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Abstract
Several lines of evidence indicate that the etiology of late-onset Alzheimer’s disease (LOAD) is
complex, with significant contributions from both genes and environmental factors. Recent
research suggests the importance of epigenetic mechanisms in defining the relationship between
environmental exposures and LOAD. In epidemiologic studies of adults, cumulative lifetime lead
(Pb) exposure has been associated with accelerated declines in cognition. In addition, research in
animal models suggests a causal association between Pb exposure during early life, epigenetics,
and LOAD. There are multiple challenges to human epidemiologic research evaluating the
relationship between epigenetics, LOAD, and Pb exposure. Epidemiologic studies are not well-
suited to accommodate the long latency period between exposures during early life and onset of
Alzheimer’s disease. There is also a lack of validated circulating epigenetics biomarkers and
retrospective biomarkers of Pb exposure. Members of our research group have shown bone Pb is
an accurate measurement of historical Pb exposure in adults, offering an avenue for future
epidemiologic studies. However, this would not address the risk of LOAD attributable to early-life
Pb exposures. Future studies that use a cohort design to measure both Pb exposure and validated
epigenetic biomarkers of LOAD will be useful to clarify this important relationship.
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ALZHEIMER’S DISEASE
General Alzheimer’s Disease Epidemiology

Alzheimer’s disease (AD) is a highly prevalent, progressive, and fatal neurodegenerative
disease associated with aging. Clinical manifestation of AD includes progressive memory
impairment and a gradual difficulty performing normal activities. A small percentage of
cases, termed early-onset AD (EOAD), experience disease onset prior to age 60. EOAD
cases are attributed to highly penetrant genetic mutations in amyloid pathway genes
including amyloid precursor protein (APP) on chromosome 21, presenilin 1 (PSEN1) on
chromosome 14, and presenilin 2 (PSEN2) on chromosome 1 [1, 2]. These mutations lead to
the accumulation of β-amyloid plaques, a pathological hallmark of AD.

Termed late-onset AD (LOAD), the majority of AD cases are sporadic and symptoms
manifest after age 60. Numerous low-penetrant genetic risk factors conferring a modest
increase in risk of disease have been identified for LOAD, the most studied of which is the
apolipoprotein ε4 allele (APOE-ε4). The global population prevalence of APOE-ε4 is 22%,
while approximately 60% of LOAD cases carry at least one allele [3, 4]. Large, multi-center
genome-wide association studies (GWAS) estimate the population attributable risk for
APOE variants is 19-35% [5]. GWAS have identified additional polymorphisms associated
with LOAD risk including genes for ABCA7, BIN1, CD2AP, CD33, CLU, CR1, EPHA1,
MS4A, and PICALM [6-9], each associated with small increases in population attributable
risk (PAR) ranging from 2-9.3% with a combined non-APOE PAR of 31-35%. Additional
APOE ε4 dose adjustment reveals 50% of the PAR for LOAD is accounted for by known
single nucleotide polymorphisms (SNPs) [8]. While these variants are important both for
risk assessment and identification of novel mechanisms of pathogenesis, they are neither
necessary nor sufficient for the development of LOAD.

Twin studies are an important epidemiologic tool for estimating the relative contribution of
genetics and the environment in disease development. Incomplete twin concordance and
variable age of onset supports a significant role for non-genetic factors in LOAD etiology.
Among monozygotic twin (MZ) pairs, approximately 45-67% of twin pairs are concordant
for LOAD [10-12]. Heritability of liability based on twin studies is estimated to be 58-79%
[10, 12]. Linkage analysis reveals age at LOAD onset is partially genetically linked to
regions on chromosomes 4 (208 cM) and 10 (139 cM) [13]. However, among a group of MZ
pairs in which both twins develop the disease, differences in age of onset range from 4 to 16
years [10]. Both genetic and environmental factors likely contribute to LOAD development
and time course.

