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Abstract

A well-established approach for detecting genes involved in tumorigenesis due to copy number alterations (CNAs) is to
assess the recurrence of the alteration across multiple samples. Expression data can be used to filter this list of candidates by
assessing whether the gene expression significantly differs between tumors depending on the copy number status. A
drawback of this approach is that it may fail to detect low-recurrent drivers. Furthermore, this analysis does not provide
information about expression changes for each gene as compared to the whole data set and does not take into
consideration the expression of normal samples. Here we describe a novel method (Oncodrive-CIS) aimed at ranking genes
according to the expression impact caused by the CNAs. The rationale of Oncodrive-CIS is based on the hypothesis that
genes involved in cancer due to copy number changes are more biased towards misregulation than are bystanders.
Moreover, to gain insight into the expression changes caused by gene dosage, the expression of samples with CNAs is
compared to that of tumor samples with diploid genotype and also to that of normal samples. Oncodrive-CIS demonstrated
better performance in detecting putative associations between copy-number and expression in simulated data sets as
compared to other methods aimed to this purpose, and picked up genes likely to be related with tumorigenesis when
applied to real cancer samples. In summary, Oncodrive-CIS provides a statistical framework to evaluate the in cis effect of
CNAs that may be useful to elucidate the role of these aberrations in driving oncogenesis. An implementation of this
method and the corresponding user guide are freely available at http://bg.upf.edu/oncodrivecis.
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Introduction

Interpreting the role of copy number alterations (CNAs) in

cancer is challenging because it requires unraveling causative

aberrations from passenger ones. A currently well-established

approach for identifying genes with alterations involved in the

disease is to evaluate whether they are recurrently amplified or

deleted across multiple tumor samples, and thereafter to use

expression data to further refine the evaluation of the potential

drivers: although the expression of key genes may be regulated by

other mechanisms, an amplification or deletion that does not

modify the expression of the altered gene is unlikely to be

tumorigenic [1]. This may be performed by comparing the

expression of amplified or deleted tumor samples to their diploid

counterparts to check whether they show consistent expression

changes [2]. However, this approach has some limitations: first,

any method aimed at revealing candidate genes based on the

frequency with which the alteration occurs is likely, by definition,

to underestimate low-recurrent drivers. Second, this analysis does

not include the comparison of the expression data of normal

samples that may be available. Third, statistical tests comparing

the gene expression of two groups do not provide the best

framework to assess the magnitude of the change across the whole

altered gene set. Moreover, even small expression changes can

reach significance if the sample size is large enough (thus this may

overestimate the number of genes to include), and two-groups

comparison tests tend to not reach significance when the group of

samples with CNAs is small, and this may further impair the

detection of less-recurrent drivers.

There are other methods that have been already designed to

perform an integrative analysis of gene dosage and expression

data. Their performance for detecting concordant gene copy

number and expression abnormalities has been evaluated by using

simulated data in a recent study [3], which has shown that there is

still room for improvement of this type of approaches. Therefore,

we present Oncodrive-CIS, a novel method to measure the in cis

effect of copy number changes that may be useful to identify genes

involved in tumorigenesis due to CNAs.

We have evaluated the performance of Oncodrive-CIS in two

main ways. First, we have compared its accuracy for detecting

putative associations between gene dosage and expression with

that obtained by ten methods aimed to integrate both gene

expression and dosage data evaluated in [3] by using the same

benchmarking procedure. Second, we have assessed the results of

applying Oncodrive-CIS to real cancer samples using gliobastoma
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multiforme (GBM) and ovarian serous carcinoma (OSC) data

retrieved from The Cancer Genome Atlas Data Portal.

Results

Oncodrive-CIS Overview
The rationale of the method is based on two hypotheses: first, a

gene driving oncogenesis through copy number changes is more

prone to be biased towards overexpression (or underexpression),

compared to bystanders; second, the effect of CNAs is better

assessed by observing expression changes not only among tumors

but also taking into account normal samples data. Briefly,

Oncodrive-CIS consists of the following steps: first, an expression

impact score measuring the expression deviation of each sample

with CNAs as compared to normal samples (EISNORMAL) and

tumor diploid samples (EISTUMOR) were calculated for each gene.

