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Abstract

Significance: The regulation of myocardial function by constitutive nitric oxide synthases (NOS) is important for the
maintenance of myocardial Ca2+ homeostasis, relaxation and distensibility, and protection from arrhythmia and
abnormal stress stimuli. However, sustained insults such as diabetes, hypertension, hemodynamic overload, and atrial
fibrillation lead to dysfunctional NOS activity with superoxide produced instead of NO and worse pathophysiology.
Recent Advances: Major strides in understanding the role of normal and abnormal constitutive NOS in the heart have
revealed molecular targets by which NO modulates myocyte function and morphology, the role and nature of post-
translational modifications of NOS, and factors controlling nitroso-redox balance. Localized and differential signaling
from NOS1 (neuronal) versus NOS3 (endothelial) isoforms are being identified, as are methods to restore NOS function
in heart disease. Critical Issues: Abnormal NOS signaling plays a key role in many cardiac disorders, while targeted
modulation may potentially reverse this pathogenic source of oxidative stress. Future Directions: Improvements in the
clinical translation of potent modulators of NOS function/dysfunction may ultimately provide a powerful new
treatment for many hearts diseases that are fueled by nitroso-redox imbalance. Antioxid. Redox Signal. 18, 1078–1099.

Introduction: Constitutive NOS and the Heart

Nitric oxide (NO) is generated by enzymes that catalyze
the conversion of L-arginine to L-citrulline in a reaction

which requires O2 and several cofactors. In mammals, three
isoforms of NO synthases (NOS1–3) are encoded by distinct
genes (123), two of which (NOS1 or neuronal NOS, and NOS3
or endothelial NOS) are constitutively expressed and synthesize
NO in a Ca2 + -calmodulin (CaM)-dependent manner (70)
(Fig. 1). Both NOS1 and NOS3 are obligate homodimers, each
monomer containing an amino-terminal oxygenase domain (N-
terminal) and a carboxy-terminal reductase domain (C-termi-
nal). The oxygenase domain contains binding sites for the sub-
strate L-arginine and the cofactor tetrahydrobiopterin (BH4), as
well as a cytochrome P-450-type heme active site. The reductase
domain binds the flavin cofactors (flavin mononucleotide, fla-
vin adenine dinucleotide) and nicotinamide adenine dinucleo-
tide phosphate (NADPH). On activation of the synthase, the
flavins in the reductase domain of NOS serve to transfer elec-
trons from NADPH to the heme iron in the oxygenase domain
of the other monomer, allowing the activation of heme-bound
molecular oxygen and the synthesis of NO (149).

Both NOS1 and NOS3 are constitutively expressed in the
cardiovascular system. NOS3 is mostly found in coronary vas-

cular and endocardial endothelial cells and, to a lesser extent, in
cardiac myocytes, where it associates with caveolae (13, 68);
whereas NOS1 is predominantly localized to the sarcoplasmic
reticulum (SR) (254) and, to a lesser extent, mitochondria (28),
the Golgi apparatus (174), and sarcolemmal membrane (167).
Although the NOS1 gene can be transcribed into five different
mRNA splice forms (Fig. 1), there is limited information about
their physiological role or subcellular localization in cardiac
myocytes (4). The a and l-NOS1 contain an N-terminal PSD-95/
Discs large/ZO-1 homology domain (PDZ domain), which can
tether the enzyme to specific myocardial proteins, such as syn-
trophin (22). By contrast, the b and c NOS1 isoforms (which lack
the PDZ domain) are thought to reside in the cytoplasm (64).
The NOS1–2 variant, although similar to the a isoform, is
thought to be enzymatically inactive (23). Alternative splicing in
intron13 of the human NOS3 gene has also been reported (145);
however, its functional significance in the heart remains to be
tested. Both constitutive NOS can translocate to different sub-
cellular domains under certain conditions. In particular, NOS1
appears to shuttle from the SR to the sarcolemmal caveolae in
cardiomyocytes from failing hearts (18, 53); by contrast, in en-
dothelial cells, NOS3 has been reported to traffic from the
plasmalemmal caveolae to intracellular locations, such as the
Golgi apparatus and the endoplasmic reticulum (67).
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It is no longer thought that NO synthesized within cardi-
omyocytes acts as a freely diffusible messenger. Instead,
constitutive NO release operates within discrete subcellular
domains either by stimulating soluble guanylate cyclase
(sGC) to produce cyclic guanosine monophosphate (cGMP) or
via the S-nitrosylation of specific protein targets. The cGMP-
dependent effects of NO are largely mediated by changes in
the proteins’ phosphorylation state as a result of stimulation
of the cGMP-dependent protein kinase (PKG) and/or of
changes in the activity of cGMP–stimulated or–inhibited
phosphodiesterases (PDE) (72). In the myocardium, constitutive
NO production affects the function and phosphorylation
state of several proteins that are involved in excitation-
contraction coupling (ECC) (e.g., the L-type Ca2 + channel
(LTCC) (199, 242), troponin I (135), and phospholamban (PLB)
(241, 261), and inhibits both oxygen consumption (143, 253)
and b-adrenergic inotropy (82) via a cGMP-dependent
mechanism. Furthermore, a direct reaction between NO and
thiol groups on cysteine residues causes changes in protein
conformation and function that are akin to those induced by
phosphorylation (71). Growing evidence supports protein S-
nitrosylation as an important mechanism of NO signaling
(98), which is implicated in the regulation of the ryanodine
receptor Ca2 + release channel (RyR) (65, 85, 244), SR Ca2 +

ATPase (SERCA) (17), LTCC (32, 214), and the Kv1.5 channel
(166) and the post-translational regulation of b-adrenergic
signaling (170, 246). Dysregulated S-nitrosylation of myocar-
dial proteins can result not only from alterations in the ex-
pression, compartmentalization, and/or activity of NOS, but
also from changes in the activity of denitrosylases such as the
S-nitrosoglutathione (GSNO) metabolizing enzyme, GSNO
reductase. Indeed, the knockout of GSNO reductase results in
enhanced levels of SNO proteins and significantly attenuates
experimental asthma and heart failure, while increasing the
severity of endotoxic shock in mice (71).

Constitutive NOS Activity and Regulation
of Cardiac Function

Paracrine and autocrine actions of NOS3-derived NO

It has long been known that NOS3-derived NO produced
in the coronary endothelium modulates the functional char-
acteristics of cardiac myocytes. One of the first demonstra-
tions of this paracrine effect was reported by Paulus et al. in
1995 (172), who stimulated endothelial cell NOS3 by in-
tracoronary infusion of substance P and observed increased
left ventricular (LV) diastolic compliance (independent of
changes in coronary flow). These effects were later linked to
PKG-mediated phosphorylation of troponin I, resulting in a
reduction of myofilament Ca2 + sensitivity (135).

The mechanical activation of endothelial cells (shear stress
or stretch) and cardiomyocytes (stretch) stimulates the release
of NOS3-derived NO (176, 178, 180), and has been proposed
to play a role in enhanced stroke volume from a rise in ven-
tricular preload (i.e., the Frank–Starling response). Here, cor-
onary paracrine signaling appears relevant, as denuding
coronary endothelium eliminated a preload-stimulated rise in
myocardial NO (178). In isolated crystalloid perfused guinea
pig hearts, coronary perfusion with L-NG-monomethyl argi-
nine citrate or hemoglobin (NO scavenger) depressed the
Frank–Starling reserve (180), though this was not observed
in an isolated blood-perfused canine preparation (191).
Stretched isolated cardiomyocytes activated NOS3 via Akt-
phosphorylation to increase Ca2 + sparks, intracellular Ca2 +

transient amplitude, and cell shortening—changes abolished
by the genetic deletion of NOS3 or L-Nx-Nitro-L-arginine
methyl ester (L-NAME) (176). Lastly, endothelial-derived NO
(from bradykinin) can reversibly decrease oxygen consump-
tion by reducing mitochondrial respiration (143, 253), effects
that are also attenuated by L-NAME and abolished in NOS3
knockout mice.

