, resulting in altered function. Only re-
cently, it was shown that ROS can also oxidize methionine
residues, which can also influence structure and function of
proteins (42, 74). Many Ca handling proteins have been shown
to be subject to ROS-dependent oxidation but the physiological
and/or pathophysiological relevance is largely unknown.

Redox Modification of Serine/Threonine Kinases

Since ROS are highly reactive molecules, their intracellular
diffusion is very limited. Therefore, ROS generated by en-

dogenous systems can only affect close targets, resulting in
very compartmentalized signaling. On the other hand, it has
been shown that ROS can have much broader effects on the
cardiomyocyte. One explanation for this discrepancy is ROS-
dependent activation of serine/threonine kinases. These ki-
nases may translocate, leading to changes in the activity of a
broad range of Ca-regulatory proteins by phosphorylation
(Fig. 1).

Ca/calmodulin-dependent protein kinase II

In recent years it has become evident that Ca/calmodulin-
dependent protein kinase II (CaMKII) is crucial for the regu-
lation of intracellular Ca and excitation–contraction coupling.

CaMKII is a serine/threonine kinase that is robustly ex-
pressed in heart tissue. It forms homo-multimeric structures
via its association domain (Fig. 2). CaMKII can phosphorylate
numerous Ca-regulatory proteins including L-type Ca chan-
nel (54, 78), ryanodine receptor (RyR2), phospholamban
(PLN, 88). In addition, we have recently shown that CaMKII
can phosphorylate cardiac voltage-gated Na channels, which
increases Na influx (persistent or late Na current) and pro-
longs action potential duration (APD, 68, 135).

The typical activation is Ca-dependent (116). Active,
Ca-bound calmodulin (Ca-CaM) can bind to the regulatory
domain of CaMKII, resulting in a conformational change
disturbing the interaction of regulatory (autoinhibitory)
domain and catalytic domain, which results in ATP-binding
and target protein phosphorylation (Fig. 2). Upon activation,
inter-subunit autophosphorylation at threonine 286 or 287
(T286 or T287, dependent on species) occurs, which prevents
re-association of catalytic and regulatory domain, even when
Ca-CaM has dissociated from the catalytic domain (Fig. 2; 81,
117). Therefore, T286 autophosphorylation confers prolonged
and autonomous (Ca-CaM-independent) activity. By inte-
grating the relatively fast transient changes in the intracellular
Ca concentration, T286 autophosphorylation serves as the Ca

FIG. 2. Schematic structure of
CaMKII and activation pathways.
Upper panel: Schematic depiction of
the CaMKII holoenzyme that con-
sists of two stacked hexameric rings
(upper right), each ring consisting
of six subunits (upper left) which
contain the association domain,
regulatory domain, and catalytic
domain (lower left). Lower panel:
Possible ways of CaMKII activation
by Ca/CaM that lead to Ca2 + and
calmodulin- autonomous activity: by
intersubunit autophosphorylation of
threonine 286 and/or methionine
281/282 oxidation. (To see this
illustration in color, the reader is
referred to the web version of this
article at www.liebertpub.com/ars.)
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‘‘memory’’ for CaMKII. Beside changes in the enzyme kinetics
of inactivation, T286 autophosphorylation is also required for
maximal kinetic activity.

Erickson and colleagues described a novel mechanism of
Ca-independent CaMKII activation (42). They showed that
ROS can oxidize methionine 281/282 (M281/282) in the
regulatory domain resulting in an activation mode very
similar to autophosphorylation at T286 (i.e., Ca-CaM-
independent activity) (Fig. 2). This type of activation can occur,
for instance, upon stimulation of endogenous NADPH oxidase
2 (Nox2) by angiotensin II binding to its receptor on cardio-
myocytes. Oxidation at M281/282 is a reversible process and
oxidized methionine can be reduced by methionine sulfoxide
reductase A (42). The pathophysiological relevance of this
oxidized CaMKII has recently been verified for the develop-
ment of sinus node dysfunction (124) and aldosterone-induced
heart injury (58). The role of oxidized CaMKII in the cardio-
vascular system was reviewed recently in detail (43).

