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Simple electrolyte solutions: Comparison of DRISM and molecular
dynamics results for alkali halide solutions
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Using the dielectrically consistent reference interaction site model (DRISM) of molecular solva-
tion, we have calculated structural and thermodynamic information of alkali-halide salts in aqueous
solution, as a function of salt concentration. The impact of varying the closure relation used with
DRISM is investigated using the partial series expansion of order-n (PSE-n) family of closures,
which includes the commonly used hypernetted-chain equation (HNC) and Kovalenko-Hirata clo-
sures. Results are compared to explicit molecular dynamics (MD) simulations, using the same force
fields, and to experiment. The mean activity coefficients of ions predicted by DRISM agree well with
experimental values at concentrations below 0.5 m, especially when using the HNC closure. As indi-
vidual ion activities (and the corresponding solvation free energies) are not known from experiment,
only DRISM and MD results are directly compared and found to have reasonably good agreement.
The activity of water directly estimated from DRISM is nearly consistent with values derived from
the DRISM ion activities and the Gibbs-Duhem equation, but the changes in the computed pressure
as a function of salt concentration dominate these comparisons. Good agreement with experiment
is obtained if these pressure changes are ignored. Radial distribution functions of NaCl solution at
three concentrations were compared between DRISM and MD simulations. DRISM shows compa-
rable water distribution around the cation, but water structures around the anion deviate from the
MD results; this may also be related to the high pressure of the system. Despite some problems,
DRISM-PSE-n is an effective tool for investigating thermodynamic properties of simple electrolytes.
© 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4775743]

I. INTRODUCTION

Physiological fluids always include various ions, and the
biological activity of biomolecules cannot be understood sep-
arately without knowing their interactions with these ions.
Computational simulation is a convenient tool for studying
electrolyte solutions and visualizing their behavior at atom-
istic resolution. Implicit solvent models can be a useful al-
ternative because they save considerable computational time.
One popular approach treats water as a dielectric continuum
augmented by a continuous charge distribution to represent
mobile co- and counter-ions (as in the original Debye-Hückel
theory). The generalized Born1–3 and Poisson-Boltzmann
models4–6 belong to this category. However, these models
fail to describe atomistic details of the solvent molecules
and only provide rough estimates of the thermodynamics
of the system. The integral equation approach of Ornstein
and Zernike7–9 offers an implicit approach that maintains the
atomic and molecular nature of the solvent. In particular, the
reference interaction site model (RISM)10 and its variants11, 12

are often used to apply integral equation models to molecu-
lar solvents such as water. Because of its computational ef-
ficiency, the RISM theory is capable of exploring a wide
range of temperatures, pressures, and densities. The rich set
of thermodynamic data that can be extracted from RISM so-
lutions makes it an ideal choice to study a wide range of
complex liquids, including ionic liquids13–15 and bitumen.16

Furthermore, characterizations of bulk liquids provided by

RISM are commonly used with 3D-RISM17–20 to provide de-
tailed solvent distributions and thermodynamics for complex
macromolecules.21–23

Several variations of RISM theory exist (we use “RISM”
to refer to them generally unless otherwise noted). As the
original RISM theory10 was unsuitable for the study of
charged or polar molecules, extended RISM (XRISM)11, 24, 25

was developed to treat realistic models of water and ions at in-
finite dilution.26, 27 However, XRISM gives a trivial dielectric
constant that is far too low compared to experiment.28 Be-
sides the obvious physical concerns, the low dielectric con-
stant caused difficulties converging finite concentration salt
solutions. The so-called ARISM correction used a coeffi-
cient, ‘A,’ to scale electrostatic interactions and impose a de-
sired dielectric constant.29 This preceded the development of
XRISM but this approach led to inconsistencies when finite
concentrations of salt were used.30 This motivated the de-
velopment of dielectrically consistent RISM (DRISM),12, 31

which enforces the desired dielectric constant for all thermo-
dynamic routes. The amount of thermodynamic data avail-
able from solving these equations has also increased over
time with the use of analytic and finite difference thermody-
namic derivatives. Specifically, pressure,32 temperature,33 and
density derivatives34 have given expressions for partial molar
compressibility, solvation energy, and solvation entropy.

In addition to the RISM equation, an approximate clo-
sure equation is required to obtain a solution. Historically,
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the hyper-netted chain equation (HNC)35 has been the most
popular, especially for systems with strong electrostatic in-
teractions. Recently, some studies36, 37 have had success with
the Kovalenko-Hirata (KH) closure,19 which also has better
convergence properties. The partial series expansion of order-
n (PSE-n) closure,38 which interpolates between HNC and
KH, has since been developed. Also of interest are closures
with non-trivial dielectric constants.39, 40 These were devel-
oped as alternatives to DRISM, but have not been as widely
used.

Using XRISM, ARISM, and DRISM, ion hydration,
and bulk aqueous ionic solutions have been studied in both
the infinite dilution regime27, 32–34, 38, 41–46 and over a range
of finite salt concentrations.12, 30, 31, 36, 37, 47–52 These studies
have used a number of different of water and ion mod-
els to explore a wide range of physical conditions. This
includes extreme temperatures,47, 48, 51, 52 pressures,51, 52 and
concentrations.49

A wealth of information has been calculated from
these studies. Radial distribution functions (RDFs) are the
primary result of RISM, which thermodynamic param-
eters can be derived from. A rather direct transforma-
tion yields potentials of mean force (PMFs)12, 27, 30, 31, 34, 49, 53

and coordination numbers.50 Combining RDFs with the
direct correlation function, solvation free energies (ex-
cess chemical potentials)30, 33, 34, 37, 41, 42, 44–46 may be cal-
culated and be decomposed into entropies,30, 33, 34, 41, 45, 46

energies,30, 33, 34, 41, 45, 46 enthalpies,33, 45 and polar/non-polar45

contributions. Mean ionic activity coefficients have been cal-
culated for a few ion models using Kirkwood-Buff theory12, 31

and excess chemical potential formulations.36 Partial molar
volumes32, 41 and compressibilities32 have been calculated and
radially decomposed for monovalent alkali-halide ions. The
solubility of both ions49 and non-polar molecules50 in salt
solutions has been examined. The electrostatic properties of
ions at infinite dilution have examined in terms of radial de-
composition of effective electrostatic potentials,43, 44 dielec-
tric susceptibility,44 and the screening factor.44

From this data, a picture emerges of DRISM providing
a qualitatively correct description of aqueous ionic solutions.
For all of the models used, DRISM correctly shows the asym-
metry in multiple properties for the hydration of anions and
cations. When RDFs have been compared against simula-
tion data, they have had largely the correct structure, includ-
ing multiple minima in the anion-cation PMFs, a property of
molecular hydration. Mean activity coefficients also show a
distinct improvement over linearized Debye-Hückel theory,
though the limited data available indicate this may be sen-
sitive to the ion parameters used.

Given the increasing popularity of 3D-RISM, there re-
main a number of important questions about the DRISM
representation of salt solution. A primary issue is the selec-
tion of water and ion force field parameters and closures.
Water and ion models used in the aforementioned studies
have often been mixtures of different parametrizations with
unknown behavior when used with molecular dynamics or
Monte Carlo methods. Furthermore, comparison to experi-
ment and simulation has been limited. To assess the qual-
ity of the theory, it is necessary to know the performance

of the force field, which requires comparing to simulation
and experiment simultaneously. At the same time, no stud-
ies have systematically investigated the effect of closure ap-
proximations or attempted to compare existing closures. Fi-
nally, the HNC family of closures has long been known to
have limited thermodynamic consistency (i.e., virial-energy,
but not compressibility-energy),54–57 but recently, it has been
suggested37 that DRISM-HNC itself may not have even this
limited consistency.