FIG. 1. Protein structure of
nitric oxide synthase 3
(NOS3) and NOS1 splice var-
iants. All NOSs include an
oxygenase and a reductase
domain and a calmodulin
(CaM) binding site. The
oxygenase moiety contains the
L-arginine, heme, and tetra-
hydrobiopterin (BH4)-binding
domains; whereas the reduc-
tase moiety contains the flavin
mononucleotide (FMN), flavin
adenine dinucleotide (FAD),
and nicotinamide adenine
dinucleotide phosphate
(NADPH)- binding domains.
An additional PDZ domain is
found in the N-terminal of the
a,l-NOS1 and NOS1–2 vari-
ants and allows the enzyme to
bind other proteins with a
similar structure. aa, aminoa-
cids. (To see this illustration in
color, the reader is referred to
the web version of this article at
www.liebertpub.com/ars.)
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Despite these and other studies, in vivo evidence that
constitutively expressed NOS3 (in myocyte and endothelial
cells) regulates cardiac function under basal conditions
remains scant, and evidence from mice genetically lacking
NOS3 suggests that any impact is minimal. Basal function is
similar between control and NOS3 - / - mice, though ino-
tropic and lusitropic responses to isoproterenol (ISO) are
enhanced (14, 90). Others have found no differences in rest or
ISO stimulated cardiomyocyte function between these
models (148, 232). However, stimulation of the b-3 adren-
ergic receptor (AR) plays an important role in triggering
NOS3-derived NO, which, in turn, blunts b1-adrenergic
inotropic responses (79) via PKG activation pathways (136);
thus, attenuation of b1-adrenergic responses by NO may
vary with the intensity of stimulation and the species under
investigation.

Actions of NOS1-derived NO

After its detection in SR membrane vesicles of cardiac
myocytes in 1999 (254), NOS1 has been shown to act as a
major modulator of cardiac function and intracellular Ca2 +

fluxes (Fig. 2). In 2002, Ashley et al. reported enhanced con-
tractility and prolonged relaxation in LV myocytes from
NOS1 - / - mice compared with their wild-type littermates
(10). The positive inotropic effect of NOS1 gene deletion on
myocardial contraction (both in cardiomyocytes and in vivo)
was confirmed by other (25, 55, 199) [but not by all (14, 244)]

investigators. Furthermore, Sears et al. reported an increase in
Ca2 + current density and larger intracellular Ca2 + transients
and Ca2 + stores in the presence of NOS1 inhibition of gene
deletion (199). More recently, NO released by NOS1 has been
shown to accelerate cardiomyocyte and left ventricular
relaxation by increasing PLB phosphorylation of via a cGMP-
independent inhibition of serine/threonine protein phos-
phatases (261).

NOS1-derived NO is also involved in the regulation of RyR
function. NOS1 gene deletion has been reported to decrease
RyR S-nitrosylation; however, the impact of this finding on
RyR open probability remains a matter of debate. Gonzalez
et al. reported an increase of diastolic Ca2 + leak from the RyR
in NOS1 knockout mice in the absence of differences in
channel phosphorylation (85); whereas Wang et al. (244),
using the same model, reported a decrease in RyR open
probability.

A further mechanism by which NOS1 can modulate ECC is
through its interaction with xanthine oxidoreductase (XOR).
Khan et al. observed that both enzymes coimmunoprecipitate
and colocalize in the SR. In the absence of NOS1, XOR is acti-
vated and increases its production of superoxide, which, in
turn, reduces myofilament Ca2 + sensitivity (117). Finally, NOS1
has been shown to interact with the sarcolemmal calcium pump
(also known as plasma membrane calcium/CaM-dependent
ATPase [PMCA]); overexpression of PMCA4b inhibits NOS1
activity and blunts the b-adrenergic contractile response in
cardiac myocytes (167).

FIG. 2. Regulation of myocardial Ca21 fluxes by NOS-derived NO. NOS1-derived NO has been shown to inhibit Ca2 + influx via
the L-type Ca2 + channel (LTCC), increase Ca2 + reuptake in the sarcoplasmic reticulum (SR) by increasing phospholamban (PLB)
phosphorylation, and regulate the release of Ca2 + from the SR through changes in ryanodine receptor Ca2 + release channel (RyR) S-
nitrosylation. NOS1 activity is, in turn, modulated by the Ca2 + flux via the plasmalemma Ca2 + ATPase (plasma membrane calcium/
CaM dependent ATPase [PMCA]). Endothelial NOS3-derived NO has been reported to reduce myofilament Ca2 + sensitivity via PKG-
mediated phosphorylation, inhibit myocardial oxygen consumption, and regulate intracellular cAMP levels (and thus, b-adrenergic
responses) by modulating phosphodiesterase activity. The stimulation of myocardial NOS3 activity by mechanical stretch has been
shown to increase the open probability of the RyR Ca2 + release channel. SERCA2a, SR Ca ATPase; NCX, sodium calcium exchanger.
(To see this illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/ars.)
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In addition to its effects in cardiac myocytes, NOS1 acts as a
local modulator of the autonomic control of the cardiovas-
cular system. In the heart, NOS1-derived NO increases
acetylcholine release from cholinergic neurons via a sGC-
cGMP-dependent mechanism. By contrast, NO generated in
sympathetic ganglia reduces the synaptic release of nor-
adrenaline [reviewed in Herring and Paterson (97)]. In atrial
parasympathetic ganglia, NOS1 is up-regulated by exercise
training where it contributes to the enhanced bradycardic
response to peripheral vagal stimulation (54). Similarly, an
increase in atrial nNOS protein after myocardial infarction has
been reported to enhance vagal bradycardia in rats (219). In
the central nervous system, NOS1-derived NO exerts an in-
hibitory role in the regulation of sympathetic outflow, which
is blunted in animal models of heart failure (202, 260).

Mechanisms of Constitutive NOS Dysfunction

Since the normal function of constitutive NOS is to generate
NO for cell function and adaptation, NOS dysfunction can be
considered a state where less NO is generated and/or NO
targeting is disrupted. Reduced NO generation by NOS typ-
ically coexists with its increased synthesis of O2

- , a condition
referred to as NOS uncoupling. This and the interaction of NO
with oxidants (to form nitroso-oxidant species such as per-
oxinitrite [ONOO - ]) can further impact the fate of any NO
generated. To remain functional, NOS requires critical cofac-
tors, an adequate substrate, and a redox environment that
facilitates NO targeting. Since each is altered in heart disease,
understanding their mechanisms is important.

BH4 biosynthesis and regeneration
and NOS dysfunction

A critical aspect for NOS generation of NO is the presence
of the cofactor BH4. BH4 binds close to the heme active site at
the interface between the two monomers, interacting with
residues from both. Maintenance and stabilization of NOS
dimers is dependent on BH4, and BH4 also plays a direct role
in the multistep oxidation of L-arginine through the N-hy-
droxy-L-arginine intermediate and the subsequent generation
of NO (211). Depletion of BH4 and/or its oxidation to BH2
shifts the electron transport process, so that rather than gen-
erating NO, the enzyme acts as an oxidase (Fig. 3). This con-
dition, known as NOS uncoupling, now appears to be a major
mechanism whereby NOS dysfunction translates to patho-
logical disease. It is, therefore, useful to review the mecha-
nisms controlling BH4 synthesis and regeneration.

Intracellular biopterin levels are principally regulated by
the activity of the de novo biosynthetic pathway. Guanosine
triphosphate cyclohydrolase I (GTPCH) catalyzes the forma-
tion of dihydroneopterin 3¢ triphosphate (DNTP) from GTP,
and BH4 is generated by two further steps through 6-
pyruvoyltetrahydropterin synthase and sepiapterin reductase
(SPR). GTPCH seems to be the rate-limiting enzyme in BH4
biosynthesis, and the overexpression of GTPCH is sufficient
to augment BH4 levels in cultured endothelial cells (31, 49)
and in the vascular endothelium and myocardium in vivo (5,
104). Electron paramagnetic resonance spectroscopy studies
have shown that BH4 both stabilizes and donates electrons to
the ferrous–dioxygen complex in the oxygenase domain, as
the initiating step of l-arginine oxidation (86, 187, 235). In this
reaction, BH4 forms the protonated trihydrobiopterin cation

radical, which is subsequently reduced by electron transfer
from NOS flavins (101, 198).