Second, a standard score measuring the bias of the EISNORMAL

and the EISTUMOR of that gene as compared to a null model were

obtained by using internal sampling (ZNORMAL and ZTUMOR,

respectively). Finally, these two scores were combined by the

Stouffer’s method to obtain a measurement of the gene expression

bias due to CNAs as compared to both normal and tumor diploid

samples (ZCOMB). This combined score was used to rank the genes,

and therefore, the higher is the ranking of the gene, the larger the

bias towards misregulation caused by the copy number change.

Expression-biased gene amplifications should present positive

ZCOMB values (i.e., towards upregulation), whereas deletions

should exhibit negative values. Since the magnitude of expression

changes measured in gene deletions was lower than that of multi-

copy amplifications, Oncodrive-CIS carried out these analyses

separately to obtain a fair estimation of their impact. Thus, two

ranked lists were produced, each containing the results for genes

having either amplification or deletion events.

Oncodrive-CIS was implemented as a Python script (down-

loadable from http:/bg.upf.edu/oncodrivecis), which takes both

the expression and copy number status values for each gene in

each sample as input, together with a sample annotation file

stating whether they are tumors or normals (see the user guide for

further details). It allows several optional configuration parame-

ters, as for instance the number of sampling procedures performed

to calculate ZNORMAL and ZTUMOR in each gene. Since

amplifications and deletions are evaluated separately, the Oncod-

rive-CIS produces two output files (one per each alteration-set

analysis). They contain the calculated standard scores (i.e.,

ZNORMAL, ZTUMOR and ZCOMB) per gene, ordered by their

ZCOMB values (decreasing order for the amplifications assessment

output file, and increasing order for deletions, beginning with the

most negative value). If no normal samples are available, only

ZTUMOR is calculated.

Oncodrive-CIS Benchmarking
This was performed by the data simulator used in [3]. Briefly,

this tool generates random copy number and expression values for

a total of 10,000 genes; 90 of them have copy number variations

(of several amplitudes and sizes), but only 54 exhibit a consistent

expression change (and therefore they form the true positives set).

As in the study by Louhimo et al, we generated raw data for a

small (n = 15) and a larger (n = 100) sample tumor sets by using

three different patterns of dependence between gene dosage and

expression, i.e. a lineal, a stepwise and a sigmoid model.

Thereafter, we processed the copy number intensities generated

by the simulator by the circular binary segmentation algorithm

[4]. Since this method smoothed the transition between the

intensity peaks of the nearby amplified (or deleted) genes generated

by the simulator, this resulted in stating larger regions of copy

number changes. On detail, while the simulator generated 90 gene

dosage aberrations, the segmentation algorithm stated a mean of

800 genes with CNAs that were subsequently passed to

Oncodrive-CIS.

The intersection between the positives identified by Oncodrive-

CIS and the 54 true positives generated by the simulator are

depicted in Figure S1. To determine them, we selected as

Oncodrive-CIS positives those genes that obtained a statistically

significant bias towards misregulation, i.e. those genes with a

ZCOMB equivalent to a corrected p value #0.05. Overall, the

mean MCC obtained by Oncodrive-CIS across all simulations was

0.54, and it demonstrated better performance in each of the

simulation settings when compared to any of the other methods

aimed to integrate gene dosage and expression data (Figure 1).

Oncodrive-CIS accuracy was worse when applied to the small

(n = 15 tumors) data set, although it was indeed satisfactory except

for the case in which the dependence between gene expression and

copy number followed a sigmoid model. Of note, in the larger data

set (n = 100), Oncodrive-CIS obtained a mean sensitivity/speci-

ficity of 85/97% when gene expression was lineal to gene dosage,

and a mean of 76/97% when a stepwise dependence model was

used (Table S1).