To address these issues, we have used DRISM to cal-
culate equilibrium properties of several combinations of al-
kali and halide ions and tested thermodynamic consistency
via the Gibbs-Duhem relation. Importantly, we have used
the Joung-Cheatham58 SPC/E parameter set for monovalent
ions,58 which has been shown to be in good quantitative agree-
ment with experiment.58–61 Throughout, we have used KH,
PSE-n, and HNC closures and compared, wherever possible,
DRISM, molecular dynamics, and experiment. This approach
allows us to decouple the theory from the input model and
critically assess the results.

The remainder of this paper is organized as follows. In
Sec. II, we summarize details of the DRISM theory and the
calculation of thermodynamics from its solution. In Sec. III,
we describe the DRISM and molecular dynamics calcula-
tions. Results of these calculations are compared to experi-
ment in Sec. IV. Section V presents our conclusions.

II. THEORY

A. The RISM and DRISM models

The RISM equation is also called the site-site Ornstein-
Zernike (OZ)7–9 equation. Solving the original OZ equation
with a complementary closure equation gives two correlation
functions, the direct and total correlation functions, between
any two particles (or sites) in the system. The original OZ
approach dealt only with spherical molecules with no orien-
tational dependence. Multiple-site molecules, such as water,
introduce orientational degrees of freedom to the correlation
functions. Due to the extra dimensions, solving the OZ equa-
tion with explicit orientational dependency62, 63 is not trivial
and its application is limited.

The RISM equation averages the orientations of multiple-
site molecules such that the correlation functions depend only
on the distance between two molecular sites.10, 11 According
to the theory, the total correlation function h and direct cor-
relation function c between two sites can be related by the
equation

hαγ (r) =
Nsite∑
λ

Nsite∑
β

ωαλ (r) ∗ cλβ (r) ∗ ωβγ (r)

+
Nsite∑
λ

Nsite∑
β

ωαλ (r) ∗ cλβ (r) ∗ ρβhβγ (r) . (1)

Subscripts with Greek letters represent specific sites of
molecules and ω is the intramolecular correlation function.
Asterisks stand for a convolution integral over the whole real
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space. This can be rewritten in the simpler matrix form

h = ω ∗ c ∗ ω + ω ∗ c ∗ ρh

= [1 − ω ∗ cρ]−1ω ∗ c ∗ ω. (2)

Convolutions are calculated in reciprocal-space via the
Fourier transform.

Equation (2) cannot be solved by itself because there are
two unknowns, h and c. To close the equation, another equa-
tion is introduced. A general form of the closure equation is

gαγ (r) = exp{−βuαγ (r) + hαγ (r) − cαγ (r) + bαγ (r)},
(3)

where u is the pair potential and β = 1/kBT. b is called the
bridge function, and various functional forms of b have been
studied.17, 64 One of the most popular approximations assumes
b = 0, giving the hyper-netted chain (HNC) equation35

gαγ (r) = exp{−βuαγ (r) + hαγ (r) − cαγ (r)}. (4)

The combination of Eqs. (2) and (4) describes systems with
long-range interactions well, but it can be difficult to converge
solutions. The KH closure19 was devised to overcome the dif-
ficulty, and does so by partially linearizing the right-hand side
of Eq (4). Later, the KH closer was further generalized by
Kast and Kloss38 to give the PSE-n closure,

gαγ (r) =
⎧⎨
⎩

exp{t∗αγ (r)} for t∗αγ (r) < 0

∑n
i=0

(t∗αγ (r))i

i! for t∗αγ (r) ≥ 0,

(5)

t∗αγ (r) = −βuαγ (r) + hαγ (r) − cαγ (r) .

When n = 1, it is equivalent to the KH closure. When n = ∞,
it yields the HNC closure.

It is known that dielectric constants calculated from the
solutions of Eqs. (1) and (4) are generally very low and in-
consistent with the behavior of water.12, 31 The deviation was
presumed to be caused by the inappropriate long-ranged be-
havior of polar molecules. Perkyns and Pettitt30 proposed
the dielectrically consistent RISM (DRISM) as a remedy for
the problem.12 They introduced a bridge-like correction ζ

to Eq. (2)

h′ = [1 − ω′ ∗ c]−1ω′ ∗ c ∗ ω′, (6)

where h′ = h − ζ and ω′ = ω + ζ . Here, ζ is determined by
the desired dielectric constant, which is now an input param-
eter.

One major advantage of the RISM theory compared to
continuum solvent models is that one can obtain atomistic de-
tails or correlation functions as the results of the RISM cal-
culation. Therefore, the results can be easily compared to the
results of all-atom MD or Monte Carlo simulations. Popu-
lar all-atom simulations usually determine the energy of the
system by summing pair-wise site-site interaction energies.
Therefore, the potential energy model itself can be shared
with the RISM theory. The pair-wise non-bond energy is most
often expressed by the summation of Coulombic potential

energy and van der Waals (vdW) potential, which is repre-
sented by a Lennard-Jones (LJ) potential.

uαγ (r) = qαqγ

r
+ εαγ

[(
Rmin,αγ

r

)12

− 2

(
Rmin,αγ

r

)6
]

,

where q’s are charges of sites, and ε and Rmin are Lennard-
Jones parameters of the pair. (See the Appendix: Long-range
Coulomb Interactions) With the exact closure, the correlation
functions calculated by the RISM theory should be nearly
identical to the MD simulations results. Exact reproduction
of MD results is also limited by approximations to the direct
correlation function and orientational averaging.65 However,
comparisons between RISM theory and molecular Ornstein-
Zernike7–9 suggest that approximations to the closure rela-
tion, and not orientional averaging, are the principle source
of error.66, 67

B. Chemical potentials

The molar solvation free energy is equivalent to the ex-
cess chemical potential, μex, in aqueous solution; see the Ap-
pendix for a discussion. μex can be expressed by the differ-
ence of the interaction energies of the two end-states with and
without the inserted particle (
U). If ∂U/∂λ is evaluated at
every intermediate state, thermodynamic integration (TI) can
also lead to the same chemical potential.68 If λ is scaled from
0 to 1, the equation becomes

μex =
∫ 1

0

〈
∂U (λ)

∂λ

〉
dλ. (7)

For the RISM, the Kirkwood formula can be conveniently
used to calculate the excess chemical potential because the
radial distribution functions are known from the solution. For
a solute site, α,

μex,α =
∑

γ

ργ

∫ 1

0

[
4π

∫ ∞

0

∂uαγ (r; λ)

∂λ
gαγ (r; λ) r2dr

]
dλ.

(8)
For RISM with HNC-like closures (Eq. (5)), this equation can
be solved analytically19, 38, 69

μex,α = 4πkbT
∑

γ

ργ

∫ ∞

0

×
[
h2

αγ

2
− cαγ − hαγ cαγ

2
− (t∗αγ )n+1

(n + 1)!
(t∗αγ )

]
r2dr.

(9)

As with Eq. (5), n = 1 yields the excess chemical potential for
the KH closure while n = ∞ gives the HNC result.