Association studies have identified several non-genetic risk factors for LOAD, including
depression [14], hypertension [15, 16], stroke [17], diabetes [15], hypercholesterolemia [15],
obesity [18], head trauma [19], smoking [15, 20, 21], and having greater than 6 siblings [22].
Protective factors, those that reduce the risk of developing LOAD or delay the onset of
LOAD, include physical activity [23, 24], social engagement [25], mental activity [25, 26],
education (via the cognitive reserve hypothesis) [23, 25], statin use [27], non-steroidal anti-
inflammatory drug (NSAID) use [23], moderate alcohol consumption [23, 28], coffee
consumption [23], past vaccinations [29], and childhood residence in the suburbs relative to
the city [22]. In particular, nutrition may play a protective role in LOAD onset.
Consumption of one meal/week of fish rich in omega-3 fatty acids reduced the risk of
developing AD by 60% in the Chicago Health and Aging Project [30]. Individuals with
plasma vitamin E less than or equal to 21.0 μmol/L had a higher risk of incident dementia
than individuals with plasma levels greater than or equal to 25.5 μmol/L [31]. The natural
plant polyphenols curcumin and green tea epigallocatechin gallate (EGCG) have anti-
oxidant and neuroprotective properties that may be protective against LOAD [32]. EGCG
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reduces APP translation through modulation of the intracellular iron pool in vitro
neuroblastoma cell culture [33] and AD transgenic mice exposed in vivo to EGCG show
reduced Aβ plaque density [34]. In an additional AD transgenic mouse model study,
curcumin suppressed inflammation and oxidative damage in the brain and lowered levels of
soluble Aβ and plaques [35]. Anthropometric measures of shorter adult knee height and arm
span may reflect nutritional deficits in childhood [36] and women in the lowest quartile of
arm span in the Cardiovascular Health Cognition cohort study had 1.5 times elevated risk of
dementia [37].

Proposed environmental exposures associated with LOAD include aluminum [38, 39],
copper [38, 40], zinc [38], mercury [41], lead (reviewed below), iron [32], pesticides [42,
43], solvents [44], electromagnetic field [45], and particulate matter in air pollution [46].
Environmental exposure studies have been underrepresented in the AD literature, likely due
to the challenges of retrospective exposure assessment in older adults.

LEAD (PB) EXPOSURE
Overview of Pb Exposure as a Risk Factor

Zawia and colleagues have published a series of experimental studies on rodents and
primates demonstrating that Pb exposure in early life results in late-life neuropathological
changes similar to those of AD (reviewed elsewhere in this issue of Current Alzheimer’s
Research). This work, coupled with the recognition that exposure to Pb in the general
population until recently has been high, has heightened interest in the epidemiology of Pb
exposure and neurodegenerative disease. We discuss trends in Pb exposure and
epidemiologic studies that provide evidence for the role of Pb as a risk factor for AD.

Pb Exposure Epidemiology
One of the greatest environmental health successes of our society was the regulatory action
to reduce what had been decades of high Pb exposure in the US [47]. Between 1976 and
1991, the mean blood Pb levels for people in the US dropped 78% from 12.8 μg/dL to 2.8
[48]. Since 1991 the standard elevated blood Pb level defining the need for action from Pb
poisoning in children has been set to 10 μg/dL. The previously elevated mean blood Pb level
of 12.8 μg/dL is a sobering testament to the high levels of Pb exposure endured by the
general US population and other countries in the recent past.

Hazardous public health impacts remain despite low mean population blood Pb levels. One
issue is that the general reduction in Pb exposure is not universal. Pockets of high Pb
exposure remain in certain sectors of the US population where housing was constructed
prior to 1950 and at which time leaded paint was used [49, 50], or where plumbing pipes and
solder containing Pb have not yet been replaced [51]. Fly ash from municipal waste
incineration contains high levels of heavy metals including Pb [52]. In the high temperatures
of the trash incineration process, Pb is converted to the volatile PbCl2 compound, which can
contaminate surrounding areas [52]. It is estimated that the US has hundreds of defunct Pb
battery recycling sites [53] and Pb/zinc mines and smelters. The surrounding soil and water
of these industrial sites are often contaminated with high levels of Pb, leading to human
exposure [54], and many of these sites are designated Superfund sites on the National
Priorities List by the US Environmental Protection Agency (EPA) [55, 56]. In many
developing countries the combustion of leaded gasoline continues and industrial emissions
of Pb have been increasing [57, 58]. Groups of people continue to experience high blood Pb
levels based on their occupation or residential proximity to these hazards.