Protein kinase A

Catecholamine hormone-binding to the G-protein coupled
b receptor stimulates adenylate cyclase, resulting in increased
cyclic adenosine monophosphate (cAMP), which activates
cAMP-dependent protein kinase A (PKA, 144). Two major
forms of PKA, type I and type II, have been described, both of
which are organized as tetramers comprising two catalytic
and two regulatory subunits. The regulatory subunit can bind
to protein kinase A anchor protein (AKAP), which targets
PKA to its substrate proteins. Activation of PKA can occur
upon binding of two molecules of cAMP to each regulatory
subunit. This favors dissociation of the catalytic and regula-
tory subunit, which results in substrate phosphorylation. It is
known that PKA can phosphorylate several Ca-regulatory
proteins, including RyR2, L-type Ca channel, and PLN. In
addition, PKA phosphorylation of troponin I regulates myo-
filament Ca sensitivity (109).

There are two types of regulatory subunits (RI and RII) and
accordingly, the enzyme is defined as type I or II, respectively.
Type I PKA is localized in the cytosol, whereas type II appears
to be primarily targeted to AKAP proteins associated with
subcellular compartments. There is a large uncertainty about
target specificity of the PKA subtypes. Interestingly, peptide
substrate enhanced the activation of PKA type I at low,
physiologically relevant concentrations of cAMP through
competitive displacement of the regulatory RI subunit. This
substrate-induced sensitization is not present in type II PKA
(133, 134). This suggests that the activity of PKA type I is
determined not only by the cAMP level but also by the
availability of substrate.

Additionally, it was recently shown that type I regulatory
subunit I is subject to oxidation by ROS (24). The oxidation of
cysteines 17 and 38 leads to inter-subunit disulfide bond for-
mation (between two regulatory subunits) and dissociation of
the PKA holoenzyme complex. The type I PKA translocation
(from cytosol to membrane and myofilaments) and activation
results in increased cellular contractility without elevations in
cAMP. It was suggested that increased PLN phosphoryation
and SERCA2a activation underlies the observed increase in
contractility (24). The translocation of oxidized type I PKA
seems to be beneficial for activation since it favors substrate
binding, which is required for full activation.

To date, however, the relevance of this novel PKA type I
activation in cardiomyocytes under physiological and pa-
thophysiologocal conditions, especially in comparison to
cAMP-dependent activation, is completely unknown.

Protein kinase C

By molecular cloning, at least 12 isozymes of protein kinase
C (PKC) have been identified, which are classified by their
activation characteristics. The conventional PKC isozymes (a,
bI, bII, and c) are activated by Ca and diacylglycerol (DAG). In
contrast, novel isozymes (d, e, h, and g) and atypical isozymes
(f and k) are Ca-independent but activated by distinct lipids
(39). PKCs consist of N-terminal regulatory (autoinhibitory)
and C-terminal catalytic domain. When inactive, the regula-
tory domain is bound to the catalytic domain (63). The bind-
ing of the activating factors (distinct lipids and Ca) results in a
conformational change, resulting in release of the auto-
inhibition and activation of the enzyme. Moreover, activation
leads to PKC tranlocation and increased membrane associa-
tion. Recently, intracellular receptor proteins have been de-
scribed, which bind activated PKC in the presence of
phosphatidylserine and Ca (95). The binding site on PKC is
distinct from the substrate binding site, and binding was
further increased with the addition of diacylglycerol (95).
These binding proteins are called receptors for activated C-
kinase (RACKs) and may play a role in activation-induced
translocation of PKC.