Equation (9) has been derived for RISM, and is not
strictly valid for DRISM. Furthermore, μex is not known to
be stationary with respect to h and c in the DRISM the-
ory, so there is no equivalent expression for DRISM and μex

may not be a path-independent state function in the theory.37

That said, Eq. (9) has been extensively used in the literature
with DRISM for the past two decades, and is known to pro-
duce useful results. Some examples from the literature in-
clude Perkyns and Pettitt,30 Kinoshita and Hirata,50 Yoshida
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et al.,36 and Schmeer and Maurer.37 Since Eq. (9) is not the
exact expression for DRISM, it may be considered an approx-
imate expression for the excess chemical potential. Explicit
use of approximate expressions has also been used frequently
in the literature to either calculate excess chemical potential
where no expression exists,64 or to provide possibly more ac-
curate results compared to experiment.42, 70–73 Other forms for
the excess chemical potential, specifically the hc/2 term, can
be found in the literature,37, 69 which give slightly different
numerical results when used with DRISM. The differences
among them are minor compared to the absolute excess chem-
ical potential. However, the numerical results from the various
formulas are not different when used with XRISM.

C. The Gibbs-Duhem relations

The activity coefficient and excess chemical potential of
the ion are closely related experimental observables that de-
pend both on the specific properties and concentration of the
ions involved,

kBT ln γm = kBT ln
ρw

ρw,∞
+ 
μex,

where ∞ denotes the infinitely dilute state, ρw is the number
density of the solvent (water) and 
μex = μex − μex,∞. At
infinite dilution state, γ m goes to unity. Note that the activity
coefficient γ m is in the scale of molal concentration (m) of
the solute. Other scales result in slightly different formulas
(see the Appendix). Individual activities of the dissolved ions
of a neutral salt are not available in a model-free way from
experiment, and, thus, the mean activity coefficient (γ ±) is
often employed,

νkBT ln γm,± = kBT ln
ρw

ρw,∞
+

∑
i

si
μex,i , (10)

where si is the number of generated free ions of species i when
a single salt molecule is dissolved and ν = ∑

si. (For the sim-
ple salts considered here, si = 1 and ν = 2.)

Theoretical predictions of activity coefficients can be
calculated via a number of methods. For RISM calcula-
tions, Eq. (9) can be directly inserted into Eq. (10). Though
obtaining the excess chemical potential from MD simula-
tions is straightforward using thermodynamic integration (see
Sec. III B), it is generally not possible to calculate the infinite
dilution limit, necessary in Eq. (10). Furthermore, low salt-
concentration (<10 mM) simulations are prohibitively expen-
sive to compute. A third, simple approach commonly used
is the Debye-Hückel limiting law,74 which theoretically esti-
mates mean activity coefficients of salts at low concentrations,

ln γm,± = −ADH

(∏
i

si

)[
1

2

∑
i

s2
i mi

]1/2

, (11)

where the Debye-Hückel constant ADH is
1.1724 kg1/2mol−1/2 at 298 K.75

The Gibbs-Duhem relation links the excess chemical po-
tential of the solvent and ions with the total pressure,

ρwdμw +
∑

i

ρidμi = dp. (12)

In the equation, the term for water is separated to distinguish
it from other ionic components and the summation in the sec-
ond term is only for ionic components. As DRISM-PSE-n
is thought to be thermodynamically inconsistent, the Gibbs-
Duhem relation can be used to provide a measure of this in-
consistency. To do this, we would like to express 
μex,w in
terms of 
μex,ions.

First, the chemical potentials can be divided into their
“ideal” and “excess” portions,

ρwdμideal,w+
∑

i

ρidμideal,i + ρwdμex,w+
∑

i

ρidμex,i = dp.

(13)

Historically, there are a variety of definitions of μideal of par-
ticle A. A derivation of μideal from the ideal gas equation used
by RISM yields

μideal,A = kBT ln �3
A + kBT ln ρA, (14)

where � is the thermal de Broglie wavelength, and is inde-
pendent of the concentration of the particle. By simple rear-
rangement, Eq. (13) becomes

dμex,w = 1

ρw

[
−

∑
i

ρidμex,i + dp − kBT

(
dρw +

∑
i

dρi

)]

= dμsol
ex,w + dμpress + dμρ, (15)

where we have used dμideal = (kbT /ρ)dρ. We can get

μex,w (m) = μex,w (m) − μex,w,∞ by integrating both sides
from infinite dilution to concentration m,


μex,w = 
μsol
ex,w + 
μpress + 
μρ (16)

(see Sec. I of the supplementary material76), where


μsol
ex,w = −Mw

1000

∑
i

si

(
m
μex,i(m) −

∫ m

0

μex,i(m

′)dm′
)

,

(17)


μpress =
∫ p

p∞

1

ρw(p′)
dp′, (18)

and


μρ = −kBT

[
ln

(
ρw

ρw,∞

)
+ νMwm

1000

]
. (19)


μpress is contributed by the change of the system pressure.
Since it is proportional to 1/ρw, the absolute contribution
tends to be greater as the density of water gets smaller. If
there is no pressure change, 
μpress is zero. 
μρ is the con-
tribution from the change of water density and it is essentially
zero if the water density is fixed. If the Gibbs-Duhem equation
is strictly obeyed, the chemical potential difference calculated
from Eq. (16) should match that calculated using Eq. (9).
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In solution chemistry, a different definition of the ideal
part of the chemical potential is used that depends on the units
of concentration. For a mole-fraction scale,

μx
ideal,A = μ◦ + kBT ln xA, (20)

where μ◦ is the chemical potential of the reference state. If A
is the solvent, the reference state becomes pure A. If A is a so-
lute, the reference state becomes the hypothetical pure solute.
Now, we can relate the change of chemical potential of ions
to the change of chemical potential of water using Eqs. (13)
and (20). If Eq. (20) is used, the ideal parts of the chemical
potential become

ρwdμx
ideal,w +

∑
i

ρidμx
ideal,i = kBTρ

(
dxw +

∑
i

dxi

)
= 0,

(21)

where we have used ρw/xw = ρi/xi = ρ. In the above equa-
tion, the sum of the change of the mole fraction of the all
the molecules in the system, (dxw + ∑

i dxi), is always zero.
Equation (12) can then be written in terms of the excess chem-
ical potentials,

ρwdμx
ex,w +

∑
i

ρidμx
ex,i = dp. (22)

For typical experiments and MD simulations, dp = 0 and the
equation can be rearranged for the excess chemical potential
of water (μex),

dμx
ex,w =

∑
i

−sim

(
Mw

1000

)
dμx

ex,i

dm
dm, (23)

where Mw is the molecular weight of water. The difference
of excess chemical potential of water between in a solu-
tion of molal concentration m of the salt and in pure water,

μx

ex,w (m) = μx
ex,w (m) − μx

ex,w,∞, is obtained by integrating
the equation above from infinite dilution to concentration m
as in Eq. (17),


μx
ex,w (m) = −Mw

1000

∑
i

si

(
m
μx

ex,i(m)

−
∫ m

0

μx

ex,i(m
′)dm′

)
. (24)

Note that 
μx
ex,i is slightly different from 
μex,i , as shown

in Eq. (B7) in the Appendix, although their differences are
very small at low concentrations. Given

∑
i siμ

x
ex,i as a func-

tion of molal concentration of the salt, the integral in Eq. (24)
can be determined by numerical integration. Equations (17)
and (24) are morphologically same but the definitions of the
excess chemical potential are different. The ideal gas defini-
tion (Eq. (24)) is useful since the resulting excess chemical
potential is simply related to the transfer free energy from gas
to liquid; the mole-fraction definition (Eq. (17)) is generally
used in experimental studies.