When BH4 availability is limiting, electrons flowing from the
reductase domain to the heme are diverted to molecular oxy-
gen instead of to L-arginine, resulting in the formation of su-
peroxide rather than NO. This may lead to the oxidation of BH4
to catalytically incompetent BH2, resulting in a feed-forward
cascade of BH4 destruction and further uncoupling of the en-
zyme (234, 236). Indeed, it has previously been suggested that
the relative abundance of NOS3 versus BH4, along with the
intracellular BH4:BH2 ratio (instead of the absolute concen-
tration of BH4), may be key determinants of NOS uncoupling
(49). This observation is supported by several in vitro and in vivo
studies (233, 235) and computational modeling (113) and sug-
gests that mechanisms which regulate the BH4:BH2 ratio, in-
dependent of overall biopterin levels, may play a role in
controlling NOS coupling that is as important as the well-es-
tablished role of GTPCH in de novo BH4 biosynthesis. However,
others have reported that the absolute level of BH4 and not the
biopterin ratio is the principal determinant of NOS activity and
uncoupling in endothelial cells and cardiomyocytes (5, 33, 185).

GTPCH protein levels are induced by oxidative stress (204),
and bacterial lipopolysaccharide elicits a 2-3-fold increase in
GTPCH activity in a variety of rat tissues that constitutively
express GTPCH, including cerebellum, liver, spleen, and the
adrenal gland. Macrophages, dermal fibroblasts, and tumor
cell lines demonstrate a profound increase in GTPCH activity
after treatment with IFNc and tumor necrosis factor alpha
(TNFa) (87, 93). BH4 synthesis by GTPCH is subject to feed-
back inhibition by BH4 and other reduced pterins via a
mechanism that requires a regulatory protein known as GTP
cyclohydrolase feedback regulatory protein (GFRP) (153).
This inhibition of GTPCH by BH4 or GFRP can be reversed by
high levels of phenylalanine (153, 259). Given the importance
of matching NOS activity with BH4 availability, it is perhaps

FIG. 3. The role of BH4 and its oxidized products in the
regulation of NOS activity. In the absence of BH4, or when
BH2 binds to the enzyme, NOS becomes ‘‘uncoupled’’ and
produces superoxide instead of NO. NOS-derived superox-
ide, as well as superoxide from other sources such as
NADPH oxidase and xanthine oxidoreductase, may, in turn,
oxidize BH4 to BH2 and biopterin. Dihydrofolate reductase
(DHFR) can recycle BH2 back to BH4. (To see this illustration
in color, the reader is referred to the web version of this
article at www.liebertpub.com/ars.)
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not surprising to find that stimuli for one also impact the
other. For example, aortic GTPCH-1 activity and BH4 levels
are enhanced by laminar shear stress by a mechanism shown
to involve the phosphorylation of GTPCH-1 at serine 81 (S81)
by the a-prime subunit of casein kinase 2 (248). It is proposed
that laminar shear, and perhaps S81 phosphorylation of
GTPCH-1, disrupts the negative feedback conferred by GFRP
in endothelial cells.

In the de novo formation of BH4 from GTP, the conversion of
7,8- DNTP to 6-pyruvoyl tetrahydropterin (PTP) is catalyzed
by the zinc-dependent metalloprotein, 6-pyruvoyl tetra-
hydropterin synthase (PTPS). Although GTPCH is the rate-
limiting step to BH4 synthesis in most tissues, PTPS maybe
rate limiting in some cells, most notably human hepatocytes,
after stimulation with cytokines and other immunological
stimuli which induce BH4 synthesis by the up-regulation of
GTPCH expression (223). The final steps in the biosynthesis of
BH4 are two successive propyl side chain reduction reactions,
which are catalyzed by SPR. Studies are only now beginning
to elucidate the role of SPR as a site for the regulation of BH4
synthesis; in particular, the genetic knockdown of SPR by
RNA interference in endothelial cells is associated with re-
duction in both intracellular BH4 content and NO production,
while in vivo delivery of the SPR gene significantly increases
vascular SPR protein expression, activity, BH4 content, NO
production, and NO-dependent vasorelaxation (78).

In addition to de novo synthesis, BH4 is modulated by di-
hydrofolate reductase (DHFR), a key regulator of folate me-
tabolism that also regenerates BH4 from oxidized BH2 (165).
Net BH4 bioavailability reflects the balance between de novo
synthesis, the oxidation of BH4 to BH2, and the regeneration
of BH4 by DHFR; the latter now appears very important
for ultimately determining cellular BH4 homeostasis, NO
bioavailability, and, ultimately, NOS coupling. Recent stud-
ies have investigated the recycling function of DHFR in
cultured endothelial cells and mouse models of BH4 over-
expression and deficiency (47, 48, 212). Reduced BH4 and
NOS uncoupling after angiotensin II exposure are reversed
by overexpressing DHFR (34). By contrast, pharmacological
inhibition of DHFR activity by methotrexate, or genetic
knockdown of DHFR by RNA interference, reduces intracel-
lular BH4 and increases BH2, leading to NOS3 uncoupling in
endothelial cells. In cells expressing NOS3 with low biopterin
levels, DHFR inhibition or knockdown further decreased the
BH4:BH2 ratio and exacerbated NOS3 uncoupling. These data
have been corroborated in vivo where NOS uncoupling was
induced in the aorta of hph-1 mice after treatment with
methotrexate, and prevented by endothelial overexpression
of GTPCH (48).

Interestingly, studies have found that DHFR levels and
activity decline in experimental models of cardiovascular
disease, suggesting that insufficient recycling of BH2–BH4 by
DHFR is, at least in part, responsible for the reduced BH4
levels and the accumulation of BH2, leading to NOS un-
coupling. For example, DHFR protein levels are significantly
decreased in streptozotocin-induced diabetic mice, and dia-
betes-induced impairment of cardiomyocyte function is ex-
acerbated after DHFR inhibition with methotrexate (186).
Furthermore, reduced DHFR activity in adult cardiomyocytes
underlies their limited capacity to synthesize BH4 after cyto-
kine stimulation after treatment of rat cardiac allograft re-
cipients with sepiapterin (104). In support of these findings,

the up-regulation of BH4 recycling enzymes is sufficient to
restore BH4 levels, and effectively ‘‘re-couple’’ NOS3 within
the aorta of streptozotocin-induced diabetic mice. Insufficient
DHFR activity might also explain impaired vasorelaxation in
atherosclerotic vessels from hypercholesterolemic rabbits,
despite exposure to sepiapterin as the latter increases intra-
cellular BH2 levels, requiring DHFR to regenerate BH4 (233).

NOS phosphorylation

NOS activity is regulated by a number of protein kinases,
and changes in NOS phosphorylation may play an important
role in determining and regulating dysfunctional NOS activ-
ity in the diseased heart. To date, the majority of evidence
stems from vascular studies and the precise role of these post-
translational modifications in myocytes remain less clear.
In vitro and in vivo experiments have shown that NOS3 acti-
vation by phosphorylation at Ser-1177 (human, Ser-1179 in
bovine) is mediated by the PI3K/Akt kinase pathway.
Transduction of rabbit femoral arteries with constitutively
active Akt increased NO-mediated vasodilatation in response
to acetylcholine, whereas transduction with dominant-
negative Akt attenuates the effect and decreases NO pro-
duction in endothelial cells (146). Phosphorylation of NOS3
threonine-495 (human) or - 497 (bovine) within the CaM
binding domain has also been described and appears to be
constitutively present in endothelial cells (142). Threonine-495
is a negative regulatory site, and its phosphorylation (prob-
ably by protein kinase C [PKC]) is associated with reduced
electron flux and NOS3 activity, whereas de-phosphorylation
by protein phosphatase-1 enhances the enzyme’s activity
(152). In cardiac myocytes, application of hydrogen peroxide
or angiotensin II transiently increases NOS3 phosphorylation
and NO production via an AMPK and Akt-dependent
mechanism (196). Pretreatment with PEG-catalase abolished
both NOS3 phosphorylation and the positive inotropic effect
of angiotensin II, suggesting that myocardial hydrogen per-
oxide production can modulate both NOS3 activity and in-
otropy. The angiotensin II-mediated increase in NO was
abolished in cardiomyocytes from NOS3 - / - mice but unal-
tered in NOS1 - / - myocytes. By contrast, the latter showed a
reduction in NO synthesis in response to b-AR stimulation,
suggesting that angiotensin II specifically activates myocar-
dial NOS3 activity via a hydrogen peroxide-dependent in-
crease in S1177 and S663 phosphorylation; whereas NOS1
activity is preferentially coupled to b-ARs. Others have re-
ported that the incubation of cardiac myocytes with angio-
tensin II for 3 h increases NOS1 expression and the speed of
relaxation by mechanisms which are dependent on superox-
ide production by NADPH oxidases (109). Taken together,
these findings indicate that myocardial reactive oxygen spe-
cies (ROS) production may influence both the expression and
activity of myocardial constitutive NOSs.