The effects of PKC activation are complex, especially due to
parallel activation of several isozymes, isozyme interdepen-
dence, cross-talk, and overlapping isozyme effects. The cel-
lular activity of the individual isozymes depends on their
expression levels, subcellular localization, and phosphoryla-
tion state (91). All these factors, however, vary dramatically
between species and cell types. This may explain why ex-
periments using knock-out of single PKC isozymes did not
show consistent results. Despite these confounders, it has
been consistently shown that G protein-coupled receptor ag-
onists such as isoproterenol and angiotensin II, but also me-
chanical stretch, induce cardiac hypertrophy through the
activation of PKC (20, 125). Also, in various in vivo models of
cardiac hypertrophy, it was shown that PKCa and PKCb are
upregulated, PKCe is either upregulated or preferentially ac-
tivated, and levels of PKCd,k or f do not change (22, 125, 139).
During ischemic preconditioning, on the other hand, it was
shown that PKCd and PKCe have opposite roles (29, 30, 40).
For more information about the complex role of PKC for
cardiac hypertrophy, heart failure, and ischemic pre-
conditioning, we refer to the following reviews (30, 39, 40, 91).

PKC has been shown to regulate excitation–contraction
coupling. PKCa can phosphorylate inhibitor 1 at Ser67, re-
sulting in increased protein phosphatase 1 activity, leading to
phospholamban dephosphorylation and reduced SERCA2a
activity (23). PKCa (and maybe also PKCb) has been shown to
phosphorylate troponin I, troponin T, titin, and myosin
binding protein C, which leads to decreased myofilament Ca
sensitivity (16, 60, 65, 123, 138). Also, PKCa, bI, bII, and c have
been shown to phosphorylate the a1c subunit of the L-type Ca
channel (151).

In addition to the Ca and lipid-induced activation, it was
shown that mild oxidative stress can activate PKC (53). At
high doses of ROS (5 mmol/L H2O2), both catalytic and
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regulatory domain are oxidized, leading to irreversible inac-
tivation of the enzyme. Low doses of ROS (50 lmol/L H2O2),
on the other hand, selectively oxidize the regulatory domain
generating a Ca and phospholipid-independent PKC activa-
tion (53). The pathophysiological relevance of this novel re-
dox-dependent PKC activation is largely unknown.

Redox Modification of Ca and Na Handling Proteins

It is well established that accumulation of ROS lead to cy-
tosolic Ca overload (49, 120, 128, 134, 136). ROS-induced ac-
cumulation of intracellular Na has also been reported (134).
Interestingly, it was shown that in failing cardiomyocytes,
cytosolic Na overload greatly enhances mitochondrial ROS
production (77). This would result in a positive feedback loop
greatly augmenting ROS-induced injury. Since intracellular
Na and Ca homeostasis are tightly interrelated, changes in Na
handling proteins with consequent changes in intracellular
Na can have a profound impact on intracellular Ca and con-
tractility. A synopsis of ROS effects on Na and Ca handling
proteins is shown in Figure 3 and Table 1.

Voltage-gated Na channels

Cardiac Na channels consist of a pore-forming a-subunit
NaV1.5 and a regulatory b-subunit. NaV1.5 contains methio-
nine residues that may be substrate to ROS-dependent oxi-
dation (74). Oxidation of these methionine residues have been
shown to impair open-state inactivation (74). ROS also reduce
Na channel availability, causing a negative shift in the voltage
dependence of inactivation due to enhanced intermediate
inactivation and delayed recovery from inactivation. Activa-
tion, on the other hand, was unaltered (48).

Interestingly, a novel INa gating mode has been described
recently that is also activated by ROS (120). Beside peak INa

lasting only for a few ms (ca. 10 ms), there is a late INa com-
ponent persisting over hundreds of milliseconds (90). Because
of its persistent nature, the amount of Na entering the cell via

late INa is substantial despite its small amplitude (approxi-
mately 1% of peak INa). In fact, it has been suggested that late
INa is an important regulator of intracellular Na under path-
ophysiological conditions (135, 136).

ROS have also been shown to increase intracellular Na,
prolong the action potential, and induce EADs, and ROS-en-
hanced late INa may be involved (15, 48, 120).

In addition to direct ROS-dependent oxidation of NaV1.5,
changes in the lipid environment or ROS-induced activation
of PKA, PKC, and CaMKII may be involved in the ROS reg-
ulation of cardiac Na channels (48, 74, 85, 132, 135, 136).