Application to GBM Data
A total of 206 tumors and 10 normal samples were included in

the analysis. Copy number gain or loss in at least two GBM

samples occurred in 680 genes. Oncodrive-CIS computed a

ZCOMB corresponding to a p value #0.05 for 77 of these genes (38

due to amplifications and 39 due to deletions). From them, we

further examined the top-30 genes that showed larger bias towards

overexpression and underexpression, respectively (see Figures 2

and 3). Among them, the following well-known cancer genes were

found: MET, CDK4, MDM4, EGFR and PIK3CA (amplifica-

tions), and CDKN2A, MLLT3, HRAS, CARS and NF1

(deletions). Other known cancer genes possess lower ZCOMB

values, either because the expression change observed among

samples with CNAs was moderate or because their values were

disperse, and thus the expression impact score calculated by

Oncodrive-CIS tended to be lower (Figure 4 and Figure S2). Of

note, several of these genes were also selected by the GISTIC

method [5], which assesses the significance of the recurrence

pattern of CNAs across the tumors, stressing the potential benefit

of combining Oncodrive-CIS with approaches based on other

criteria.

The Oncodrive-CIS ranking noted other potential driver

candidates. For instance, the following appeared among the 30

top-ranking genes: DDX1, which is involved in cellular growth

and division and previously described as implicated in tumors

including neuroblastoma, Wilms tumor, retinoblastoma, testicular

carcinoma, and breast cancer [6]; EIF4G1, whose encoded

protein enhances the synthesis of mRNA and was described as

affecting the tumorigenic potential in a breast cancer cell line [7];

ENO1, which binds to the MYC promoter as a transcriptional

repressor, thus likely acting as a tumor suppressor [8]; and

MAP3K4, a kinase of CSBP2 and JNK pathways [9]. Further

description of the genes of interest from the Oncodrive-CIS top-30

list is included in the Table S2.

Finally, Oncodrive-CIS provided further information about the

mechanisms of gene misregulation by observing ZNORMAL and

ZTUMOR separately. For instance, ELAVL2, which encodes RNA-

binding protein specific to the nervous system, was highly biased

towards underexpression among tumor samples regardless of the

copy number status. Therefore, downregulation of this gene in

Assessment of CNAs Impact on Gene Expression
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GBM would be evoked by other mechanisms besides deletion.

Another example is the well-known tumor suppressor CDKN2C,

whose expression was low in normal samples but highly increased

in tumors with the diploid genotype, probably as a reaction to the

aberrant cell state (Figure S3).

Application to OSC Data
The data set included 480 OSC and 8 normal samples; a total of

9,905 genes presented CNAs in at least two of these tumor

samples. Among the 30 genes with the greatest bias in their

expression change according to Oncodrive-CIS were CCNE1 and

PTEN due to amplifications and CDKN2A, NF1, and NCOA4

due to deletions (Figures S4, S5 and S6). Other potential driver

candidates in the Oncodrive-CIS top-30 list were the following:

ATAD2, which induces the expression of a subset of estradiol

target genes such as CCND1 or MYC, is up-regulated in several

other tumor types, and is involved in estrogen-induced cell

proliferation and cell-cycle progression of breast cancer cells [10];

Figure 1. Benchmarking of Oncodrive-CIS using simulated data as compared to other 10 methods aimed to assess the in cis effect of
copy number changes. Details of the performance of these methods have been retrieved from the supplementary data of the study of Louhimo
et al. (see references). The horizontal axis indicates each of the six settings that have been used to generate the simulated data set (the last category
depicts the mean of the results obtained in all of them). The vertical axis shows the Matthews correlation coefficient obtained by each method. In the
case of Oncodrive-CIS, the performance was checked generating 100 different data sets for each of the simulator settings, thus the mean of the
scores obtained in each of them is shown for this method. DLMM: double-layered mixture model; edira: equally directed abnormalities method;
GSVD: generalized single value decomposition; intCNGEan: integrative DNA copy number and gene expression analysis; ); pcc: Pearson correlation
coefficient; pSimCCA: similarity-constrained probabilistic canonical correlation analysis; S2N: signal-to-noise ratio; SIM: statistical integration of
microarrays; SODEGIR: significant overlaps of differentially expressed and genomic imbalanced regions; sPLS: sparse partial least squares regression.
doi:10.1371/journal.pone.0055489.g001
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BOP1, which is related to the cell cycle and contributes to

colorectal tumorigenesis [11]; GLTSCR2, which encodes a PTEN

interacting protein and has been associated with low tumor growth

and better patient survival in colorectal and esophageal cancers

[12]; and MTMR9, which may act to control cell proliferation and

has demonstrated prognostic significance for esophageal adeno-

carcinoma [13]. Further details about the genes of interest on the

Oncodrive-CIS top-30 list for OSC are provided in Table S3. Of

note, 7 genes that appeared in this OSC list were also present in

the top-30 ranking obtained for the GBM data set, including the

known cancer genes CDKN2A and NF1 as well as RFC4, a gene

encoding a protein associated with BRCA1 that may sensor

abnormal DNA structures and/or regulate post-replication repair

processes [14].