The activity of water (aw) is obtained from the measured

μx

ex,w by the definition of the chemical potential of water,

ln aw = ln xw + 
μx
ex,w

kBT
. (25)

The osmotic coefficient (φ) based on molality, which indi-
cates the deviation from the ideality, is just a rearrangement
of the water activity,

φ = − 1000

νmMw

ln aw. (26)

In most experiments, water activity is acquired by mea-
suring vapor pressure of water and then the mean activity co-
efficient of ions are calculated from the Gibbs-Duhem rela-
tion. However, for simulations, measuring water activity is
much harder because the change of chemical potential of the
more populated water component is much smaller than for the
ionic components, as Eq. (12) suggests. In RISM, the excess
chemical potential of both water and ions can be directly cal-
culated with Eq. (9).

D. Solvent pressure

The pressure of the system is related to the Helmholtz
free energy (A),

p = G − A

V
= −A

V
+

mol∑
i

μiρi . (27)

The Helmholtz free energy per volume for the PSE-n
closure37, 38, 69, 77 is

A

V
=2π

Nsite∑
α

Nsite∑
γ

ραργ

∫ ∞

0

(
h2

αγ

2
− cαγ − (t∗αγ )n+1

(n + 1)!
(t∗αγ )

)
r2dr

+ 1

(2π)2

∫ ∞

0
{Tr(ωcρ) + ln det[1 − ωcρ]}k2dk. (28)

Combining Eqs. (9) and (28), the pressure can be obtained.
Like Eq. (9), Eq. (28) is also not applicable to the DRISM the-
ory as it is not stationary with respect to h and c correlation
functions. As we use Eq. (9) to calculate the excess chemi-
cal potential, we also use Eqs. (27) and (28) to calculate the
pressure.

III. METHODS

All the calculations were performed with AMBER12
package,78, 79 using rism1d for RISM calculations and
sander for explicit MD simulations.

A. RISM calculations

All RISM calculations used a modified SPC/E (extended
simple point charge) water model80, 81 and parameters for al-
kali and halide ions from Joung and Cheatham58 unless other-
wise mentioned. The SPC/E water model does not include a
repulsive potential for the hydrogen atom sites; however, the
use of a site-site potential in Eq. (3) makes such a potential
necessary to avoid a catastrophic overlap of the oxygen and
the hydrogen atom. Generally, an LJ potential is placed on the
center of the hydrogen atoms in addition to the existing one
on the oxygen atom. Here, we used the cSPC/E LJ param-
eters for hydrogen, which have been shown to improve the
solvent polarization contribution to the chemical potential.81



044103-6 Joung, Luchko, and Case J. Chem. Phys. 138, 044103 (2013)

LJ parameters for heteroatom types were estimated from the
LJ parameters of the same atom types based on the Lorentz-
Berthelot combining rule.82, 83 All the calculations were car-
ried out at 298 K.

All site-site functions are represented on grids and solved
for numerically. A uniform spacing of 0.025 Å between
grid points with 32 768 grid points per function was used
throughout, giving a maximum site-site separation of 819.2 Å.
Long-range asymptotics (Eqs. (A1)–(A4)) employed a charge
smearing parameter, η, of 1 Å and the parameter for the
DRISM theory (parameter a of the original Perkyns and Pet-
titt’s paper) was 0.5 Å. The modified direct inversion of the
iterative subspace (MDIIS) solver84 was used to accelerate
convergence of the integral equations, which were solved to
a residual tolerance of less than 10−11. Experimental solution
density of ionic solutions at 298 K85, 86 were used to estimate
the proper molar density of water and ions at various concen-
trations. Interpolation of the density data was performed by
fitting the data points into cubic spline curves.

Grids of the Lennard-Jones space were devised to evenly
sample the solvation free energies of ions dependent on the LJ
parameters. For the cation, Rmin/2 ranges from 0.7 to 2.5 Å
with a 0.1 Å gap and ε was chosen in log scale, 100, 10−0.2,
. . . , 10−2.4 kcal/mol. For anions, Rmin/2 was ranged from 2.2
to 3.5 Å and ε ranged from 100 to 10−3.6 kcal/mol and the
grid spacing was same as those of the cation. At every grid
point, solvation free energy of the ion in cSPC/E water at in-
finite dilution was calculated using the DRISM theory. The
vdW contribution of the solvation free energy (
μvdW

ex ) was
considered to be the solvation free energy of ions with zero-
charge. The electrostatic contribution was estimated by sub-
tracting the vdW contribution from the total relative excess
chemical potential, 
μelec

ex = 
μex − 
μvdW
ex .

B. MD simulations

The following parameters were applied to all the sim-
ulations. The cut-off distance of the LJ potential was 9 Å.
The simulation temperature was 298 K, and was regulated by
Langevin dynamics with a collision frequency of 5 ps−1 for
relaxation and 2 ps−1 for production. Pressure was allowed
to fluctuate, targeting 1 atm, and was regulated by Berend-
sen coupling method.87 The coupling parameter was 1 ps for
relaxation and 5 ps for production. Time step for the dynam-
ics was 2 fs. Prior to collecting the outputs, all the systems
were relaxed for 50 ps. Particle-mesh Ewald technique, which
minimally loses the accuracy of the Ewald summation but ac-
quires huge benefit in terms of computational expense,88, 89

was used to calculate the electrostatic potential. Including
self-interaction energy of the Ewald summation together with
the tinfoil boundary is sufficient to obtain accurate ionic sol-
vation free energies especially for monovalent ions.90, 91 Dif-
ferences of solvation free energies at various concentrations
may benefit from a cancellation of errors.92

Radial distributions were generated by the cpptraj
program from 50 ns-long simulations. The numbers of ex-
plicit SPC/E water molecules in the system were 29120,
28718, and 28000 and the numbers of explicit ion pairs were

182, 346, and 700 for 0.3469 m, 0.6688 m, and 1.3877 m so-
lutions, respectively. For the calculation of μex of NaCl at var-
ious concentrations, 2, 8, and 32 pairs of Na+ and Cl−58 were
mixed with 3674, 3662, and 3614 SPC/E water molecules,
respectively, to obtain solutions of 0.030 m, 0.121 m, and
0.491 m. With the solutions, four-step thermodynamic inte-
grations were carried out. First, the electrostatic interaction
of one of the cation (Na+) was decoupled. Second, the elec-
trostatic interaction of one of the anion (Cl−) was decoupled.
Third, the vdW interaction of the cation was removed. Finally,
the vdW interaction of the anion was removed. Free energy
contributions of the four steps correspond to −
μNa+-elec

ex ,
−
μCl−-elec

ex , −
μNa+-vdW
ex , and −
μNa+-vdW

ex , respectively.
Potential energies of the two end points were linearly mixed
for the charge removing steps, whereas soft-core potential93

was used to decouple the vdW interactions and the soft-core
parameter α was 0.5 for Na+ and 0.4 for Cl−. In each step,
〈∂U/∂λ〉 were evaluated at 11 windows of λ = 0.01, 0.1, 0.2,
0.3, . . . , 0.9, 0.99 for the thermodynamic integration. Sim-
ulations for every TI windows were produced to reduce the
overall standard error of 〈∂U/∂λ〉 and the average simulation
time for each window was 8.7 ns. The solvation free energy
of SPC/E water without the polarization correction was cal-
culated in the same method using a water box with 617 water
molecules. The soft-core parameter α was 0.4. The simulation
time of each window was 10 ns for calculating electrostatic
contribution and 5 ns for calculating vdW contribution.