The a-subunit NaV1.5 is substrate to phosphorylation by
PKA, PKC, and CaMKII. CaMKII has been shown to phos-
phorylate serine 571, serine 516, and threonine 594, which
results in a negative shift in the voltage dependence of inac-
tivation due to enhanced intermediate inactivation (10, 68).
Although the relevant phosphorylation site remains to be
determined, CaMKII has been also been shown to enhance
late INa, which leads to accumulation of intracellular Na, AP
prolongation and arrhythmias (135, 136). These effects re-
semble the above described ROS effects on Na channel gating.
Moreover, the ROS-induced late INa was not observed in
CaMKIId knock-out mice, suggesting a crucial role for CaM-
KII in redox regulation of INa (136).

Beside CaMKII, PKA and PKC have been shown to influ-
ence cardiac Na channels. NaV1.5 has two serine residues
(serine 526 and 529) in the I-II cytoplasmic linker that can be
phosphorylated by PKA. The PKA-dependent phosphoryla-
tion of NaV1.5 increases peak INa current density via acceler-
ation of channel trafficking to the plasma membrane (56), but
does not change inactivation kinetics (47, 98).

Also PKC can modify INa. Ward and Giles have shown that
the H2O2-dependent slowing of INa open state inactivation
was blocked in the presence of the PKC inhibitor Bis-in-
dolylmaleimide (140). In heterologeous expression systems
(rat and human NaV1.5), however, PKC activation did not
change INa inactivation (99, 108) questioning the role of PKC

FIG. 3. Overview of known and
putative ROS effects by direct oxida-
tion of proteins of the excitation–
contraction coupling. CaMKII, Ca/
CaM dependent protein kinase II;
NCX, Na/Ca-exchanger; OX, activa-
tion by oxidation; PKA, proteinkinase
A; PKC, proteinkinase C; PLB, phos-
pholamban; RyR, ryanodin receptor;
SERCA, SR Ca ATPase; Trop I, tropo-
nin I. (To see this illustration in color,
the reader is referred to the web ver-
sion of this article at www.liebertpub
.com/ars.)
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for regulation of INa gating. The most consistent effect of PKC
on cardiac Na channels is phosphorylation of serine 1505 in
the III–IV linker, which reduces peak INa current density (107).

Although both PKA and PKC have been shown to diver-
gently influence peak INa possibly by changing the number of
functional channels in the membrane, they both do not appear
to regulate INa gating (i.e., the activation and inactivation
process). Therefore, ROS-activated PKC or PKA do not ac-
count for the ROS-induced changes in Na channel gating.
However, it has been shown that ROS generated from mito-
chondria (by elevation of cytosolic NADH) may reduce peak
Na current density (85) via a PKC-dependent pathway (132).

Sarcolemmal Na/K-ATPase

Physiologically, intracellular Na is heavily controlled by
the Na-K-ATPase (NKA). Indeed, computational modeling of
rabbit ventricular myocytes exposed to H2O2 revealed that

even a 16-fold ROS-induced increase in INa conductance
would not result in increased intracellular Na due to dramatic
activation of NKA (136). Therefore, a substantial inhibition of
NKA activity needs to occur to explain the ROS-induced in-
crease in intracellular Na. Interestingly, ROS have been
shown to inhibit NKA function potently, although the un-
derlying mechanism is not known (76, 80, 118, 145). Beside
changes in the lipid environment, direct NKA oxidation has
been suggested. In this respect it is interesting that the b-
subunit of NKA contains a sulfhydryl group that has been
shown to be essential for catalytic activity.

Beside direct oxidation, NKA may also be redox-regulated
via PKA or PKC. Phospholemman (PLM), which inhibits
NKA by reducing its affinity for internal Na, has been shown
to be phosphorylated by PKA (serine 68) and PKC (serine 63
and 68). PLM phosphorylation results in dissociation from the
catalytic subunit, which activates the pump (37). Since ROS
inhibit NKA activity, but ROS-induced activation of PKA or

Table 1. Summary of ROS, CaMKII, PKA, PKC and ROS-Mediated Effects

on Important Targets in the Cardiomyocyte

Target effect ROS CaMKII ox-CaMKII PKA ox-PKA PKC Reference Nos.