Observation of ZNORMAL and ZTUMOR pointed out different

gene misregulation patterns also in the OSC data set. For instance,

the gene encoding the TTK dual specificity protein kinase was

upregulated among OSC samples regardless of the CNA status,

and CDKN2A expression was low in normal samples but was

highly increased in tumors if not deleted (Figure S7).

Discussion

Oncodrive-CIS may help to elucidate the role of amplified or

deleted genes in cancer, since dosage-sensitive genes driving

oncogenesis through CNAs should be more biased towards

misregulation than genes bearing passenger alterations. For each

gene, Oncodrive-CIS measured the magnitude of the expression

change caused by copy number changes as compared to a null

Figure 2. Assessment of the multi-copy amplifications in the gliobastoma multiforme dataset. Results for the top-30 ranking genes
according to Oncodrive-CIS analysis are displayed. In addition, we also include 4 genes contained in the Sanger Cancer Gene Census that were
significant according to GISTIC method but were not present among the Oncodrive-CIS top-30 ranking. Panel (A): the matrix shows the expression
impact scores of the samples with copy number gain compared to normal samples (EISnormal); the color bar depicts the standard score measuring the
misregulation bias of the samples with copy number gain as compared to normals (Znormal). Panel (B) presents the same results for the comparison of
samples with gene amplification with diploid tumor samples (EIStumor, Ztumor). Note that the depicted Z scores of the present figure are positive in all
cases, since a Z value .0 means a shift towards overerexpression. Panel (C): the first color bar depicts the values of the Z score used by Oncodrive-CIS
to rank the genes, which is obtained by combining the two Z scores presented in (A) and (B) using the Stouffer’s method (Zcombined). This score
measures the bias of the samples with copy number alterations towards gene overexpression in comparison to both normal and diploid tumor
samples. The second color bar depicts the significance obtained by the GISTIC analysis for that gene.
doi:10.1371/journal.pone.0055489.g002
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model obtained by internal sampling. There are several strengths

of this method. First, it did not examine the frequency of the

alteration across samples and therefore detection of low-recurrent

driver alterations was not impaired. Note that the number of

samples with CNAs in the Oncodrive-CIS top-ranking genes

varies widely for both GBM and OSC data set analysis, and most

of those having lower alteration frequency were not selected by

GISTIC. Second, amplifications and deletions were evaluated

separately to obtain a fair ranking of genes, because the expression

change measured in deletions was lower than the one obtained

from multi-copy amplifications. Third, the expression of genes in

tumor samples was analyzed according to the copy number status

but was also compared to normal samples, thus better revealing

the gene misregulation role of CNAs in cancer cells. Note that the

ZCOMB score is calculated by using the same weigh for both

ZNORMAL and ZTUMOR values, so the normal data should be

reliable in order to avoid unfair calculations. And finally, it should

be emphasized that the relationship between expression changes

and the actual functional impact is complex: a large expression

change in a certain gene might have no significant consequences

whatsoever (this would lead to an Oncodrive-CIS false positive)

whereas a gene with moderate misregulation could greatly

influence processes involved in the disease (and may therefore be

a false negative of our method).

The use of simulated data demonstrated that Oncodrive-CIS

performs better in the detection of concordant gene expression

and copy number abnormalities in different scenarios of sample

size and gene abnormalities as compared to the other methods

aimed to assess the in cis effect of CNAs. Of note, the processing of

the raw data may affect the performance of the method. We

carried out the benchmarking of Oncodrive-CIS after using the

circular binary segmentation that, due to the characteristics of the

simulated data, overestimated the number of genes with CNAs.