Recent studies have revealed that hearts subjected to vari-
ous durations of ischemia show a time-dependent reduction
in BH4 levels which trigger increased NOS-derived superox-
ide production. Paradoxically, Akt-mediated phosphoryla-
tion, which would usually enhance NOS3-derived NO,
further exacerbates the NOS-derived superoxide production,
indicating that Ser-1177 phosphorylation is a critical regulator
of both coupled and uncoupled NOS3 function (38). How-
ever, this may not be relevant with regard to NOS1; although
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NOS1 contains a potential site for phosphorylation at S1412 at
its C-terminal tail that is analogous to the established Akt site
found in NOS3 (58, 75, 77), a second phosphorylation site at
S847 resides in an a-helix of the autoinhibitory domain of NOS
reductase (95, 184). Here, phosphorylation inhibits the bind-
ing of CaM and attenuates NOS1 catalytic activity (50, 130).

NOS glutathionylation

Glutathionylation is the specific post-translational modifi-
cation of protein cysteine residues by the addition of the tri-
peptide glutathione (GSH), the most abundant and important
reducing agent within the cell. Promoted by oxidative stress,
glutathionylation can regulate a number of cell processes,
including apoptosis, Ca2 + homeostasis, and cellular antioxi-
dant defences (45). Having observed that supplementing
dysfunctional NOS with BH4 or L-arginine is often not suf-
ficient to fully restore coupled NOS activity, Chen et al. re-
ported that S-glutathionylation may be a unique mechanism
for the redox regulation of NOS3, inducing enzymatic un-
coupling and superoxide generation from the reductase do-
main of the enzyme (40) (Fig. 4). Two highly conserved
cysteine residues are critical for NOS3 function, and become
glutathionylated under conditions of oxidative stress, pro-
moting NOS3-derived superoxide production. In vitro accu-
mulation of GSSG, induced by exposure of endothelial cells
to the GSH reductase inhibitor 1,3-bis(2 chloroethyl)-1-
nitrosourea, results in glutathionylation of NOS3; whereas
thiol-specific reducing agents reverse both NOS3 glutathio-
nylation and endothelial dysfunction in vessels from sponta-
neously hypertensive rats (40). There are several proposed
mechanisms of S-glutathionylation (1, 21). When the ratio of
GSSG:GSH is high, thiol-disulfide exchange with oxidized

glutathione (GSSG) may occur. ROS and reactive nitrogen
species-derived thiyl radicals can, in turn, react with GSH and
protein thiols to allow protein S-glutathionylation. It is believed
that the formation of thiol intermediates, such as the thiyl
radical, sulfenic acid, or S-nitrosyl, is a more rapid and efficient
mechanism for protein S-glutathionylation in vivo and that
these mechanisms could play a role in signal transduction.
NOS3 thiols can be oxidized by superoxide generated from
uncoupled NOS3, exogenous sources, or cellular oxidative
stress through the formation of thiyl radicals. Protein thiyl
radicals generated from uncoupled NOS3 indeed react with
reduced GSH to form NOS3 S-glutathionylation (39).

Classical uncoupling of NOS3, usually induced by BH4-
dependent mechanisms, exhibits superoxide generation from
the heme iron within the oxygenase domain, which is in-
hibited by the L-arginine analogue, N-nitro-L-arginine and its
methylester, L-NAME. Here, the nitro-substituted arginine
analogue occupies the L-arginine binding site, attenuating the
reduction of the heme iron by the reductase domain; the ferric
heme does not bind oxygen, rendering it incapable of pro-
moting the production of superoxide. Glutathionylation-
induced uncoupling of NOS3, by generating superoxide from
flavins within the enzyme’s reductase domain, is less sensitive
to inhibition by L-NAME. This mechanistic difference be-
tween BH4- and glutathionylation induced NOS uncoupling
has far-reaching implications; in particular, superoxide gen-
eration from the NOS reductase domain, initiated by glu-
tathionylation, might act as a ‘‘trigger’’ for BH4 oxidation and
haem-derived superoxide production within the oxygenase
domain. Since the importance of NOS coupling in cardio-
vascular health and disease is now well established, thera-
peutic strategies targeting the restoration of cardiac and
endothelial BH4 levels need to consider these issues.

FIG. 4. Differential mechanisms of NOS3 uncoupling. When NOS3 is fully coupled, electrons flow from the reductase
domain of one subunit into the oxygenase domain of the other, and NO is produced. When NOS3 is uncoupled, L-arginine
oxidation becomes uncoupled from electron flow through the enzyme, and superoxide is produced instead of NO. A unique
mechanism for the uncoupling of NOS3 has been identified where the modification of C689 and C908 by glutathionylation
results in superoxide production from the reductase domain of the enzyme (40). (To see this illustration in color, the reader is
referred to the web version of this article at www.liebertpub.com/ars.)
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Arginine metabolism: asymmetric dimethyl arginine
and arginase

NOS requires L-arginine to function and generate NO, and
abnormal arginine metabolism also plays a role in NOS dys-
function. Two pathways have been recently highlighted (237):
One is the conversion of L-arginine to asymmetric dimethyl
arginine (ADMA) by protein arginine methyltransferase, and
the second is its catabolism to urea or ornithine by arginase I
and/or II. Both reduce the available supply of L-arginine,
and in case of ADMA, further inhibit NOS by competing for
L-arginine binding. Enhanced levels of ADMA are accompa-
nied by NOS uncoupling, which is associated with vascular and
cardiac dysfunction (7). In vivo levels of ADMA are increased by
gene deletion of dimethylarginine dimethylaminohydrolase-
1—an enzyme that metabolizes ADMA—leading to increased
ADMA, NOS dysfunction, and vascular disease (138).

Increasing the level or activity of arginases also compro-
mises NOS function by limiting available substrate. Arginase
is a manganese metalloenzyme which is central to the hepatic
urea metabolism, and exists in two distinct isoforms that are
widely distributed. Arginase I is the primary form in the liver,
while arginase II is more widely expressed. Both are ex-
pressed in endothelial cells and vascular smooth muscle that
vary with vessel type and species. While first thought to be
primarily involved with disposal of amino acid and nucleo-
tide nitrogen, arginase has been recently revealed to play a
key role in cardiovascular biology by its regulation of NOS3
and NOS1 (19). Arginase is activated by oxidative stress via a
Rho/Rho-kinase pathway in bovine aortic endothelial cells
(35, 210), and its up-regulation with aging, ischemic heart
disease, hypertension, and heart failure supports its role in
NOS dysfunction (194).

The fate of NO: role of redox chemistry

In addition to NOS dysregulation, the bio-availability of NO
for targeting sGC or other protein thiols for S-nitrosylation
reactions depends on local redox chemistry. As noted, oxida-
tive stress shifts BH4 to BH2, and reactive species such as
ONOO- (15) (which are formed from NO and superoxide) can
directly impede NOS activity by modification of the central
zinc (263). NOS uncoupling provides the ideal microenviron-
ment for this chemistry, as both oxidants and NO are generated
by the same enzyme, and this is thought to be an important
factor limiting both cGMP-dependent and independent sig-
naling linked to NO (116). ONOO- targets remains far from
being well understood, though several proteins have been
identified [e.g., SERCA (124)] and [e.g., PKCe (12)].