LTCC ICa Y,[[Ref. 121] 45,50,51,64,83,121
[ 19,41,54,66,78

[ 121
[ 28

[ 151
SERCA2a

Activity
Y 79,96,115,146

[ 88
[ 88

Y 23
PLB

Phosphorylation
[ 88

[ 88
[ 24

Yvia PP1-I1 23
RyR2 SR

Ca release
SR Ca leak

[
Yin low

ROS

1,6,21,45,84,147,155,154

[ 88
[ 88

Nav1.5 peak
INa late INa

AvailY,
IM[, late[

15,48,120

AvailY,
IM[,
late[

late[[136] 68,135,136,10

peak[ 56,47
peakY[85,107] 85,107

Troponin I
Phosphorylation

[ 24
[ 102

[ 102, 138
Na-K ATPase

Na-K pump
current

Y 76,80,118,145
[via PLM 37

[via PLM 37
NCX INCX [ 52,75,110,114

4[61],[[72] 61,72
4[61],[[72] 61,72

Other Targets MMP-9
expression[

58

Sinus nodal
cell death[

124

AvailY, reduced INa availability, enhanced steady-state inactivation; IM, intermediate inactivation; LTCC, L-type Ca channel; NaV1.5, pore-
forming subunit of the Na channel encoded by the SCN5A gene; NCX, Na/Ca exchanger; MMP-9, matrix metalloproteinase-9; PLB,
phospholamban; PLM, phospholemman; PP1-I1, phosphatase-1 inhibitor-1; RyR2, ryanodine receptor 2.
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PKC would result in PLM phosphorylation, dissociation and
NKA activation, it is unlikely that PKA or PKC are involved in
the ROS regulation of NKA.

If a substantial reduction in NKA function is incorporated
into the computer model, intracellular Na increases dramati-
cally. Beside enhanced Na influx via INa, enhanced Na-
proton-exchanger-dependent Na influx has been suggested,
but the pathophysiological relevance in unclear (112).

Intracellular Na is tightly associated with intracellular Ca.
The activity of cardiac Na-Ca-exchange (NCX) is a function of
membrane potential and trans-sarcolemmal gradients for Na
and Ca. Upon prolonged action potential duration and in-
creased intracellular Na, reduced Ca efflux (forward mode)
and/or Ca influx (reverse mode) via NCX contributes to in-
tracellular Ca accumulation. Indeed, computational modeling
revealed that the Ca entry mode of the NCX was dramatically
favored under conditions of increased intracellular Na (136).

Sarcolemmal sodium–calcium exchanger

For cardiac NCX (NCX1), intramolecular disulfide bonds
between cysteine residues of different domains have been
implicated to be functionally relevant (100). ROS have been
shown to activate NCX (52, 75, 110, 114), but the effect was
inconsistent with respect to ROS source and ROS level. There
is substantial controversy about the role of serine/threonine
kinases in the regulation of NCX. No functional change in
cardiac NCX has been shown upon application of catalytic
subunits of PKA and PKC (61), suggesting that NCX may not
be subject to regulation by kinases. On the other hand, it was
shown that the intracellular loop of NCX can be phosphory-
lated by PKA or PKC, which may increase NCX activity and
may be responsible for part of the ROS-induced NCX acti-
vation (72).

Under conditions of increased intracellular Na, ROS-
dependent stimulation of NCX may result in cellular Ca
overload. Indeed, it was shown previously that increased
expression of NCX, as observed in HF, augmented ROS-
induced cellular injury (134), and that pharmacological inhi-
bition of Ca entry via NCX reduced ROS-induced Ca overload
and diminishes cellular injury (136).

However, the situation in human HF may be more com-
plex: human failing myocardium was paradoxically more
resistant to ROS-induced contractile dysfunction, while hu-
man nonfailing was not (86). It was suggested that an in-
creased endogenous activation of mitochondrial KATP

channels in human failing myocardium may explain this
‘‘stunning paradox’’ such that failing myocardium may be
endogenously preconditioned.