This may impair the subsequent analysis performed by Oncod-

rive-CIS, especially when the change in expression due to CNAs is

smoothed (i.e. the sigmoid model). Whether another method for

performing the copy number call could further improve the

Oncodrive-CIS results is speculative.

On the other hand, we carried out the benchmarking of

Oncodrive-CIS using no directed criteria for selecting the positives

of the method, since we considered as Oncodrive-CIS positives

those genes with a ZCOMB equivalent to a statistically significant p

value. However, the method gives a statistical framework to rank

genes according to their misregulation bias, thus the selection of

Figure 3. Same as in Figure 1 but for the assessment of homozygous deletions in the gliobastoma multiforme data set. All the Z
scores obtained for the genes depicted in this figure are negative, i.e. they represent a bias towards underexpression.
doi:10.1371/journal.pone.0055489.g003
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genes can be customized depending on several criteria, as for

instance to prioritize the avoidance of false positives by being more

stringent with the ZCOMB cutoff. When Oncodrive-CIS is applied

to real cancer data, many of the genes exhibiting larger

misregulation are either known to be related with tumorigenesis

or likely candidates to be involved in the disease. To assess the

gene misregulation due to copy number changes may be a valid

approach for interpreting the role of these aberrations in cancer,

but it must be stressed that Oncodrive-CIS is not exclusive but

complementary to methods based on other criteria, such as the

recurrence pattern of the CNAs. Comparison between the results

of Oncodrive-CIS and GISTIC in the GBM and OSC data sets

showed several genes that were highlighted by both methods,

whereas other genes were supported by only one of them. In this

regard, we can make several observations. Recurrent alterations

that cause large expression biases may pick up driver genes.

Alterations that occur less frequently but with a large expression

impact, as well as those with moderate effect on expression but

highly recurrent, may also be driver candidates. Finally, alterations

that do not modify expression should be passengers regardless of

their prevalence across samples. These results could be further

refined by evaluating other alterations causing misregulation, as

for instance methylation [15] (Figure S8).

In summary, Oncodrive-CIS exhibited better performance in

identifying putative associations between gene copy-number and

expression as compared to other methods aimed to assess the in cis

effect of CNAs. When applied to cancer data, many of the genes

identified to have the larger misregulation bias due to copy

number changes are likely candidates to be tumorigenic.

Moreover, the possibility of integrating data of normal samples

in the Oncodrive-CIS analysis may provide further insight into the

misregulation mechanisms. Taking into account that CNAs

usually affect regions with many genes, preselection of those more

likely to be involved in the disease by using the present method

should refine downstream analyses aimed to elucidate key

biological modules targeted by cancer.

Methods

Oncodrive-CIS
Oncodrive-CIS consists of the following steps:

1. An expression impact score (EIS) was obtained for each gene in

each tumor sample with copy number change. Let exp be the

expression value of the gene in the altered sample j, MR the

median of the gene expression in the reference group (either

Figure 4. Expression values of several known cancer genes in samples of the gliobastoma data set (log2 transformed absolute
expression levels). This figure illustrates the Oncodrive-CIS analysis in different scenarios. MET and MDM4 are severely overexpressed when
amplified, compared to both normal and tumor diploid samples, and they appear among the top-30 genes with larger expression change bias
according to Oncodrive-CIS. However, the expression change due to CDK6 amplification was moderate and it was classified lower in the ranking list
(position 138). PDGFRA was overexpressed when amplified, but the dispersion of the expression values lowered the expression impact scores
calculated by Oncodrive-CIS (# 61 on the list). Thus, the two first genes should be considered as positives according to Oncodrive-CIS, whereas the
remaining two genes should be considered as negatives according to our analysis criteria.
doi:10.1371/journal.pone.0055489.g004
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tumor samples with no alterations or normal tissue samples, see

below), and IQRA and IQRR the expression inter-quartile range

of the group of tumors with CNAs and the reference group,

respectively; the EIS for the ith gene and jth sample was

calculated as:

EISij~
expij {MiR

IQRiAzIQRiR

2. The observed EIS of the ith gene was then calculated as the

median of the EISij for all samples j (i.e., for all the tumors

having CNAs in that gene).