The pharmacodynamics of Pb in the human body makes past exposure to this heavy metal
relevant to current and future health outcomes. Pb dust is inhaled or ingested and absorbed
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through the lung epithelia or gastrointestinal tract respectively. Pb is taken up by divalent
metal transporters in the gut, binds tightly to heme molecules, and circulates throughout the
body via blood. A small percentage of circulating Pb is highly toxic because it is free and
bioavailable in the plasma [59]. Plasma Pb contributes to both soft tissue Pb as well as bone
Pb deposition [60]. Pb can occupy both Ca2+ sites in the hydroxyapatite structure of bones
[61] and greater than 95% of the adult body burden of Pb is stored in bones [61]. Given that
cortical bone turns over at a slow rate of approximately 2% per year in healthy adults, Pb
can be stored for decades in bone [62-64]. Storage in bone is not a permanent Pb
detoxification mechanism as Pb can have direct effects on the cellular components of bone
[65], and bone Pb can be mobilized in times of higher bone turnover such as during
pregnancy, lactation, and osteoporosis [66]. Individuals born in the US prior to the Pb phase
out in the 1970s may have accumulated elevated bone Pb stores that become mobilized in
later life.

Biomarkers of Pb Exposure
Whole blood Pb is the most common biomarker of Pb exposure. The half-life of Pb in blood
is relatively short, approximately 35 days [60]. This biomarker is best used for quantifying
recent environmental exposures and mobilization of endogenous Pb [67]. Similarly, soft
tissues also have relatively high turnover of Pb with a mean half-life of approximately 40
days, but soft tissue Pb quantification is invasive and not typically used for epidemiologic
studies [60].

An expert panel on adult Pb toxicity convened by the US Centers for Disease Control
concluded that bone Pb levels were the best biomarker of cumulative Pb exposure [68].
Spongy trabecular bone, such as that found in the patella, has an intermediate half-life of
5-15 years in adults [69]. More dense cortical bone, as in the tibia, has a much longer half-
life of 10-30 years [70]. Thus, epidemiologic studies measuring Pb in bone can quantify a
subject’s life history of cumulative Pb exposure.

Bone Pb levels can be measured either in vivo using Cd109 K-shell X-ray Fluorescence
(KXRF) [68] or by direct, chemical measurement of Pb in excised total joint replacement or
post-mortem bone samples [71]. Measurements with KXRF technology are painless and
non-invasive, with minimal radiation exposure [69]. The KXRF instrument uses low-level
gamma radiation to provoke emission of fluorescent photons from a subject’s tibia and
patella [72]. The photons are detected and quantified over a spectrum of wavelengths from
which the characteristic emission profile of Pb can be extracted [69]. Post-mortem bone
samples can be acid digested and quantified for Pb levels using inductively coupled plasma
mass spectrometry (ICP-MS) [73].

There are several approaches to predicting cumulative Pb exposure in the absence of direct
bone Pb measures. The Park model incorporates blood Pb and information on subject
demographics, medical history, and metabolic parameters to predict cumulative Pb exposure
[74]. The Gorell system predicts cumulative Pb exposure based on blood Pb levels and
physiologically based pharmacokinetic (PBPK) models incorporating industrial hygienist
rated occupational Pb exposure for each job over the duration worked [75]. Both strategies
have been validated with bone Pb measures.

Pb as a Neurotoxicant and Risk Factor for LOAD
Pb is a well-known neurotoxicant in children. Even at relatively low (subclinical) levels,
epidemiologic studies demonstrate that childhood Pb exposure affects IQ and behavior with
major impacts on IQ and functioning [47, 76].
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A growing body of toxicological and population-based research indicates that cumulative
environmental Pb exposure is neurotoxic in adults as well [77]. Pb exposure is a significant
risk factor for accelerated declines in cognition [78, 79], an effect that a recent CDC panel
concluded was likely causal [80]. The Veteran’s Affairs Normative Aging Study (NAS) is a
longitudinal cohort of men free of disease when recruited in 1963. Based on data from
repeated measures of bone Pb, blood Pb, and cognitive tests in the NAS, there are significant
associations between high Pb exposure and decreased cognition. The cognitive domains
associated with increased Pb exposure differ depending on the time of exposure. In a cross-
sectional analysis, higher blood Pb was associated with reduced ability to recall and define
words, identify line-drawn objects, and difficulty with a perceptual comparison test [81].
Both higher blood and bone Pb were associated with decreased spatial copying skill [81].
Higher bone Pb was associated with reduced pattern memory [81]. Longitudinal analyses
confirm that the Pb associated declines in cognitive function are greater than changes
observed with normal aging alone [82]. Also in the NAS, functional genetic polymorphisms
in the δ-aminolevulinic acid dehydratase (ALAD) and hemochromatosis (HFE) genes
modify the association between Pb and cognition measured by the Mini-Mental State Exam
(MMSE), where variant carriers have more pronounced cognitive deficits associated with Pb
exposure [83, 84]. Future research may study the ecological association between geographic
regions with elevated Pb exposure and prevalence of LOAD.