Voltage-gated L-type Ca channel

The pore-forming subunit a1C of the cardiac L-type Ca
channel contains more than 10 cysteine residues (94), which
can potentially undergo redox modification. It was shown
that thiol-oxidizing agents or ROS irreversibly decreased ICa

in heterologeous expression systems (HEK293 cells, 46, 64) or
cardiomyocytes (50, 51, 83). These results are, however, con-
troversial since others have shown that thiol-oxidizing agents
(26) or ROS may increase ICa (121). Part of the discrepancy
may be a result of the fact that CaMKII (19, 41, 54, 66), PKA
(28), and PKC (151) can activate ICa by phosphorylation, and
all three kinases are subject to ROS-dependent oxidation/

activation. PKC has been shown to phosphorylate the a1c
subunit of the L-type Ca channel at several sites including
serine 1928 (150,151). PKA also phosphorylates a1c at serine
1928 (36, 67). However, the key phosphorylation site involved
in Ca current modulation is still a matter of debate since
phosphorylation of both a1C as well as the auxiliary b subunit
(55, 106) can result in increased ICa.

Therefore, ROS can simultaneously induce ICa activation
(via serine kinases) and ICa inhibition (via direct cysteine ox-
idation). The net result depends on the sources and levels of
ROS generated. However, since it has been shown that H2O2

causes Ca overload due to Ca release from intracellular stores
and Ca entry via NCX but not due to activation of ICa (49, 136),
it is likely that the direct redox modification of a1C is the
predominant ROS effect.

Cardiac ryanodine receptor

The RyR2 (cardiac isoform) is a large tetrameric complex
that contains up to 89 cysteine residues per monomer, of
which approximately 21 are free (147).

Thiol-oxiziding agents such as H2O2 activate RyR Ca re-
lease after oxidation of more than 7 thiols per subunit (1, 6, 21,
45, 84, 147, 155). Since the RyR2 has multiple sites for regu-
lation by phosophorylation and/or interaction with Ca, Mg,
ATP, CaM, or regulatory proteins (FKBP12.6 also called cal-
stabin), oxidation may interfere with these regulators. Indeed,
the mechanism of ROS-induced increase in RyR Ca release
involves a change in RyR sensitivity to cytosolic Ca and ATP
(42, 93), the alteration of the RyR interaction with triadin,
which regulates RyR sensitivity to luminal Ca (84), and the
disturbance of FKBP12.6 binding (155). For activation to oc-
cur, it requires the oxidation of more than 7 thiols per subunit
(147). In contrast, the oxidation of less than 5.5 thiols per
subunit occurs readily without affecting RyR function (147).
Moreover, it has been shown that low ROS levels increase
diastolic RyR Ca release (Ca spark frequency), whereas ex-
cessive ROS production reduces Ca spark frequency (149).
Therefore, the quality of ROS-dependent RyR regulation may
be closely related to the amount of oxidized thiols.

Beside direct oxidation of cysteine residues of RyR2, ROS
may increase RyR Ca release via activation of serine/threo-
nine kinases (113). It is well known that CaMKII and PKA
phosphorylate RyR2 increasing diastolic Ca leak (88). Both
kinases can be oxidized (see above) and activated by ROS (24,
42). Therefore, it is conceivable that part of the observed ROS
effects on RyR2 are mediated via oxidized CaMKII or oxi-
dized PKA. The relative contribution of each kinase and
the pathophysiological relevance, however, is completely
unclear.

One consequence of increased diastolic Ca leak is reduced
SR Ca content, especially if ROS reduce SR Ca ATPase func-
tion as well (153). ROS have been shown to reduce SR Ca
content (136, 153). This results in smaller Ca transients and
reduced contractility (136). Interestingly, due to rapid acti-
vation of Na-Ca-exchange in forward mode (Ca exit mode, net
positive charge movement into the cell) diastolic Ca leak is
also mainly responsible for delayed afterdepolarizations. The
ROS-induced increase in Ca spark frequency is therefore
associated with increased propensity for delayed after-
depolarizations and arrhythmias (136), especially if Na-Ca-
exchange is enhanced via ROS (52).
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FIG. 4. Overview of known and putative
ROS effects on Na and Ca handling pro-
teins that may be mediated by ROS-acti-
vated CaMKII (A), ROS-activated PKA (B),
and ROS-activated PKC (C). (To see this il-
lustration in color, the reader is referred
to the web version of this article at www
.liebertpub.com/ars.)
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Sarcoplasmic reticulum Ca-ATPase