IV. RESULTS AND DISCUSSION

A. Relative solvation free energies and mean
activity coefficients

The change in the mean activity coefficients of ions are
directly correlated to the excess chemical potential of the
salt. Here, we computed the mean activity coefficients of
various alkali-halide salts at low salt concentrations (<1 m).
Figure 1 shows the mean activity coefficient of alkali-halide
salts as a function of square root of molal concentration. We
applied three closures for the DRISM theory, KH, PSE-3,
and HNC. Overall, the changes of the mean activity coef-
ficients at low concentrations agreed with the experimental
results. However, at higher concentration the differences be-
tween the closures become clear. PSE-3 generally estimates
smaller mean activity coefficients than KH. The HNC clo-
sure is equivalent to PSE-∞, giving the limiting case as the
PSE order is increased. As HNC is approached, the estimated
mean activity coefficients become lower while the curves be-
come flatter and the deviations from the experimental curves
are reduced. However, the slope of the curve of CsCl with
HNC closure is too steep at the low concentrations. At the
same time, it was hard to converge solutions at higher con-
centrations (>0.01 m). This can be for a number of reasons,
including phase separation, phase transition, solution bifur-
cation, or simply a stiff set of equations.94, 95 Therefore, we
estimate that the initial slope or agreement at low concentra-
tions substantially affects the behavior of the solutions at high
concentrations.
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FIG. 1. Mean activity coefficients of alkali halide salts in water. DRISM results were calculated with KH, PSE-3, and HNC closures and compared with
experimental results.96

The Debye-Hückel limiting law predicts almost correct
behavior of activity coefficients at low concentrations. The
Debye-Hückel constants of Eq. (11) were estimated from
the slope at the zero concentration of the calculated activ-
ity coefficients (see Sec. II of the supplementary material).76

Larger constants correspond to a more rapid decrease of
the activity coefficients at low concentrations. The con-
stants increased as the order of PSE-n closure increased. At
298 K, the estimated constant from Debye-Hückel theory is
1.1724 kg1/2 mol−1/2.75 Ideally, the slope at the zero concen-
tration calculated by DRISM should agree with the exper-
iment. Consequently, the experimental Debye-Hückel con-
stant also should match the calculated constants. Generally,
the constants calculated by DRISM-KH agree with the exper-
imental constant. The results of previous MD simulations61

suggest that the performance of the ion parameters of Joung
and Cheatham58 is good for mid-sized ions, such as Na+

and K+ for cations and Cl− for anions. Consistent with MD,
DRISM also achieves the best agreement with experimental
mean activity coefficients for such mid-size ions. The exper-
imental mean activity coefficients of NaCl and KCl at low
concentrations were predicted best by PSE-3 closure, though
there is dependency on LJ parameters of the ions and not all
ion sizes give such good results (see Sec. III of the supple-
mentary material).76

The fact that the predicted results are similar to the exper-
imental results at least shows that the average interaction be-
tween water and ion is well-preserved at low concentrations of
the salts. If water-water interaction were too strong, the solva-
tion free energy of ions would be more positive because water
molecules would preferentially solvate other water molecules
more than ions. If water-ion interaction were too strong, on

the other hand, the solvation free energy of ions would be
more negative for the same reason. It is, however, unclear
whether accurate mean activity coefficients guarantee accu-
rate activity coefficients for each ion. Separating the positive
and negative ions in solution is not possible in practice and
there is no experimental reference to compare with. Here, we
have used MD simulation to estimate the activities of individ-
ual ions using classical pair-wise force fields, which share the
potential energy equation with the RISM theory.

Fig. 2 shows the change of solvation free energies of
the salts as a function of the salt concentration. The solva-
tion free energies at the lowest concentrations of the MD re-
sults were estimated by Debye-Hückel theory. Both MD and
RISM give a good account of the mean activity coefficients
(Fig. 2(a)). However, the excess chemical potential of the
cation estimated by MD simulations starts to increase around
0.04 m (Fig. 2(b)) but that of the anion keeps decreasing
up to 0.5 m (Fig. 2(c)). Both curves estimated by DRISM
were quite off from the curves of MD simulations, though
the difference of the total excess chemical potential was quite
similar even up to 0.1 m. The contributions from water and
ions delicately determine the net excess chemical potentials
of ions. The balance of the two contributions appears to be
important but further investigation will be necessary for the
deeper understanding of the discrepancy (see Sec. IV of the
supplementary material).76

B. Absolute solvation free energies

In Sec. IV A, we discussed the relative solvation free
energies of alkali-halide salts at various concentrations and
compared the results of the DRISM with the results of MD
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FIG. 2. Change in excess chemical potential of NaCl as a function of salt concentration. 
μex denotes the difference of the solvation free energy from that
of zero concentration. Water models were SPC/E for MD calculation and cSPC/E for DRISM calculations. Total excess chemical potential difference (a) and
differences for cation and anion ((b) and (c)) were plotted separately. The excess chemical potential of the lowest concentration of MD simulations were
estimated by Debye-Hückel theory and the half of the total excess chemical potential was applied to the lowest concentration of each ion.

simulations. In this section, we will discuss the absolute sol-
vation free energies of the ions at infinite dilution. Compar-
ing the excess chemical potentials of ions by DRISM-KH and
DRISM-PSE3, it was found that the KH closure always pro-
duces a less negative excess chemical potential (Table I). The
total excess chemical potential was decomposed into electro-
static, μex,elec, and vdW, μex,vdW, contributions. μex,vdW is the
excess chemical potential with the charge of the ion set to
zero. The electrostatic part is then the total excess chemical
potential minus the vdW contribution,

μex,elec = μex − μex,vdW.

Both electrostatic and vdW contributions of PSE-3 were
more negative than KH over the total space of LJ parame-
ters (see Sec. V of the supplementary material).76 The dif-
ference was most obvious in the electrostatic contribution
where the PSE-3 closure renders the electrostatic contribu-
tion more negative as Rmin and ε becomes smaller. That is,
electrostatic differences increase as the ions become smaller
and softer. The trend is opposite for the vdW contribution
where the PSE-3 result is more negative as Rmin and ε become
larger. The net result is that for the most biologically com-
mon monovalent ions, Na+, K+, and Cl−, the difference be-
tween PSE-3 and KH is only about 1−1.5 kcal/mol (see also
Table I).

MD and experimental solvation free energies are simi-
lar because the LJ parameters were optimized for the target
experimental values. The experimental solvation free ener-
gies listed in the table were rescaled assuming the solvation

free energy of the proton is −249.5 kcal/mol. The number ar-
guably excludes the “phase potential,”98 which the free en-
ergy difference induced by transferring the solute from vac-
uum to the boundary of water. As both MD simulation and
RISM have no solvent boundary, the calculated solvation free
energies are expected to be close to the listed experimental
numbers. Comparing DRISM-PSE-3 and MD simulations, it
is found that the solvation free energies of DRISM-PSE-3 are
more positive (Table I). The values for cations are generally
quite good, differing only by ∼2 kcal/mol but not so for an-
ions, where is difference is ∼10 kcal/mol. To gain some in-
sight about this behavior, μex was decomposed into electro-
static and vdW contributions again. From this, it is apparent
that the electrostatic contributions are generally quite good,
with differences ranging from 0.3 to 2.3 kcal/mol and no ob-
vious difference between anions and cations. The vdW contri-
butions of PSE-3, however, are generally much more positive
than MD simulations and the source of the discrepancy be-
tween cation and anion results. It is worth noting that while
the DRISM vdW results are much larger for all ions, the val-
ues do increase with ion size as do the MD values. The ef-
fect of LJ parameters on the excess chemical potential varied
depending on the closures (see Sec. V of the supplementary
material).76 Although the improvement is not as drastic as the
electrostatic contribution, the vdW contributions of higher-
order PSE closure deviates less from the MD simulations than
do the KH results. Overall, we can conclude that higher-order
PSE always agree better with MD simulations in terms of the
absolute excess chemical potential.