Pb is also a risk factor for increased hippocampal gliosis measured by magnetic resonance
spectroscopy in the NAS [85], an abnormality associated with LOAD development.
Molecular epidemiology studies show cumulative Pb exposure is associated with an
increased risk of amyotrophic lateral sclerosis [86-88] and Parkinson’s Disease [89],
suggesting that Pb exerts a significant neurodegenerative effect. This effect may have
specificity through epigenetic change as a pathogenic mechanism.

Toxicological studies are consistent with the epidemiologic research. Early life Pb exposure
in animal models is associated with latent APP pathway dysregulation. Rats exposed to Pb
in early life showed increased expression of APP mRNA and elevated Aβ aggregation
without changes in α-, β-, or γ-secretases at 20 months of age [90, 91]. Similarly, primates
exposed to Pb during the first 2 months of life only had significant adverse brain changes at
23 years of age when compared to their unexposed counterparts [92]. Pb exposed primates
had increased amyloidogenesis, senile plaque deposition, and up-regulation of key proteins
in the amyloid processing pathway, such as APP and beta-site APP-cleaving enzyme 1
(BACE1) [92].

OVERVIEW OF EPIGENETICS
Literally meaning “above the genome,” the epigenome comprises the heritable changes in
gene expression that occur in the absence of changes to the DNA sequence itself. Epigenetic
mechanisms include chromatin folding and attachment to the nuclear matrix, packaging of
DNA around nucleosomes, covalent modifications of histone tails, and DNA methylation.
The influence of regulatory small RNAs and micro RNAs on gene transcription is also
increasingly recognized as a key mechanism of epigenetic gene regulation [93]. Epigenetic
mechanisms are important in growth and cellular differentiation [94]. Epigenetic change can
be stochastic [95] or internally orchestrated as part of aging [96]. Longitudinal change in
global and gene-specific DNA methylation clusters within families, suggesting that there is
genetic control of methylation status [97]. Inappropriate epigenetic changes are associated
with many diseases including cancers [98], Rett syndrome [99], Beckwith-Wiedemann
syndrome [100] and other imprinting disorders. Environmental signals can trigger epigenetic
responses and may be an important mechanism by which environmental exposures are
associated with disease [101]. Furthermore, epigenetic mechanisms may play an important
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role in the developmental origins of adult health and disease (DOHaD) by providing a
mechanism underlying the latent effects of adverse fetal, infant, and childhood environments
on late-life chronic disease [102-104].

Epigenetic Epidemiology and Alzheimer’s Disease
Epigenetic epidemiology is the study of the effects of heritable epigenetic changes on the
occurrence and distribution of diseases in populations [105]. This research includes both
trans-generational and intra-individual cellular epigenetic inheritance systems. Epigenetic
changes are associated with epidemiologic risk factors such as aging [106, 107] and
environmental exposures [101], as well as psychiatric outcomes [108] and
neurodegeneration [109].

Evidence for the role of epigenetics in AD pathogenesis is found in human studies of various
tissues, animal models, and cell culture [110-112]. Global changes associated with AD have
been observed in DNA methylation, miRNAs, and histone modifications. A human post-
mortem case-control study identified global DNA hypomethylation in the entorhinal cortex
of AD subjects by quantifying the percentage of positive 5-methylcytosine neuronal nuclear
immunoreactivity [113]. Within a single MZ twin pair discordant for AD, DNA from the
temporal neocortex neuronal nuclei was hypomethylated in the AD twin compared to their
cognitively normal twin using similar methods to the previous study [114]. An AD case-
control study in the post-mortem human parietal lobe cortex revealed differential regulation
of miR-NAs including miR-204, miR-211, and miR-44691 using a custom μParaflo array
[115]. Age-matched AD cases have increased neuronal global phosphorylation of histone 3
relative to controls determined by immunolabeling in the hippocampus, a histone
modification that suggests mitotic activation [116].