SERCA2a and its regulatory (inhibitory) protein PLN are
substrate to redox modification. SERCA2a contains 25 cyste-
ine residues, of which only 1 or 2 are essential for enzyme
action (97). Thiol-oxidizing agents or ROS have been shown to
inhibit cardiac SERCA function (79, 96, 115, 146). Part of this
effect may be a result of direct interference with the ATP
binding site (146). In addition, PLN is also substrate to
phosphorylation by CaMKII (threonine 17) and PKA (serine
16) resulting in PLN dissociation and activation of SERCA
(88). The latter effect, however, appears to be less relevant for
ROS-dependent SERCA regulation, since ROS have been
unequivocally shown to reduce SERCA function. Possibly
PKC-dependent signaling is also involved. In contrast to
CaMKII and PKA activating SERCA, PKC has been shown to
reduce SERCA activity. Hearts of PKCa-deficient mice are
hypercontractile, whereas those of transgenic mice over-
expressing PKCa are hypocontractile. The underlying mech-
anism involves PKCa-dependent phosphorylation of protein
phosphatase inhibitor-1 (PPI-1), resulting in dephosphoryla-
tion of PLN. The reduced SERCA2a activity leads to reduced
SR Ca content and diminished Ca transient amplitude (23).

To summarize the discussed ROS effects on Na and Ca
handling proteins, Figure 4 and Table 1 give an overview of the
effects possibly mediated by ROS-activated CaMKII (Fig. 4A),
ROS-activated PKA (Fig. 4B) or ROS-activated PKC (Fig. 4C).

ROS-Associated Arrhythmias

Changes in intracellular Na and Ca handling are associated
with electrical instability.

It was shown previously that ROS increase AP duration
resulting in early afterdepolarizations (EADs) due to re-
activation of ICa (120). Since the selective Na channel blocker
tetrodotoxin (TTX) could reverse this ROS effect, enhanced
late INa was attributed as underlying mechanism of AP pro-
longation. Indeed, recently this mechanistic link was con-
firmed showing that redox-activated CaMKII and enhanced
late INa are required for AP prolongation and EADs (68, 136).
Depending on the sources and levels of ROS, a ROS-induced
enhancement of ICa and transient outward K current (Ito) in-
hibition by oxidation of SH groups may additionally con-
tribute (111).

On the other hand, cellular Ca overload and ROS-induced
diastolic Ca leak predispose to increased transient inward
INCX (Iti), which transports the released diastolic Ca outside
the cell, generating a depolarizing current and predisposing
to delayed afterdepolarizations (DADs). The propensity for
EADs and DADs has been shown to be dramatically increased
upon ROS exposition but reduced in CaMKIId knockout mice
(136). The relevance of CaMKII for life-threatening arrhyth-
mias was confirmed in CaMKII-transgenic mice showing a
dramatic increase in the propensity for monomorphic and
polymorphic ventricular arrhythmias (135). Therefore, redox-
modified CaMKII may be crucially involved in the ROS-in-
duced arrhythmogenesis (Fig. 5).

Beside dysregulated Na and Ca handling, ROS-effects on
mitochondrial ATP production may also increase ar-
rhythmogenesis (3, 7, 8). It was shown that ROS-induced ROS
release from mitochondria results in mitochondrial depolar-
ization, during which ATP production is inhibited and sar-
colemmal KATP channels are activated, leading to shortened

AP duration and slowed conduction. Due to spatiotemporal
differences of this mitochondrial membrane depolarization
between different regions of the heart, re-entry and life-
threatening arrhythmias may develop.

Conclusion and Perspectives

Here we have discussed ROS effects in Na and Ca han-
dling. ROS have been shown to induce activation of late INa

FIG. 5. Effects of ROS-activated CaMKII on pathological,
proarrhythmic, membrane excitability. ROS-activated
CaMKII leads to increased intracellular [Na] by increasing
late INa (upper panel). This leads to prolongation of the action
potential duration, early after depolarizations (EADs), and
delayed afterdepolarizations (DADs, lower panel). The pos-
sible contributions of PKA and PKC are still unknown. (To
see this illustration in color, the reader is referred to the web
version of this article at www.liebertpub.com/ars.)