TABLE I. Decomposed absolute excess chemical potential of alkali- and halide ions in SPC/E (MD) or cSPC/E (DRISM) water. The experimental solvation
free energies were determined on a scale where the free energy of hydration of the proton is taken to be −249.5 kcal/mol.

MD58 DRISM-KH DRISM-PSE3 DRISM-HNC

Ion Exp97 Total Elec vdW Total Elec vdW Total Elec vdW Total Elec vdW

Li+ − 113.8 − 113.3 − 113.5 0.20 − 108.30 − 109.37 1.07 − 111.16 − 112.12 0.96 − 111.42 − 112.37 0.96
Na+ − 88.7 − 88.4 − 88.9 0.48 − 84.95 − 87.51 2.56 − 86.16 − 88.47 2.31 − 86.24 − 88.54 2.30
K+ − 71.2 − 71.0 − 71.8 0.81 − 68.57 − 73.01 4.45 − 69.32 − 73.27 3.95 − 69.35 − 73.30 3.94
Cl− − 89.1 − 89.3 − 96.0 6.6 − 78.09 − 93.57 15.48 − 79.47 − 93.74 14.27 − 79.51 − 93.75 14.24
Br− − 82.7 − 82.7 − 89.5 6.8 − 72.20 − 89.03 16.83 − 73.67 − 89.07 15.40 − 73.72 − 89.07 15.36
I− − 74.3 − 74.4 − 81.9 7.5 − 62.65 − 82.36 19.71 − 64.41 − 82.29 17.88 − 64.46 − 82.29 17.82
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FIG. 3. The activity of water in NaCl solution and the corresponding osmotic coefficient (φ) calculated by DRISM-HNC. GD is the curve estimated by Gibbs-
Duhem equation from the computed excess chemical potential of the ions ignoring the change of pressure (Eqs. (24) and (25)); the experimental values were
also estimated by the equation from the experimental mean activity coefficients of the salt.96

C. Water activity

The absolute excess chemical potential of SPC/E
water was calculated by DRISM and MD simulations.
The experimental solvation free energy is known to be
−6.31 kcal/mol.99 It should be noted that the experimen-
tal number apparently includes the energy required in the
gas phase to polarize the molecule to its solvated charge
distribution, which is missing from the MD and DRISM
models, based on fixed charge distributions.80, 100, 101 Com-
paring DRISM and MD results, it is observed that values
decreased as the order PSE closure increased. However, even
the HNC closure overestimates the excess chemical potential
by 3.7 kcal/mol compared to MD calculations (see Sec. VI
of the supplementary material).76 As has been noted earlier,81

the electrostatic contributions are almost the same between
MD and DRISM. In contrast to the case for ions, the electro-
static contribution for water is almost insensitive to the clo-
sure order of PSE, possibly because it is electrostatically neu-
tral.

Experimentally, the excess chemical potential of water
increases as the concentration of salt increases. However, the
activity of water decreases because the ideal chemical poten-
tial decreases faster than the excess chemical potential of wa-
ter increases (Figure 3). Water activity is extremely difficult
to estimate directly from MD simulations because the depen-
dency of the excess chemical potential of water activity on
the concentration of electrolytes is very subtle. However, one
can easily calculate the relative excess chemical potential of
water using the DRISM theory in two different ways. The di-
rect approach is to use Eq. (9) and compute μex,water from the
water distribution functions. Alternately, the Gibbs-Duhem
equation, Eq. (24), relates the excess chemical potentials of
water to that of the ions. If DRISM does not violate the ther-
modynamic consistency, the numbers from the two different
expressions should be identical.

Because the density of MD simulations should be simi-
lar to the experimental results, the pressure estimated by the
DRISM theory ideally should not be different from the exper-
imental condition, 1 atm, at any concentration. If it is true,
Eq. (24) can be used to estimate 
μx

ex,w (Fig. 3). If the Gibbs-
Duhem equation was consistently obeyed by the DRISM the-
ory, the results such as Fig. 3 would be equivalent to the re-

sults of Fig. 1. Since the mean activity coefficients of NaCl
calculated by DRISM-HNC are close to experimental values
(Fig. 1) at low concentrations, water activities are also rea-
sonable, although deviations can be seen in Fig. 3 in the more
sensitive osmotic coefficient.

In order to determine how well DRISM-HNC conforms
to the Gibbs-Duhem relation, the excess chemical potential
of water estimated by the theory (
μRISM

ex,w ) can be compared
to the excess chemical potential of water calculated via the
Gibbs-Duhem equation using the excess chemical potentials
of ions (
μGD

ex,w). As the change of the pressure of the sys-
tem cannot be ignored and, in RISM calculations, the ideality
of the system is defined by the ideal gas theory, the excess
chemical potential should be calculated using Eq. (16) for

μGD

ex,w. The pressure-dependent term 
μpress is numerically
calculable if 1/ρw is known as a function of p, as shown in
Eq. (18). When experimental liquid densities are used, values
for 
μpress, using the data listed in Sec. VII of the supple-
mentary material,76 are displayed in Table II(a). It is worth
noting that the DRISM pressures are much higher than 1 atm
and the pressure increases with salt concentration. The incre-
ment is not trivial and thus 
μpress becomes the dominant
part of 
μGD

ex,w. 
μGD
ex,w and 
μRISM

ex,w agreed well up to a few
milli-molal concentration but increasingly differ as concentra-
tion increases (Fig. 4). Although the Gibbs-Duhem relation is
not strictly obeyed, the two estimates differ by less than
0.03 kcal/mol, and we conclude that Gibbs-Duhem relation
is qualitatively observed.

The pressure is closely linked to the density of the
molecules in the system. On that account, we tried the same
calculation with a different density set. Instead of using the
experimental solution density, the total molar concentration
was preserved. That is, ρw is adjusted to keep ρw + ∑

i ρi

constant regardless of the concentration of the salt. In this
case, we observed that the system pressure decreases as
the concentration of NaCl increases, although the absolute
pressure still stays high. The Gibbs-Duhem relationship was
tested with the modified system and the results are listed in
Table II(b). Due to the decrement of the pressure, 
μpress

also decreases. The absolute contribution of 
μpress to the
excess chemical potential of water has decreased but it is
still dominant. 
μGD

ex,w and 
μRISM
ex,w also semi-quantitatively

agreed and we also could not observe serious violation of
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TABLE II. Excess chemical potential (in cal/mol) of water in NaCl
solution calculated directly and via the Gibbs-Duhem equation. 
μGD

ex,w
= 
μsol

ex,w + 
μpress + 
μρ (Eqs. (16)–(19)) was calculated from the ex-
cess chemical potential of ions via Gibbs-Duhem equation and 
μRISM

ex,w
was directly calculated using Eq. (9) in the main text. Data were collected
using experimental solution density (a) and constant molar density of the
solution (b).

m 
μsol
ex,w 
μpress 
μρ 
μGD

ex,w 
μRISM
ex,w

(a)
0 0.0000 0.0 0.0000 0.0 0.0
0.001 0.0004 0.2 − 0.0115 0.2 0.3
0.002 0.0008 0.4 − 0.0229 0.4 0.6
0.005 0.0032 1.1 − 0.0573 1.0 1.5
0.01 0.0085 2.2 − 0.1142 2.1 3.0
0.02 0.0233 4.5 − 0.2266 4.3 5.9
0.05 0.0818 11.7 − 0.5643 11.3 14.9
0.1 0.2008 24.3 − 1.1192 23.3 29.8
0.2 0.4441 50.3 − 2.2114 48.6 59.4
0.5 1.0121 133.4 − 5.4030 129.0 147.9