3. Thereafter, a background EIS was calculated for each gene.

This was obtained by sampling n EIS values from all the EISij

obtained in step (1), where n denoted the number of samples in

which the gene i had a CNA.

4. Calculation of the background EIS explained above was by

default repeated 10,000 times for each gene i to estimate an ith

background EIS model.

5. Finally, the observed ith EIS (step 2) was compared with the ith

background EIS model (step 4) to obtain an ith standard score.

This Z value was used as a measure of the bias of the ith gene

towards an expression change due to CNAs as compared to the

remaining i genes:

Zi~
EISiobserved {mean EIS

ibackground

sd EIS
ibackground

where sd means standard deviation.

Two sample groups were used as reference: the group of normal

samples and the group of tumor samples in which the gene

possessed the diploid genotype. Therefore, two EIS (EISNORMAL

and EISTUMOR) and two Z values (ZSuppNORMAL and ZTUMOR)

were obtained for each gene. EISNORMAL indicates the expression

impact score of a gene computed by comparing the tumor samples

with CNAs in that gene to the normal samples used as reference.

EISTUMOR denotes the expression impact score of a gene

computed by comparing tumor samples with CNAs to tumor

samples without CNAs in that gene. ZNORMAL indicates the bias

towards high EISNORMAL, while ZTUMOR indicates the bias

towards high EISTUMOR for a particular gene. Finally, these two Z

values were combined using the Stouffer method [16] to measure

the expression change bias of the samples with CNAs with respect

to both normal and tumor diploid samples (Figure S9):

Zicomb~
Zinormal zZitumor

ffiffiffi

2
p

This combined Z score (ZCOMB) was used by Oncodrive-CIS to

rank the genes. Of note, all the samples were included in the

analysis regardless whether their expression values were consistent

or not with the alteration status (for instance, a sample with a gene

deletion which presented higher expression than normal samples).

Only those genes with CNAs in at least two tumor samples were

by default included in the Oncodrive-CIS analysis.

Oncodrive-CIS Benchmarking
We have used the data simulator provided in the Supplemen-

tary material of the manuscript by Louhimo et al. [3], which

generates random copy number and expression raw data for

10,000 genes. By default, 90 of these genes may present copy

number variations (of several amplitudes and sizes), but only 54

exhibit a consistent expression change (and therefore they form the

true positives set). We processed the copy number intensities

generated by the simulator by the binary segmentation method

[4], and therefore we used a cutoff of +0.2 and 20.2 for stating a

gene gain and loss, respectively [17]. Simulated values were

generated 100 times for each of the six data settings used for

benchmarking, thus the performance of Oncodrive-CIS is

reported as the mean 6 standard deviation of the sensitivity,

specificity and Matthews correlation coefficient (MCC) [18]

obtained in each validation trial. To calculate them, we selected

as Oncodrive-CIS positives those genes with a ZCOMB equivalent

to a corrected p value #0.05. Benchmarking results of the other

methods already developed to integrate gene expression and

dosage data were retrieved from the supplementary data provided

by [3].

Oncodrive-CIS Performance with Two Cancer Data Sets
Copy number status of the GBM and OSC samples were taken

from the results of RAE [19], which are available among the data

accompanying the MEMo software [20]. Only homozygous

deletions or multi-copy amplifications were included; the remain-

ing copy number events were excluded from the analyses. Gene

expression values measured by the HT Human Genome U133

were downloaded from the Cancer Genome Atlas Data Portal. To

compare the results obtained by Oncodrive-CIS with those

obtained by taking into account the recurrence of the CNAs

across the tumor samples, we also included the results of the

GISTIC analysis [5], which were retrieved from the supplemen-

tary data provided by the original GBM and OSC studies [21,22].

A gene was considered as already known to be cancer-related if it

appeared in the Sanger Cancer Gene Census [23]. Heatmaps

were constructed using Gitools [24].