Consequences of NOS Dysfunction
in Cardiovascular Disease

NOS, endothelial function, and vascular disease

Given the central role of NO signaling in endothelial
function, smooth muscle proliferation, thrombosis, and in-
flammation, it comes as no surprise that NOS dysfunction is a
potent contributor to vascular pathophysiology (96). The
importance of NOS3 to vascular homeostasis has been dem-
onstrated by genetic gain and loss of function studies, with
deletion worsening neointimal medial thickening and vas-
cular remodeling after injury (160, 258); whereas endothelial-
targeted NOS3 overexpression suppresses the same (114) and

reduces atherosclerosis in the ApoE-null mouse (231). Sig-
nificantly, the deletion of NOS3 removed both NO-dependent
vasorelaxation and oxidant-coupled hyperpolarization (150).
While uncoupled NOS3 generates less NO, its synthesis of
O2

- , subsequently converted to H2O2 by Cu,Zn-superoxide
dismutase, also results in vasodilation (159, 205). The latter
was recently coupled to oxidation of C46 residues in PKG1a to
form an internal disulfide bond and activate the kinase in a
cGMP-independent manner (27). Mice with a knock-in mu-
tated PKG1a (C46S) cannot undergo this oxidation, and de-
velop hypertension(181). Along with previous NOS3 deletion
studies, these results suggest a novel linkage between NOS3-
derived oxidants and vasomotor tone. Depressed NOS1 ac-
tivity also likely plays a role in vascular disease. Interestingly,
NOS1 regulates peripheral and coronary flow in humans (200,
201), and its expression rises in early- and advanced-stage
atheroma (249) and in the neointima, endothelial cells, and
macrophages in vascular lesions. This is likely to play a
counter-responsive role, as NOS1 gene deletion models also
develop worse vascular pathobiology after vessel injury (131).
Although NOS1 nor NOS3 gene deletion alone is sufficient to
induce significant vascular disease in the absence of a path-
ological stress or concomitant disease, combining deletions
displays a striking phenotype. Deletion of all three NOS iso-
forms in mice results in spontaneous coronary artery disease,
myocardial infarction, and sudden cardiac death (163, 228),
which are marked by intimal inflammation and coronary
vasospasm. Thus, defects in one isoform alone may be com-
pensated by others, but combined defects are likely to be
markedly pathogenic.

NOS3 also contributes to mechano-signaling in the coro-
nary vasculature, which is important to matching coronary
reserve with ventricular demands with exertional stress. The
failing and hypertrophied heart has depressed coronary di-
lator reserve, and NOS dysfunction has long been known to
play an important role. Increases in pulsatile flow involve
both a rise in phasic shear stress and cyclic wall stretch, both of
which are involved with NOS activation via post-translational
modifications, notably Akt phosphorylation, that not only
involve overlapping (e.g., tyrosine kinase cSrc) but also un-
ique (e.g., VEGFR2 dependent for shear, or independent for
pulse-stretch) signaling (140). Reduced vessel compliance—a
common feature of aging and many cardiovascular diseases—
would suppress a stretch mechano-signal; this may blunt Akt
and, thus, NOS3 activation, and dampen cytoprotection
against oxidant stress (140). Through this mechanism, dys-
functional NOS activity may be linked to structural changes in
the vessel wall, independent of endothelial biology per se.

In addition to modulating vascular tone and proliferation,
endothelial-derived NO impacts inflammation. Early studies
focused on the role of inducible NOS2 (208) (222); however,
NOS3 and NOS1 now appear to be major participants as
well (61, 238), providing a more tonic level of NO release. For
example, both NOS1- / - and NOS3- / - mice display 2- or 6-
fold increases, respectively, in leukocytes rolling at baseline (134,
137), and 9-10-fold increases after inflammatory stimulation.

NOS dysfunction and myocardial ischemia/reperfusion
injury and infarction

The cell-specific role of NOS1 and NOS3 in the ischemic
and infarcted ventricle is somewhat uncertain, as targeted
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gene-deletion models are lacking; however, both isoforms are
thought to play a role. Mice globally lacking either NOS1
or NOS3 display worse LV function and remodeling after
coronary ligation-infarction (55, 195). Both endothelial-and
myocyte-restricted overexpression of NOS3 reduces the
severity of postinfarction pathophysiology (107, 110). Some-
what analogous findings were reported for NOS1, where
myocyte-specific conditional transgenic overexpression of
NOS1 led to reduced infarct size, improved function, and re-
duced oxidative stress after coronary ligation (28). The same
authors reported the up-regulation and translocation of NOS1
to mitochondria in response to ischemia/reperfusion; simi-
larly, transgenically overexpressed NOS1 localized to mito-
chondria coupled to HSP90 translocation (28). Unlike NOS3 for
which expression changes in hypertrophy and heart failure are
often not observed, NOS1 expression rises in human HF (53)
and after myocardial infarction in rats, where translocation to
the plasma membrane and association with caveolin-3 (Cav-3)
is observed (18, 52). Although this may reduce the capacity of
NOS1 to impact oxidative stress, it also leads to retargeting,
with increased cGMP/PKG and S-NO mediated inhibition of
the LTCC (214) and b-AR signaling (18, 55, 214) that may
protect the heart while down-regulating function.

The mechanisms underpinning NO-derived cardiac pro-
tection to ischemia-reperfusion injury involves mitochondrial
KATP channels via PKG phosphorylation (255), S-nitrosylation
of sarcoplasmic and mitochondrial calcium uptake ATPases
and of the hypoxia inducible factor 1a (141), and ONOO-
induced tyrosine-nitration of PKCe (12). The relative role of
NOS3 and NOS1 to these mechanisms may depend on redox
conditions that impact NOS coupling, sGC-NO responsive-
ness (226), and potentially PKG activity (27). S-nitrosylation of
a variety of target proteins during ischemic preconditioning is
thought to act as a cysteine shield, protecting residues from
subsequent oxidation and functional damage on reperfusion
(126).

NOS dysfunction and cardiac hypertrophy and failure

Changes in NOS3 and NOS2 in experimental and human
cardiac failure and pathological hypertrophy bear many
similarities with results obtained in the postischemic/
infarcted heart. NOS3 expression has been observed to decline
in some studies (60, 177), while others find no change, and
NOS1 expression typically increases (18, 52). Gain-and-loss-
of-function models have targeted pressure overload, and
here, the results are somewhat mixed, likely highlighting the
importance of redox environment and status of NOS (i.e.,
uncoupled or not) in determining the response. For example,
chronic NOS3 deletion induces concentric hypertrophy (14),
and has been found to worsen remodeling after pressure
overload (197). Myocyte-targeted up-regulation protected
against this loading model (29). However, others employing
abdominal aortic banding found increased hypertrophy but
less chamber dilation in NOS3 - / - (189). With a more severe
ascending constriction model, Takimoto et al. (218) found that
NOS3 - / - mice were paradoxically protected, displaying
neither dilation nor progressive LV systolic dysfunction as
compared with controls, and linked this to the lack of oxida-
tive stress in mice lacking NOS3. Thus, while NOS3 may
usually be protective against maladaptive stress, once un-
coupled, it potently contributes to the pathophysiology, itself

becoming a major ROS generator. In this condition, its ab-
sence results in improved biology.

In vitro studies have demonstrated the uncoupling of NOS1
activity in response to ROS via both reversible oxidation of
BH4 (induced predominantly by superoxide) and irreversible
heme degradation (induced by peroxynitrite) (213). Less is
known about the mechanisms and functional consequences of
NOS1 uncoupling in vivo, though it may in part account for
left ventricular diastolic dysfunction. In deoxycorticosterone
acetate-salt mice, treatment with the partial selective NOS1
inhibitor 7-nitroindazole reduced superoxide in left ventric-
ular tissue, while oral BH4 supplementation maintained or
restored PLB phosphorylation. NOS1 inhibition or gene de-
letion also impairs myocardial relaxation by reducing the PLB
phosphorylated fraction (241, 261).