Given that epigenetics play an important regulatory role in gene expression, epigenetic
dysregulation of important AD tau and amyloid processing pathway genes may point to a
potential mechanism for AD disease progression. In experiments where neuroblastoma cells
were cultured under low folate and vitamin B12 conditions, PSEN1 and BACE1 were
hypomethylated, mRNA expression of BACE1 and PSEN1 was significantly induced, and
Aβ production was increased [117]. Addition of S-adenosyl methionine (SAM) was able to
restore BACE1 and PSEN1 expression to baseline levels, though DNA methylation reversal
was incomplete [117]. An additional study using human neuroblastoma cells and male rat
brain tissue shows APP mRNA expression is repressed by thyroid hormone (T3) sensitive
histone modifications [118]. Treatment with T3 decreases H3K4 methylation and H3
acetylation at the APP promoter, leading to APP silencing that was reversed with histone
deacetylase (HDAC) and histone lysine demethylase inhibitors [118].

There have been several candidate-gene methylation studies in LOAD cases and controls. In
a post-mortem brain study of 26 controls and 44 LOAD cases with varying degrees of
disease severity, no differences were seen in DNA methylation in regions associated with
Microtubule Associated Protein Tau (MAPT), PSEN1, and APP, nor were differences
detected between frontal cortex and hippocampal DNA [119]. Investigation of 6 familial AD
frontal cortex and cerebellum brain samples revealed no methylation at the APP promoter in
any case in either brain region [120]. These studies were limited by a candidate-gene
approach and highlight the need for genome-wide assessment of DNA methylation.

It is critical that epigenetic epidemiology studies of AD epigenetics consider age as an
independent predictor of epigenetic change as age-specific epigenetic drift has been
observed at AD related loci among healthy normal controls. In a set of control parietal
cortex samples, the promoter of APP was hypomethylated in individuals greater than 70
years of age relative to younger subjects [121]. DNA methylation upstream of the MAPT
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gene also varied with age in the control parietal cortex and was associated with an age-
related decline in MAPT gene expression [122]. Specifically, MAPT promoter CpG
dinucleotides located in the Sp1 transcriptional activator binding site were hypermethylated
with age, while CpG dinucleotides located within the GCF transcriptional repressor binding
region were hypomethylated with age [122]. Another study of postmortem cerebral cortex in
125 subjects ranging from 17 weeks of gestation to 104 years of age measured methylation
by MethyLight PCR at candidate tag loci for 50 genes selected for their relevance to LOAD,
CNS differentiation, and cancer. CpG sites in the promoters of eight genes showed robust
linear increases in DNA methylation across the lifespan [123]. An additional study
examined prefrontal cortex samples across a 30 year age range and noted that the average
DNA methylation in promoters of MTHFR and APOE increased by 6.8% across the age
range, while control samples decreased by 10.6% with age [124]. Given the likely epigenetic
drift, clinical samples should be carefully matched on age.

Epigenetics and Heavy Metals, with a Focus on Pb
Epigenetic alterations have been observed following exposure to environmental metals
[125], including arsenic, nickel, chromium, cadmium, and Pb. Perhaps the heavy metal most
studied in the field of cancer epigenetic epidemiology is arsenic. In a population-based study
of 351 individuals with bladder cancer, elevated toenail arsenic measurements are associated
with increased tumor sample promoter methylation of RASSF1A and PRSS3 tumor
suppressor genes [126]. Nickel, chromium, and cadmium epigenetics research has largely
been in toxicologically based in vitro experiments. A cell line of human lung
bronchoepithelial cells treated with nickel chloride show global histone modification
changes including decreased H2A, H2B, H3, and H4 acetylation and increased H3K9
dimethylation [127]. When the same cell line is treated with chromium, the cells exhibit
increased H3K9 dimethylation at the MLH1 gene promoter region, which correlates with
decreased MLH1 mRNA expression [128]. Cadmium exposure in a rat liver cell line
initially reduces DNA methyltransferase activity and global DNA methylation, but after 10
weeks of prolonged exposure, the cells show significant increases in DNA methyltransferase
and global DNA methylation above the baseline [129].