(b)
0 0.0000 0.0 0.0000 0.0 0.0
0.001 0.0004 − 0.1 0.0000 − 0.1 0.0
0.002 0.0009 − 0.2 0.0000 − 0.2 − 0.1
0.005 0.0033 − 0.4 0.0000 − 0.4 − 0.1
0.01 0.0091 − 0.8 0.0000 − 0.7 − 0.2
0.02 0.0256 − 1.4 0.0000 − 1.4 − 0.4
0.05 0.0963 − 3.0 0.0001 − 2.9 − 1.0
0.1 0.2582 − 5.0 0.0002 − 4.7 − 1.8
0.2 0.6708 − 7.7 0.0006 − 7.0 − 3.1
0.5 2.3976 − 9.9 0.0012 − 7.5 − 5.7

Gibbs-Duhem relation. While DRISM-PSE-n does not strictly
obey the Gibbs-Duhem as XRISM-PSE-n does, the agree-
ment is close.

D. Radial distribution functions

Comparisons of the radial distributions of DRISM and
MD simulations provide insight into the differences in sol-
vent structure predicted by the two methods. Fig. 5 shows
the radial distributions of NaCl solutions at 0.6688 m con-
centration, with first shell coordination numbers reported in
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FIG. 4. Comparison of 
μex,w calculated from the excess chemical potential
of ions via Gibbs-Duhem equation and calculated using Eq. (9). The solid
lines and dotted lines indicate the data from experimental solution density
and constant molar density, respectively.

TABLE III. Coordination numbers for Na+ and Cl− at 0.6688 m from
DRISM and MD simulations. Experimental data (the last column) include
the error range in the parenthesis.

DRISM-PSE-3 DRISM-KH MD Mancinelli et al.102

Na+−O 4.85 4.98 5.79 5.3 (0.8)
Na+−H 14.5 15.7 14.8 13.9 (1.0)
Na+−Na+ 0.132 0.100 0.060 . . .
Na+−Cl− 0.394 0.211 0.012 . . .
Cl−−O 11.8 12.5 7.07 6.9 (1.0)
Cl−−H 5.90 6.13 6.81 6.0 (1.1)
Cl−−Cl− 0.240 0.170 0.171 . . .

Table III and Sec. IX of the supplementary material.76 The
experimental radial distributions are also shown for refer-
ence. We also calculated radial distribution functions at two
other concentrations: 0.3469 m and 1.3877 m (see Sec. VIII
of the supplementary material).76 The following discussions
apply to all concentrations in this range. The radial distri-
bution of Na-O from DRISM had the correct position for
the first and second peaks compared to the MD simulation
(Fig. 5(a)), but the height of the peaks are lower than MD.
This low peak results in nearly one missing oxygen from the
first solvation shell. Higher order PSE-n closures narrow the
error in the first peak height, but with only a very small impact
on the coordination number. The radial distribution of Na-H
is also fairly accurate in predicting the correct position of the
first 3 peaks. Although it is not as good as gNa-O, higher order
PSE-n also slightly improved the height of the first peak. The
low height of the first peak is compensated by its broadness,
giving a coordination number close the MD value of 14.9,
though with a strong closure dependence. This indicates that
the water structure around Na+ is qualitatively close to that
from MD simulations and from experiment.

On the other hand, gCl-O from DRISM is quite different
from the MD simulation (Fig. 5(b)). The first several peaks are
pushed farther away in DRISM, and the first peak is broader,
which implies that the second water shell is partially collapsed
into the first peak. This is reflected in a 76% increase in the
Cl−−O coordination number of DRISM-PSE-3 compared to
MD, and is similar to the collapse of the O−O second solva-
tion shell in water.81 The two hydrogens of the water in the
first shell are sharper in the MD simulation (Fig. 5(d)) but the
extra oxygens in the DRISM first shell do not contribute any
extra hydrogens to the coordination number. In fact, there is a
slight decrease in the first hydrogen shell relative to MD. The
displaced, broadened first oxygen peak also appears to shift
the DRISM second peak of the hydrogen, which is believed
to be the other hydrogen atom of the water molecules in the
first shell, farther (∼4.2 Å) and broaden it as well. As opposed
to the observation, the second peak appears at ∼3.5 Å for
the MD simulation and experiment. Qualitatively, the DRISM
water structure around anions is less defined than MD with
weaker binding. This is consistent with results for the excess
chemical potential of water where DRISM gave values
∼10 kcal/mol higher than MD.

While the first peaks of the radial distribution function
between ions and water sites calculated by DRISM were
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FIG. 5. Radial distribution functions of NaCl solutions at the concentration of 0.6688 m calculated with DRISM-KH, DRISM-PSE3, and MD simulation and
compared against experimental radial distributions.102, 103

lower than MD results, the first peaks of the radial distribu-
tion of ion-ion pairs are always higher than MD simulations
(Figs. 5(e)–5(g)). Contact ion pairs of cation and anion as-
sociation (which the first peak of gNa-Cl indicate) is the most
extreme example with DRISM-PSE-3 predicting a coordina-
tion number more than 30 times that of MD. Interestingly, the
first peak of the DRISM is closer to the experimental results
than the MD simulation. Among the three ion-ion radial dis-
tributions, gCl-Cl is substantially distorted (Fig. 5(g)), which
may be due to the fewer ordered water molecules around Cl−.
In particular, the contact pair of Cl−Cl is much closer and
higher peaked than in the MD simulation. We presume that,
at least in part, the extremely high pressure makes the pair
more compact. Along with the pressure, the bigger angle of
Cl−H−O appears to distort water structures around the an-
ion extensively. Unlike the counterpart angle of the cation
(Na−O−H), Cl−H−O could be more sensitive to the struc-
ture of the second water shell. However, the same effect was
not observed for Na−Na pair (Fig. 5(f)). Anions generally
have larger Rmin than cations and the difference of the soft-
ness of the two ions might also explain the different behavior.
gNa-Na of the DRISM is quite accurate at predicting the radii

of the peaks though they are still too high and broad. It is in
accord with relatively accurate water structure around Na+.

V. CONCLUSIONS

The properties of aqueous ionic solutions are important
topics of basic physical chemistry, but are also essential to the
description of the environment of biological macromolecules.
The RISM methodology is attractive due to its ability to
rapidly calculate equilibrium properties over a wide range of
concentrations and provide semi-quantitative results. A com-
mon unknown in any study involving the RISM treatment of
ionic solutions is the accuracy of the RISM picture for a given
potential energy function. To this end, we have characterized
the DRISM solution of Joung-Cheatham58 SPC/E monovalent
ion force field with the PSE-n family of closures and com-
pared our results directly against both MD results for the same
models and the desired empirical properties.