The role of NOS2 (inducible NOS) to pathological LV re-
modeling in heart failure is still being defined. Targeted
overexpression in myocytes is protective against pressure
overload (245) and as previously noted, this may relate to
antioxidant effects (169). However, whether NOS2 provides a
source of ROS due to uncoupling under stress is less clear, as
the deletion of NOS3 appears sufficient to suppress ROS ac-
tivity (218). Furthermore, since much of NOS2 signaling ap-
pears less dependent on cGMP and more on S-NO
modifications, the impact of up- or down-regulation is likely
to depend on the local redox environment, not only affecting
the enzyme itself, but also the proteins whose cysteines would
be targeted for S-nitrosylation.

The scaffolding protein Cav-3 plays an important role in
NOS function in the cardiac myocyte, and evidence supports
the role of Cav-3 dysregulation in heart disease. In a study
conducted on mouse models of dilated cardiomyopathy
(adenosine A1-receptor or TNFa overexpression), Cav-3 ex-
pression declined and correlated with functional deficits as
well as reduced Akt activation and SR-ATPase gene expres-
sion (66). In this study, human-failing myocardium Cav-3
trended to a decline, though some studies of experimental
heart failure have reported increased Cav-3 expression (15).
Mice genetically lacking Cav-3 develop hypertrophic cardio-
myopathy that is accompanied by activation of the p42/44
mitogen activated protein kinase (MAPK) pathway (251),
while cardiomyocyte-targeted over-expression of Cav-3 (100)
may attenuate cardiac hypertrophy, increasing cGMP levels,
a-type and b-type natriuretic peptide (ANP/BNP) expression,
and enhancing nuclear targeting of Akt, itself shown to be
anti-hypertrophic (227). Cav-3-NOS modulation likely
contributes to these effects. For example, in the pressure-
overloaded heart, NO-dependent activation of sGC is mark-
edly depressed, in part due to oxidation coupled to a decline
in its expression within Cav-3 microdomains (226). In hearts
genetically lacking Cav-3, sGC activation by NO or by direct
small-molecule activators is also lost (226—indicating a criti-
cal role of the protein in normal interactions between NOS-
NO generation and sGC-cGMP production. Since caveolae
also serve as a major nexus for a broad range of cell signaling,
coordinating receptors, kinases, ion channels, and the
dystrophin-glycoprotein complex (80), more than NOS3
dysregulation is involved when Cav-3 is abnormal. Loss-of-
function mutations in Cav-3 have been linked to several forms
of muscular dystrophy, including limb girdle, hyper-creatine
kinase, and rippling muscle disease (80). Several case reports
that suggest Cav-3 mutations (e.g., T77M) (225) can result in
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hypertrophic cardiomyopathy, though this remains rare, and
whether the disease involves NOS dysregulation is unclear.
NOS1 colocalizes with Cav-3 in skeletal muscle but not in
normal cardiac myocytes. However, some have observed
plasma-membrane translocation of NOS1 in heart failure
syndromes, where interaction with Cav-3 may well play a role
in altered signaling (16, 53).

NOS and cardiac transplantation

Despite general success with human heart transplantation,
graft rejection continues to be a primary cause for postoper-
ative mortality and morbidity (46). Most research has focused
on inducible NOS2, which may have positive and negative
effects, the latter being coupled to mitochondrial (220), met-
abolic (139), and apoptotic (215) modulation. NOS3 is also
likely involved. While depressed NOS3 is observed and
thought to contribute to graft/host vasculopathy (57, 175),
data regarding the benefits of gene therapy that enhance
NOS3 are mixed (106, 108, 257). This could reflect redox im-
balance with a graft rejection; so, NOS3 becomes more likely
to be uncoupled if up-regulated.

NOS and angiogenesis

There is evidence that NOS-derived NO controls the pro-
cess of angiogenesis during heart development (262). This
regulation becomes even more important during pathological
conditions where the formation of new vessels plays a key
role in the remodeling of the heart. Recent findings suggest
that NOS3 regulates the migration of endothelial-derived
progenitor cells (EPC) which are produced by the bone mar-
row and mobilize on stimulation to induce neovascularization
(173). NOS3 - / - mice have a reduced recruitment of EPC and
impaired angiogenesis (3). The absence of NOS3 prevents the
up-regulation and mobilization of EPC after aortic constric-
tion, resulting in enhanced cardiac hypertrophy and fibrosis,
and reduced capillary formation (115). These negative effects
are reversed when wild-type bone marrow is transplanted in
NOS3 - / - mice. EPC are also recruited to the myocardium
during ischemia preconditioning (103), although whether this
is causing a beneficial effect on cardiac remodeling has not yet
been elucidated. In myocardial infarction models, EPC mo-
bilization and angiogenesis can be increased by the adminis-
tration of estradiol or atorvastatin (105, 132); in both cases, the
increase in EPC recruitment is mediated by NOS.

NOS and arrhythmia

Both NOS1 and NOS3 play key roles in electrical acti-
vation of the heart, and their dysfunction contributes to ar-
rhythmia. Mice lacking NOS3 display a slower heart rate,
and an increase in the transient inward current that has been
coupled to aminoglycoside-induced ventricular ectopy and
tachycardia (182). While NOS3 - / - myocytes have normal
resting action potential duration (APD) and LTCC current
under basal condition, their response to ISO is altered, with
longer APD and augmented ICa associated with increases in
early and delayed afterdepolarizations (243). The latter may
be related to a loss-of-negative cGMP/PKG effects on the b-
subunit of the LTCC (256). NOS1 plays a key role in Ca2 +

cycling, and its absence results in an increase in peak and
diastolic calcium and ventricular ectopy (25, 199). Mice

lacking NOS1 develop worse arrhythmia and SCD after
myocardial infarction (25).

A novel mechanism linking NOS and arrhythmia has been
revealed by genetic studies of mutations in the sodium
channel Nav1.5. The channel protein forms a complex with
NOS1, PMCA4b, and a-syntrophin, and the late Na + current
is enhanced by S-nitrosylation (9, 36, 112, 230). A mutation in
SNTA1 enhances S-NO modifications, and is a cause for long
QT syndrome (LQT3). Furthermore, genome wide association
studies showed a genetic variant in the gene encoding the
NOS1 adaptor protein, CAPON, to be associated with pro-
longation of the QT interval (9) and sudden cardiac death
(112). The SNP is in a noncoding region, and mechanisms by
which it confers changes in NO-dependent signaling remain
underway.

Dysfunctional NOS activity has also been linked to atrial
fibrillation (AF). Short-term AF leads to reduced atrial NOS
activity and NO bioavailability (30), coupled with an increase
in Rac1 activity and superoxide production from NOX2
oxidases. In contrast, long-standing AF and atrial structural
remodeling are associated with increased mitochondrial oxi-
dase activity and NOS uncoupling secondary to a reduction in
atrial BH4 content and an increase in arginase activity (121,
185). In human atrial myocytes, NO donors prolong APD by
decreasing IKv4.3 and human Ito1 (84); whereas endogenous NO
increases the inwardly rectifying K + current, IK1 and shorten
the APD by S-nitrosylating Kir2.1 channels (83). These findings
suggest that the decreased S-nitrosylation of Kir2.1 channels
observed in human samples from patients with AF may
represent a compensatory mechanism which attenuates the
shortening of APD and atrial refractory period and, thus, atrial
electrical remodeling in AF. Although recent data support the
use of statins to counter NOX2-dependent atrial superoxide
production as a strategy which prevents the new onset of AF
after cardiac surgery (6), other findings indicate that this ap-
proach is unlikely to be successful in long-standing AF (185).

Therapeutic Approaches for Fixing NOS-opathy

The approaches that are used for ameliorating NOS dys-
function in cardiovascular disease have targeted each of the
features we have just reviewed. They fall into six categories:
organic nitrates, NOS activators, NOS recouplers, arginase
inhibitors, enhancers of cGMP/PKG signaling, and modula-
tors of NOS-ROS interaction (Fig. 5). Although these appear
as promising targets, clinical translational remains limited,
though several approaches are being actively pursued in pa-
tients with heart disease.