Evidence suggests that Pb, in particular, may play a role in epigenetics throughout the life
course. In a study of 103 mother-infant pairs, maternal cumulative Pb exposure was
inversely associated with offspring umbilical cord genomic DNA methylation of Alu
retrotransposable elements [130]. Similarly, bone Pb levels were inversely associated with
peripheral blood genomic DNA methylation of LINE-1 retrotransposons in 517 elderly men
from the NAS [131]. Individuals exposed to extremely high levels of Pb (51-100 μg/dL
blood Pb) had higher methylation in the promoter of the p16 tumor suppressor gene [132].
Research is needed to expand this early epidemiologic work on global and candidate gene
DNA methylation to more comprehensively understand specific pathways influenced by Pb
exposure in humans.

Animal studies have investigated the relationship between Pb exposure and epigenetics.
Early life exposure to Pb in primates causes dysregulation of biological pathways important
to LOAD pathogenesis in late life and is associated with reduced DNA methyltransferase 1
(DNMT1) activity [92]. Rat pheochromocytoma cells exposed to Pb show dose dependent
decreases in global methylation and decreases in APP promoter methylation at 4 CpG sites
[133]. These changes were associated with increases in APP mRNA and Aβ protein levels
[133]. Toxicological and epidemiological studies suggest that Pb exposure may be
associated with epigenetic change, but further research is needed.

Bakulski et al. Page 7

Curr Alzheimer Res. Author manuscript; available in PMC 2013 February 08.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



DATA INTEGRATING ALZHEIMER’S DISEASE, EPIGENETICS, AND PB
EXPOSURE
Alzheimer’s and Pb Exposure are Associated with Changes in One-Carbon Metabolism,
the Substrate for DNA Methylation

De novo and maintenance DNA methylation is dependent on available methyl (-CH3)
groups. One-carbon metabolism reactions are reversible and deficiencies in methyl donors
can cause DNA hypomethylation. For example, mice given diets deficient in the methyl
donor choline show lower global brain methylation [134] and elevated expression of APP,
consistent with promoter hypomethylation [135]. Epidemiologic studies indicate that AD
patients have altered circulating levels of one-carbon metabolism members including
homocysteine (HCY), SAM, folate, and vitamin B12. Elevated HCY is associated with
increased risk of developing AD and increased rate of disease progression among
individuals with the disease. Prospective data from the Framingham Heart Study show that
each standard deviation increase in log transformed plasma total HCY levels was associated
with an adjusted relative risk of dementia of 1.8 (95% CI: 1.3-2.5) eight years after the HCY
measurement [136]. AD patients in the Oxford Project to Investigate Memory and Ageing
have increased serum HCY relative to cognitively normal control subjects (n=164) and the
individuals with the greatest disease progression over the subsequent three years had the
highest original HCY levels [137]. SAM is a methyl-donor molecule that is hydrolyzed to
form HCY, the substrate for DNA methylation. AD patients also have decreased
cerebrospinal fluid SAM relative to cognitively normal controls [138].

Several proteins in the one-carbon metabolism cycle may be disturbed by Pb exposure
because elemental Pb reacts with free sulfhydryl groups on proteins. HCY metabolism may
be directly inhibited by Pb binding to the sulfhydryl group in HCY. Furthermore, HCY is
transsulfurated into cysteine by cystathionine β-synthase (CBS) and CBS has two sulfhydryl
groups with which Pb can react. There is also evidence for Pb’s involvement in methionine
processing. Rats developmentally treated with Pb have impaired long-term potentiation
(LTP), memory, and synaptic plasticity. Co-treatment with SAM and Pb increases LTP
relative to Pb treatment alone and reduces circulating blood Pb levels [139]. Similarly,
neuroblastoma cells exposed to Pb experience viability loss, glutathione antioxidant
depletion, membrane lipid peroxidation, DNA damage, and apoptosis; pre-treatment with a
methionine derivative reduces these harmful effects [140].

Pb exposure and HCY levels are linked in cross-sectional epidemiologic studies. In the
Baltimore Memory and Aging Project involving greater than 1,000 adults, higher blood Pb
was associated with higher HCY [141]. Analyses from the 1999-2002 National Health and
Nutrition Examination Survey (NHANES) showed HCY was strongly associated (OR=1.92)
with peripheral arterial disease (PAD) [142]. Subsequent analysis showed the original
association was actually due to confounding from smoking, blood Pb and cadmium levels,
and impaired renal function [142]. This suggests that the association between HCY and
chronic disease may be driven by environmental exposures.