The Joung-Cheatham58 SPC/E parameter set for monova-
lent ions is an important benchmark given its excellent repro-
duction of bulk solution properties and widespread use.58–61

Generally, DRISM was able to capture the behavior of this
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parameter set, accurately reproducing mean ion activity coef-
ficients and solvent polarization free energies. However, sev-
eral shortcomings are apparent. The non-polar contribution to
solvation free energy is drastically different than that calcu-
lated from MD, particularly for larger ions. Another artifact
is the extremely high pressure, several thousand atmospheres,
calculated by DRISM. This is consistent with the observed
non-polar solvation free energy; the chemical potential of an
uncharged solute should be higher in a high-pressure solu-
tion than a low-pressure one. It is also consistent with the
RDFs produced by XRISM and DRISM for pure water and
DRISM for salt solutions, which have the general charac-
teristics observed in experiment for these liquids under high
pressure.104–106

Closure approximations, required for the solution of the
RISM and all OZ-like equations, are a major factor in de-
termining the success or failure of a calculation. HNC and,
more recently, KH closures have been popular choices for
their simplicity, success with ionic solutions and having an
exact, closed-form expression for the excess chemical po-
tential, free energy, and pressure. HNC’s greatest success
has been with primitive models of aqueous ionic solutions
where water is replaced with a dielectric constant and the
ions form a dilute gas107–113 or the effective potentials be-
tween ions include the aqueous environment.114 When molec-
ular water is introduced, the system enters the high density
regime, where HNC has long been known to grossly overes-
timate pressures and excess chemical potentials,55, 115 as we
have observed here. KH has found popularity as it converges
quickly, and is numerically robust, with solutions for many
systems where HNC fails. However, our results show that
KH dampens attractive interactions while further exacerbat-
ing overly positive excess chemical potentials and pressures.
The PSE-n closure interpolates between KH and HNC and
PSE-3, in particular, provides a useful compromise between
the two established closures. It allows relatively rapid and
efficient convergence, especially when bootstrapping from
PSE-1 and -2 solutions, provides RDFs similar to those of
HNC and has an exact, closed-form expression for the ex-
cess chemical potential, free energy, and pressure. Unfor-
tunately, it also suffers from the same deficits of excessive
pressure and excess chemical potentials and does not greatly
change the fundamental picture of aqueous ionic solutions in
DRISM.

The dielectric consistency of DRISM is an essential fea-
ture of the theory, but appears to come at the cost of ther-
modynamic consistency. While the HNC family of closures
is known to have inconsistencies between the compressibil-
ity and free energy routes to the pressure, the Gibbs-Duhem
relation should hold for XRISM when using only the free en-
ergy based expression. For DRISM, the Gibbs-Duhem rela-
tion fails, though not badly: differences in Fig. 4 are much
less that kT.

Even with its shortcomings, the flexibility, speed, and
semi-quantitative accuracy make DRISM a valuable tool to
the study of aqueous ionic solutions and to use with 3D-RISM
for complex solutes. The most rigorous path to improving
DRISM is through modifying the closure, but empirical cor-
rections for errors in non-polar solvation show much practical

promise.71, 73, 116 In particular, the expression for the excess
chemical potential for PSE-n closures gives useful and re-
liable results for many properties of interest for aqueous
electrolytes.
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APPENDIX A: LONG-RANGE
COULOMB INTERACTIONS

Periodic boundary conditions, combined with Ewald
summation,117 is one of the popular ways to treat long-ranged
electrostatic potential in MD simulations. In the RISM the-
ory, long-ranged (i.e., Coulomb) interactions are problematic
when calculating the Fourier transform required to perform
the convolution integrals in Eqs. (2) and (6), and are handled
by taking advantage of the long-ranged behavior of the corre-
lation functions.19, 20, 53, 118–122 At long-range, the direct corre-
lation function asymptotically approaches −βu118

c(lr)
αγ (r) = − βu(lr)

αγ (r) = − 1

kBT

qαqγ

r
erf

(
r

η

)
, (A1)

c(lr)
αγ (k) = − 4π

kBT

qαqγ

k2
exp

(
−k2η2

4

)
. (A2)

Before transforming from real to reciprocal-space, the long-
range component is subtracted off and then restored in
reciprocal-space.

The same problem exists, to a lesser extent, for trans-
forming h back to real-space after the convolution is com-
plete. The asymptotic form of h can be obtained with the
combination of Eq. (2) and one of the equations above,
but the form is not amenable to being analytically Fourier
transformed.123 In practice, a simplified form is sufficient.
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αγ (r) = − 1

2εkBT
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exp
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(
κDη

2
+ r
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, (A3)

h(lr)
αγ (k) = − 4π

εkBT

QαQγ

k2 + κ2
D

exp

(
−k2η2

4

)
, (A4)

where κD = ∑
λ

√
4πβρλQ

2
λ/ε is the contribution to the in-

verse Debye length. Note that Qα is the total charge of molec-
ular species to which α belongs.
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APPENDIX B: IDEAL AND EXCESS
CHEMICAL POTENTIALS

The chemical potential of solute, i can be divided into the
“ideal” part and the “excess” part:

μi = kBT ln ρi�
3 + μex,i , (B1)

where � is the de Broglie wavelength. The ideal part above is
derived from the ideal gas theory. In practical work, especially
dealing with solutions, this division is defined differently de-
pending on the unit of concentration used:

μi = μ∗
c + kBT ln(ci/c

◦) + μc
ex,i , (B2)

μi = μ∗
x + kBT ln xi + μx

ex,i , (B3)

μi = μ∗
m + kBT ln(mi/m◦) + μm

ex,i . (B4)

Here c, x, and m denote molar concentration, mole fraction,
and molal concentration. c◦ and m◦ represent the unit standard
concentrations, which are 1 mol/L and 1 mol/kg × solvent.
Asterisks indicate reference states. Each equation above de-
fines a slightly different excess chemical potential of the so-
lution. μc

ex,i can be expressed using Eqs. (B1) and (B2),

μc
ex,i = kBT ln �3 − μ∗

c + kBT ln(ρic
◦/ci) + μex,i

= kBT ln �3 − μ∗
c + kBT ln(NAc◦) + μex,i ,

where NA is the Avogadro’s number. The first three terms are
independent of the concentration of the solute. Therefore, the
difference of the excess chemical potential of the solution at
any two different concentrations is same as the difference of
the excess chemical potentials,


μc
ex,i = μex,i − μex,∞ = 
μex,i .

In the same manner, μx
ex,i and μm

ex,i also can be expressed in
term of the excess chemical potential using Eqs. (B3), (B4),
and (B1). For μx

ex,i ,

μx
ex,i = kBT ln �3 − μ∗

x + kBT ln(ρ/x) + μex,i . (B5)

At the infinitely dilute solution,

0 = kBT ln �3 − μ∗
x + kBT ln(ρ∞/x∞) + μex,∞. (B6)

If Eq. (B6) is subtracted from Eq. (B5),


μx
ex,i = kBT ln

( ∑
j ρj∑

j ρj,∞

)
+ 
μex,i . (B7)

Inside the logarithm, there remains the ratio of the summation
of the number densities of all the species in the solution at the
two conditions. For μm

ex,i ,

μm
ex,i = kBT ln �3 − μ∗

m + kBT ln(ρim
◦/mi) + μex,i . (B8)

In the infinitely dilute solution,

0 = kBT ln �3 − μ∗
m + kBT ln(ρ∞m◦/mi,∞) + μex,∞.

(B9)

Subtracting Eq. (B9) from Eq. (B8) yields


μm
ex,i = kBT ln(ρw/ρw,∞) + 
μex,i ,

where the subindex w denotes the solvent. This agrees with
Eq. (10).
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60F. Moučka, M. Lísal, and W. R. Smith, “Molecular simulation of aqueous
electrolyte solubility. 3. Alkali-halide salts and their mixtures in water and
in hydrochloric acid,” J. Phys. Chem. B 116(18), 5468–78 (2012).

61I. S. Joung and T. E. Cheatham III, “Molecular dynamics simulations of
the dynamic and energetic properties of alkali and halide ions using water-
model-specific ion parameters,” J. Phys. Chem. B 113(40), 13279–13290
(2009).
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