Organic nitrates

Organic nitrates are used in the treatments of ischemic
heart disease and heart failure by increasing blood NO con-
centration via their denitration. Nitroglycerin (glyceryl trini-
trite [GTN]) is the most common form, and it rapidly
improves cardiac hemodynamics by vasodilation, augment-
ing cGMP in vascular smooth muscle (224). GTN denitration
has been previously attributed to reactions with GSH S-
transferase, cytochrome P450, and XOR (76); however, recent
data indicate (41) that mitochondrial aldehyde dehydroge-
nase 2 (mtALDH2) is the major enzyme (128, 129). GTN
bioactivation may also result in the formation of other NO-
related species that activate sGC in a haem-independent
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manner. While among the initial agents used to reduce cardiac
loading in heart failure, organo-nitrates lost favor due to the
clinical superiority of other vasodilators (e.g., angiogensin
converting enzyme inhibition) and tolerance. The latter is now
thought to be due to the chronic suppression of mtALDH2
after long-term exposure (216). Nonetheless, recent evidence
of the benefits of this drug class combined with hydralazline
in the African-American sub-population of heart failure pa-
tients has revived interest (221).

NOS activators

Akt activation of NOS3 has been recently mimicked by
administration of the gas, hydrogen sulfide (H2S) (179). H2S
stimulates a two-fold increase in NO production coupled to
Ser-1177 phosphorylation, and the inhibition of Akt prevents
these effects. Current H2S ‘‘donors’’ are short-lived, and will
have to be modified to generate a meaningful pharmaceutical
approach, but this strategy is evolving (247).

Several methods have been recently described as enhanc-
ing NOS3 expression. Two small-molecule NOS3 transcrip-
tion enhancers, 4-fluoro-N-indan-2-yl-benzamide (AVE9488)
and 2,2-difluoro-benzo[1,3]dioxole-5-carboxylic acid indan-2-
ylamide (AVE3085) were identified by high throughput
screening. Both AVE9488 and AVE3085 stimulate eNOS
transcription in vivo and in vitro (250). They reduce athero-
sclerotic plaque formation in apoE knockout mice but not in
the apoE/NOS3 double knockout mice (250), supporting
specificity for NOS3. AVE30085 improves endothelial dys-
function in diabetic mice through increased NO production
and reduced oxidative stress in the vascular wall (37). These
compounds may prove useful by enhancing NOS3 expres-
sion, though the status of NOS—that is, redox modulation of
coupling or uncoupling—could impact their net benefit, and
more studies are required.

Another approach that increases NOS3 expression is the
polyphenol antioxidant trans-resveratrol (240), which aug-
ments NO production (122). Trans-resveratrol also prevents
NOS3 uncoupling and lowers oxidative stress while pre-
serving endothelial function (20), and it can up-regulate
GTPCH-1 (252), suggesting multiple mechanisms whereby it
may prove useful for treating NOS-opathy. Lastly, triterpe-
noids, such as betulinic acid isolated from birch tree bark,
have been shown to improve endothelium-dependent relax-
ation in rats with L-NAME-induced hypertension by their
ability to reduce oxidative stress (74). Betulinic acid may also
up-regulate NOS3 expression and reduce NADPH oxidase
expression in human endothelial cells through a PKC-de-
pendent mechanism (209).

Lastly, the racemic mixture d- and l-nibivolol, a third-
generation selective b1-adrenoceptor blocker with NO-
mediated vasodilating and antioxidant (102) properties, is
another intriguing method used. It reduces superoxide in en-
dothelial cells to boost NO bioavailability (43), and can inhibit
NADPH oxidase activity in various models of hypertension
(168). This results in a net enhancement of NO production (63,
151, 207) with the increased activity of NOS3 playing a role
(171). Such activity is observed in both endothelium and heart
(147), although NOS3 activation has not been observed in end-
stage human heart failure (24). Cardiac activity of nibivolol in
the nonfailing heart has been coupled to b3-AR stimulation to
enhance NO synthesis and promote angiogenesis (188), sug-
gesting potential use in ischemia-reperfusion injury (8). To
date, there have been only a few controlled clinical trials in
heart failure. The SENIORS trial (Study of Effects of Nebivolol
Intervention on Outcomes and Rehospitalization in Seniors
with Heart Failure) showed Nebivolol induced a modest,
borderline significant decline in all causes of mortality or car-
diovascular hospital admission (69). A trial of HFpEF, a dis-
order that is commonly associated with hypertension, was

FIG. 5. Therapeutic appro-
aches for treating ‘‘NOS-
opathy.’’ Schematic showing
various components of NOS-
related dysfunction and where
and how different therapeutic
approaches are attempting to
ameliorate this pathophysi-
ology. (To see this illustration
in color, the reader is referred to
the web version of this article at
www.liebertpub.com/ars.)
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recently reported, where the drug potentially failed to benefit
patients by suppression chronotropic reserve (44).

NOS recouplers

BH4 is a critical regulator of NOS coupling and function,
suggesting that it may be a beneficial therapeutic agent
in vascular disease. Pharmacological supplementation of
BH4 improves endothelium-dependent relaxation and NOS
coupling (155, 157). BH4 aids electron transfer from the NOS
reductase to the oxidase domains, assisting in the produc-
tion of NO and L-citrulline from L-arginine. It stabilizes
NOS in its active homodimeric form (183). Moens et al. (157)
found that the administration of BH4 to mice with well-
established left ventricular pathological remodeling, fibro-
sis, and dysfunction induced by pressure overload led to the
amelioration of these abnormalities and the reversal of
maladaptive remodeling. This occurred in association with
‘‘re-coupling’’ of NOS, which accounted for most of the ROS
generation in the control (placebo treated) group. Intrigu-
ingly, reversal of the pathology/pathophysiology by BH4
was not coupled with enhanced PKG activation. Rather, the
data suggest retargeting of NO due to an improvement in
myocardial NO/ROS imbalance. More recently, BH4 was
shown to improve left ventricular diastolic dysfunction in a
mouse model of hypertension via an increase in coupled NOS1
activity (206). BH4 has also been used to treat ischemia/
reperfusion (62), and recent data have coupled this beneficial
effect with angiogenesis (203).

However, despite initial enthusiasm based on experimental
studies, clinical trials of BH4 to treat disorders linked to un-
coupled NOS activity (i.e., hypertension, sickle cell disease,
cardio-renal syndrome, pulmonary hypertension, and coro-
nary artery endothelial dysfunction) have all been disap-
pointing [reviewed in (156)]. Part of the problem may be
differences in the tissue uptake of exogenous BH4, which ap-
pears to be species dependent. Another factor is that orally
consumed BH4 is rapidly oxidized, and should be reconverted
by DHFR to be effective. Even in mice, where exogenous BH4 is
effective for treating heart disease, increasing the dose led to a
paradox reversal of benefit, re-appearance of ROS, and this was
coupled with a decline in the BH4/BH2 ratio toward baseline
(155). Variability in both uptake and redox modification of
exogenous BH4 depending on the patient and disease would
greatly complicate its clinical pharmacology.

There are several alternatives to BH4 itself. Statins can
increase BH4 bioavailability in endothelial cells by up-
regulating GCH1 gene expression (94), and could assist in
NOS uncoupling. Folic acid has been studied, and it can im-
prove the binding affinity of BH4 to eNOS, enhancing the
reduction of BH2 to produce BH4, and chemically stabilizing
BH4 (158). However, the doses required are unclear, and
initial efforts have not been encouraging (59).