Animal Model Studies Linking Pb Exposure, Epigenetics, and Amyloidogenesis
A series of rat and primate model studies conducted by the Zawia research group
collectively demonstrate that early life Pb exposure reduces DNA methyltransferase activity
and specifically alters the regulation of many AD pathway related genes including APP and
BACE1 that are known to be CpG rich. Rats exposed to Pb from post natal day (PND) 1
through PND 20 experienced a transient increase in APP mRNA expression in cortical brain
tissue, which returned to basal levels at 1 year, and later resurged at 20 months of age in the
absence of continued exposure [91]. The observed late-life rise in APP mRNA was
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accompanied by elevated Aβ, suggesting that early life Pb exposure may have long-term
effects on amyloidogenesis in late life [91]. In a follow-up study on the same tissues,
investigators noted the effects on Aβ formation and aggregations were not due to changes in
protein levels of APP processing secretases [90]. In a third study using the early-life exposed
rat brain tissues, elevated oxidative DNA damage measured by cerebral 8-hydroxy-2’-
deoxyguanosine (8-oxo-dG) was observed in the exposed animals [143]. Local 8-oxo-dG is
associated with hypomethylation at adjacent CpG sites [144]. Direct oxidation of 5-
methylcytosine to 5-hydroxymethylcytosine may be part of active DNA demethylation
[145]. Analogous primate experiments by Zawia et al., are consistent with these rodent
findings. Primates exposed in early life to Pb had elevated levels of the Aβ peptide, 8-oxo-
dG DNA, and mRNA from APP and BACE1 on autopsy 23 years later relative to controls,
suggesting Pb is involved in LOAD-like pathology [92]. Brain tissue from these exposed
primates also had 20% reduced DNA methyltransferase 1 activity [92] and lower
methylation at the promoter of APP [146]. In vivo animal model studies spanning multiple
organisms support an integrated role of Pb exposure and epigenetics in amyloidogenesis.

Challenges to LOAD Epidemiologic Research Integrating Epigenetics and Pb Exposure
Human epidemiologic research integrating LOAD, environmental exposure to Pb, and
epigenetics faces many challenges. Clinical criteria for AD include progressive impairment
in memory in the absence of motor, sensory, or coordination deficits [147]. However, the
standard of diagnosis for AD requires the pathologic post-mortem identification of Aβ
plaques and tau neurofibrillary tangles. Epidemiologic studies can take advantage of
predictive and diagnostic biomarkers, including a panel of plasma signaling proteins [148],
cerebrospinal fluid protein analyses [149], magnetic resonance imaging (MRI) volumetric
and structural measures [150], and positron emission tomography (PET) neuroimaging of
metabolic rate and Aβ pathology [151, 152]. However, these research methods require
additional validation to become routine early detection methods [153].

Another concern in environmental epidemiology is that the length of time between exposure
and disease onset. Barker first introduced the hypothesis that early-life conditions could be
linked to late life chronic disease, otherwise known as the developmental origins of health
and disease (DOHaD) hypothesis [154]. Fetal or childhood exposures have been associated
with adverse health outcomes including impaired glucose tolerance [155] and hypertension
[156, 157]. Indeed, several early life events related to growth, metabolism, and cognitive
reserve have been associated with LOAD [158]. AD risk is increased with limited education
and income, and both factors are associated with poor early life environment and growth
[159]. Middle life risk factors including obesity [160], limited physical activity [161], and
diabetes [162] are shared between AD and cardiovascular disease. Low birth weight and
intrauterine growth restriction are related to metabolism, fat distribution, and insulin
resistance at mid-life and it has been suggested that these early-life events may be associated
with AD as well [163-165]. However, LOAD is a chronic disease of old age and a
prospective developmental exposure study could not feasibly follow an early life cohort for
75 years with our current late stage diagnostic measures. Additionally, retrospective
exposure assessment is difficult. The human body has efficient detoxification and clearance
mechanisms for many toxicants and many chemicals do not bioaccumulate in the human
body. There is an acute need to develop biomarkers that correspond to prior toxicologic
exposures.

Finally, an additional roadblock is that brain specific epigenetic measurements are only
possible post-mortem. Molecular epidemiology research of toxicant induced disease is
strengthened when performed with relevant tissue samples. Brain tissue collection is
invasive and not possible longitudinally on live subjects. Model animal research and
epidemiology studies of human pre-mortem available tissues such as skin, blood, colon, etc.
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are necessary to fill in stages of disease tissue not available through end of life
epidemiologic brain banks.