FIG. 6. Effects of the ROS-mediated increase in intracel-
lular Na on Ca transients and contractility. Increased in-
tracellular Na disables the Ca extruding capacity of the
Na/Ca exchanger (NCX) and favors ‘reverse mode’ of the
NCX, which increases intracellular and diastolic Ca and
contributes to diastolic dysfunction. Increased SR Ca leak
leads to reduced SR Ca load and reduced contractility, and
also contributes to increased intracellular Ca. (To see this
illustration in color, the reader is referred to the web version
of this article at www.liebertpub.com/ars.)
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that in the face of reduced NKA activity lead to intracellular
Na accumulation and action potential prolongation. As a
consequence, Ca entry mode of ROS-activated NCX is fa-
vored. On the other hand, ROS increase diastolic leak through
enhanced RyR2 open probability, which leads together with
dysfunctional SERCA to reduced SR Ca load. The dysfunc-
tional SR cannot compensate the Ca entry via NCX, leading to
a dramatic increase in intracellular Ca, reduced SR Ca tran-
sients, diminished contractility, arrhythmias, and cellular in-
jury (Fig. 6). Interestingly, all these changes are also present in
the failing heart, suggesting that ROS may be involved in the
development of the disease.

Low amounts of ROS constitute redox signaling, which
may have physiological relevance but may also be involved in
the processes leading to myocardial remodeling. Part of these
ROS signaling effects is mediated via serine/threonine ki-
nases, translating the short living ROS signal into a signal of
longer duration. These kinases are known to be involved in
the pathophysiology of heart failure. Excessive uncontrolled
ROS generation, however, results in profound myocardial
damage, including substantial direct and possibly irreversible
redox-modification of Ca handling proteins, which contrib-
utes to the progression of HF. Depending on the source, lo-
calization, and amount of ROS generated, ROS could have
very different effects on Ca handling proteins.

Future treatment strategies interfering with ROS signaling
in HF have to deal with these issues.
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Abbreviations Used

AKAP¼protein kinase A anchor protein
AP¼ action potential
Ca¼ free ionized calcium

Ca-CaM¼Ca-bound calmodulin
CaMKII¼Ca2+ calmodulin dependent protein kinase II

cAMP¼ cyclic adenosine monophosphate
DAD¼delayed after-depolarizations
DAG¼diacylglycerol
EAD¼ early after-depolarization

FKBP12.6¼ FK506 binding protein 12.6
GSH/GSSG¼ ratio of reduced to oxidized gluthathione

HF¼heart failure
H2O2¼hydrogen peroxide

ICa¼Ca2+ influx current via L-type Ca channels
INa¼Na+ influx current via cardiac voltage-gated

Na channels
Iti¼Ca2+ activated transient inward current
Ito¼ transient outward potassium current

Na¼ free ionized sodium
NADH¼nicotinamide adenine dinucleotide

NADPH¼nicotinamide adenine dinucleotide phosphate
NaV1.5¼pore forming a-subunit of cardiac

voltage-gated Na channel
NCX¼Na+/Ca2+ exchanger
NKA¼Na-K-ATPase

NO¼nitric oxide
NOS¼nitric oxide synthase
Nox¼NADPH oxidase

O2 ¼ superoxide
OH¼hydroxyl radicals

ONOO¼peroxynitrite
PKA¼ cAMP-dependent protein kinase A
PKC¼protein kinase C
PLM¼phospholemman
PLN¼phospholamban
ROS¼ reactive oxygen species

RyR2¼ cardiac ryanodine receptor
SERCA2a¼ sarco-endoplasmic reticulum Ca2+ pump

SH¼ sulfhydryl
SOD¼ superoxide dismutase

SR¼ sarcoplasmic reticulum Ca2+ storage organelle
Trx¼ thioredoxin

TTX¼ tetrodotoxin
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