Arginase inhibitors

The importance of arginase in disease conditions has been
based in large part on the use of small-molecule inhibitors,
such as N(omega)-hydroxy-nor-L-arginine, which reverses
hypertension in the spontaneously hypertensive rat (11).
Other inhibitors [e.g., S-(2-boronoethyl)-l-cysteine] have been
used to demonstrate the impact of arginase up-regulation on
suppressing NOS signaling in aged vessels (19), and to ame-

liorate vascular aging (42, 111, 120). Commercial develop-
ment of clinical arginase inhibitors has begun (Arginetix, Inc.,
now Immune Control), and assessment of the efficacy of this
approach may follow.

cGMP-enhancing approaches

Another approach for tackling NOS-opathy is to con-
centrate on the cGMP-dependent component of the path-
way. While recognizing that this represents a component of
NO signaling that may or may not be central depending
on the condition, nonetheless, studies have revealed the
benefit of enhancing cGMP and thereby PKG activation in
the hypertrophied and failing heart. There are three pri-
mary means for achieving this: exogenous administration of
NO donors or stimulators of an alternative natriuretic-
peptide-coupled cGMP synthetic pathway, the direct acti-
vation/stimulation of sGC itself, or the inhibition of cGMP
hydrolysis by selective PDE. All three have been clinically
utilized and/or investigated. The use of NO donors and
NPs has the longest history. The former remains limited due
to tolerance that has multiple causes, including oxidative
stress and the associated down-regulation of aldehyde
dehydrogenase-II (216), PDE up-regulation (119), arginase
activation (118), and NOS uncoupling. NP administration
has not only been primarily used to reduce ventricular load,
but may also have benefits on the heart, though its use has
been limited to date due to requirements for intravenous
administration. This may be changing, however, in the near
future (239).

Activators and stimulators of sGC represent a fairly new
class of drugs, and several are now in advanced stages of
clinical trials. Some such as cinaciguat (BAY 58-2667) function
through an NO-independent mechanism, whereas others
(stimulators, riociguat, BAY 63-2521) improve the binding of
sGC to NO. Low-dose intravenous Cinaciguat decreased di-
astolic blood pressure and heart rate without lowering sys-
tolic blood pressure, whereas at higher doses, mean arterial
pressure declined as plasma cGMP increased (73). In a Phase
II study, patients with pulmonary hypertension treated with
riociguat displayed increased exercise capacity and reduced
pulmonary vascular resistance (81). Other trials are ongoing
to examine their role in heart failure.

Lastly, studies have also revealed how the inhibition of
cGMP-selective PDE5a with drugs such as sildenafil or tada-
lafil (both widely used to treat erectile dysfunction and pul-
monary hypertension) can improve cardiac hypertrophy/
failure pathophysiology and remodeling. Sildenafil sup-
presses as well as reverses existing hypertrophy/dysfunction
in mice subjected to pressure overload (162, 217). This and
similar agents also protect against I/R injury (192, 193),
doxorubicin toxicity (127), and precondition stem cells to
improve postimplant survival and function (99). They are also
being studied in muscular dystrophy, where both skeletal and
cardiac failure have been linked to the loss of dystrophin and
NOS1 activity (2, 125). There have been several clinical trials,
showing the improvement in heart failure symptoms, cardiac
remodeling and function (89), and peripheral vascular reserve
and endothelial function (88). A multicenter clinical trial
(RELAX) that studies the effects of sildenafil in patients with
heart failure and a preserved ejection fraction is near com-
pletion; results are due in late 2012.
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ROS/NO interactions

The recognition that nitroso-redox imbalance can adversely
impact the heart has led to several therapeutic approaches.
Broad antioxidant strategies, such as with Vitamin E and C
supplementation, have been disappointing. Some found HF
risk may even increase, as in the HOPE-TOO trial conducted in
patients with vascular disease or diabetes-mellitus-prescribed
vitamin E (144). Other trials using folic acid, B-vitamins, and
other agents have so far not improved cardiovascular risk.

A few other strategies have been proposed, though clinical
data remain controversial. For example, XOR is proposed to
negatively impact the nitroso-redox balance in the cardio-
vascular system (229), and XOR inhibitors such as allopurinol
or oxypurinol can improve cardiac function and/or re-
modeling in the experimental failing (190) and infarcted (154)
heart. This may be related to targeting of the NOS1-XO in-
teractome (117) and amelioration of vascular oxidative stress
to improve endothelial function (133). However, to date, hu-
man HF trials of XOR inhibition have not shown clinical
benefit (92, 164). Another approach was the combined use of
hydralazine and isosorbide dinitrate. A retrospective analysis
of earlier trials led to the hypothesis that, while not par-
ticularly effective in the Caucasian patients with HF, the
hydralazine-isosorbide dinitrate combination may benefits to
African Americans. The clinical trial, reported in 2004 (221),
showed a surprising efficacy on mortality and led to the first
racial-targeted FDA approval of a therapy. One hypothesis
was that hydralazine acted as an anti-oxidant and suppressor
of nitrate tolerance, and combined with isosorbide dinitrate,
could favorably impact the nitroso-redox imbalance (51, 91,
161). Why this should work only in African Americans—if
indeed this is the relevant mechanism—remains unclear, as
one would imagine that NOS/ROS imbalance is not unique to
this population. The greater incidence of hypertension in Af-
rican Americans and, thus, potential loading impact remains
an alternative explanation.

Conclusions

In summary, NO is a critical regulator of cardiovascular
homeostasis, and abnormalities in the performance of its
primary constitutive synthases play an important role in heart
disease. Growing evidence points to post-translational mod-
ifications underlying many of the NOS-opathies, resulting in
an imbalance of nitrosative and oxidative environments. This
impacts both ongoing NO generation and its chemistry as
well as the subsequent capacity to stimulate cGMP and PKG
activation or modify targeted0 protein residues. Several new
avenues to ameliorate NOS activity or its downstream path-
ways have shown promising results, but more trials are ob-
viously needed.
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Pinto Á, Tamargo J, and Delpón E. Nitric oxide increases
cardiac IK1 by nitrosylation of cysteine 76 of Kir2.1 chan-
nels. Circ Res 105: 383–392, 2009.
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Abbreviations Used

b-AR¼ b-adrenergic receptor
ACE¼ angiogensin converting enzyme

ADMA¼ asymmetric dimethyl arginine
ANP/BNP¼ a-type and b-type natriuretic peptide

APD¼ action potential duration
BH4¼ tetrahydrobiopterin
CaM¼ calmodulin

CAPON¼ carboxy-terminal PDZ ligand of nNOS
Cav-3¼ caveolin 3

cGMP¼ cyclic guanosine monophosphate
DHFR¼dihyrdofolate reductase
DNTP¼dihydroneopterin 3¢ triphosphate

ECC¼ excitation-contraction coupling
EPC¼ endothelial-derived progenitor cells
FAD¼flavin adenine dinucleotide
FMN¼flavin mononucleotide

GFRP¼GTP cyclohydrolase feedback regulatory
protein

GSH¼ glutathione
GSNO¼ S-nitrosoglutathione

GTN¼ glyceryl trinitrite
GTPCH¼ guanosine triphosphate cyclohydrolase I

H2S¼hydrogen sulfide
ISO¼ isoproterenol

L-NAME¼ L-Nx-nitro-L-arginine methyl ester
L-NMMA¼L-NG-monomethyl arginine citrate

LTCC¼L-type Ca2+ channel
MAPK¼mitogen activated protein kinase

mtALDH2¼mitochondrial aldehyde dehydrogenase 2
NADPH¼nicotinamide adenine dinucleotide

phosphate
NCX¼ sodium calcium exchanger

NO¼nitric oxide
NOS¼nitric oxide synthase

ONOO-¼peroxinitrite
PDE5¼phosphodiesterase type 5
PKC¼protein kinase C
PKG¼protein kinase G
PLB¼phospholamban

PMCA¼plasma membrane calcium/CaM
dependent ATPase

PTP¼ 6-pyruvoyl tetrahydropterin
PTPS¼ 6-pyruvoyl tetrahydropterin synthase
ROS¼ reactive oxygen species
RyR¼ ryanodine receptor Ca2+ release channel

SERCA¼ sarcoplasmic reticulum Ca2+ ATPase
sGC¼ soluble guanylate cyclase
SPR¼ sepiapterin reductase

SR¼ sarcoplasmic reticulum
TNFa¼ tumor necrosis factor alpha
XOR¼ xanthine oxidoreductase
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