Potential Approaches to Study Pb Exposure, Epigenomics, and Alzheimer’s Disease
Epidemiology

To best understand the relationship between Pb exposure (both early-life and later life) and
LOAD, studies should take advantage of available biomarkers of Pb and technologic
advances in epigenetic measurements. Bone Pb levels are a strong predictor of negative
health outcomes including elevated risks for hypertension [166-168], ischemic heart disease
[169], and mortality [170], but the relationship between cumulative Pb exposure and LOAD
has not been assessed. Cumulative Pb exposure of LOAD subjects can be measured either
non-invasively in vivo using K-x-ray fluorescence [68] or by direct measurement of Pb in
bone samples [71]. At Alzheimer’s Disease Research Centers (ADRCs) where LOAD
subjects consent to brain tissue donation on autopsy, it would be most ideal to directly
measure Pb in samples of cranial bone obtained at the time of brain harvesting.
Measurement of Pb in the cranium is highly correlated with a weighted average of skeletal
Pb levels, as well as the level of Pb in tibia bone [171], the latter being the bone most
commonly measured in epidemiologic studies of chronic Pb toxicity [68]. Sampling cranial
bone Pb would make it possible to concurrently study LOAD epidemiology, brain tissue
epigenetics and cumulative Pb exposure in post-mortem case-control studies.

Circulating epigenetic biomarkers would be useful to conduct case-control studies of Pb
exposure (by in vivo KXRF) with live subjects. Post-mortem Alzheimer’s disease brain
tissue epigenetic studies are expanding, but use of this tissue collected at end of life is not
feasible to track within individual changes over time as in longitudinal epidemiological
aging cohort studies. Biologically-available biomarkers would allow for repeated epigenetic
measures throughout the disease course. Epigenetic markers in white blood cells (WBC)
have been used as biomarkers in other diseases. Global DNA methylation has been
associated with several cancers, myelodysplastic syndrome, and schizophrenia and thus does
not appear to be a disease specific biomarker. Gene-specific methylation data and risk factor
methylation data are more limited and results are inconsistent [172]. Larger, prospective
cohort studies are needed to determine whether WBC gene-specific epigenetics will be
informative with AD and with Pb exposure Fig. (1). Upon epigenetic biomarker
development, cohort studies could integrate and target distinct age groups. Birth cohorts
could investigate the role of in utero and postnatal Pb exposure on AD biomarkers to test the
hypothesis suggested by animal research [146] that early life is a critical window for Pb’s
influence on developmental reprogramming. Mid-life cohorts could focus on later exposure
periods and could incorporate traditional AD risk factors such as hypertension status and
education achieved. Late-life cohorts would involve the best AD and mild cognitive
impairment (MCI) diagnostic tools and study the role of cumulative lifetime Pb exposure.

Finally, epidemiologic data needs to be incorporated with epigenetic studies on ADRC brain
bank tissues. Epigenetic changes are associated with age [124], sex [173], exposures [174],
and diseases [175]. Alzheimer’s disease specific epigenetic change may need to be extracted
from a noisy background of age-specific epigenetic drift, sex-specific epigenetic marks, co-
morbidity disease changes, and a lifetime of environmental exposures. The majority of
existing studies of brain epigenetics focus on CpG islands and the application of array-based
approaches that only cover a portion of the genome, largely in genic regions. Rapid
advances in technology and reduction in costs have made new approaches using next-
generation sequencing (NGS) feasible for larger sample sizes. These new approaches have
been lauded as unbiased but criticized as relative (rather than quantitative) measures of DNA
methylation. The depth of genome coverage will be able to provide the large amount of
information needed to detect subtle changes from multiple sources. Integration of these data
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with ongoing studies of biomarkers in other neurodegenerative diseases and in non-diseased
aging populations will help elucidate the specific epigenetic changes associated with LOAD,
providing a foundation for prevention and treatment of this disease.
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Fig. (1).
Conceptual diagram describing the relationship between environmental exposures, including
to the heavy metal lead, with the development of late-onset Alzheimer’s disease. There is a
complex interplay of genetics and epigenetic programming. Epidemiologic cohort studies
can be designed to study different stages in the life course leading to disease development.
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