Supporting Information

Figure S1 The intersection between the positives iden-
tified by Oncodrive-CIS and the 54 true positives
generated by the simulator. To carry out the benchmarking,

we defined as Oncodrive-CIS positives those genes with a ZCOMB

equivalent to a p value #5%. We simulated 6 different data

settings, i.e. sample sizes of 15 or 100 tumors, and a lineal, a

stepwise or a sigmoid model of dependence between gene dosage

and expression. Since Oncodrive-CIS was benchmarked by using

100 different simulations for each of these 6 settings, the positive

gene sets that appeared more frequently in each of them were

depicted in the present figure. Venn diagrams have been

generated using the BioVenn application (Hulsen T. et al., BMC

Genomics 2008, 9:488).

(PDF)

Figure S2 Expression boxplots for several well-know
cancer genes (i.e. included in the Sanger Cancer Gene
Census) having copy number alterations in the gliobas-
toma data set: PIK3CA was overexpressed as compared
to both normal and diploid tumor samples when
amplified, and MLLT3 is underexpressed as compared
to both normal and diploid tumors when deleted. Both

genes obtained a misregulation bias within the top-30 of the

Oncodrive-CIS results. On the other hand, amplification of

Assessment of CNAs Impact on Gene Expression
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MYCN leads to a small overexpression, whereas samples with

amplification of MDM2 presented disperse expression values.

Therefore, they obtained a lower ranking in Oncodrive-CIS

(positions 84 and 92, respectively). Expression values in all

boxplots of the present document are depicted as log2 transformed

absolute expression levels.

(PDF)

Figure S3 Tumor samples with deletion of ELAVL2
were biased towards undexpression as compared to
normal samples (ZNORMAL = 27.0) but not as compared
to diploid tumors (ZTUMOR .0). This gene was thus equally

misregulated among gliobastoma samples regardless of the gene

copy number. On the other hand, expression levels of CDKN2C

when deleted were similar regarding to normal samples (ZNORMAL

.0) but were biased towards underexpression regarding to diploid

tumors (ZTUMOR = 22.1). This could be explained by the fact that

this tumor suppressor gene was not significantly acting in normal

cells but it reacted to the tumor cell state.

(PDF)

Figure S4 Same as in Figure 1 (main manuscript) but
for the multi-copy amplifications observed in the ovary
serous carcinoma data set.
(PDF)

Figure S5 Same as in Figure 2 (main manuscript) but
for the homozygous deletions observed in the ovary
serous carcinoma data set.
(PDF)

Figure S6 Expression boxplots for several well-know
cancer genes having copy number alterations among the
ovary serous carcinoma samples. Misregulation due to

deletions of NF1 and PTEN appeared within the top-30 ranked by

Oncodrive-CIS. On the other hand, amplifications in MYC

(which occurred in 153 of the tumor samples) showed no

substantial effect in the gene expression according to Oncodrive-

CIS (this gene appeared in the last part of the ranking list).

(PDF)

Figure S7 Expression of CDKN2A in normal samples
was slight, since it was similar to the expression
measured in tumor samples with deletion of the gene
(ZNORMAL .0). However, this tumor suppressor gene was

overexpressed in ovarian carcinoma when diploid (ZTU-

MOR = 213.2). On the other hand, TTK expression was higher

among tumors as compared to normal samples, and such

overexpression was similar regardless of the gene copy number

(ZNORMAL = 13.6, ZTUMOR ,0), thus other mechanisms should be

acting in such misregulation.

(PDF)

Figure S8 Expression of CCNE1 in ovarian carcinoma
was higher among diploid tumors as compared to

normal samples, and it was further overexpressed
among tumors with copy gain of the gene (ZNOR-

MAL = 15.7 and ZTUMOR = 4.1). This could be explained by

the presence of additional misregulation mechanisms acting

synergistically with copy number alterations.

(PDF)

Figure S9 Expression boxplots of a dummy gene to
illustrate the performance of the Oncodrive-CIS calcu-
lations. The method compares the expression values of tumor

samples with CNAs to those of normal samples and also to those of

tumors with a diploid genotype for that gene. On detail, ZNORMAL

measures the bias towards misregulation in samples with gene

copy changes regarding to normal samples, and ZTUMOR

measures the bias towards misregulation in samples with gene

copy changes regarding to tumors that have two copies of the

gene. ZCOMB is calculated as a combination of both ZNORMAL and

ZTUMOR scores, since those CNAs driving tumorigenesis are

expected to shift gene expression both with respect to their normal

condition and with respect to the tumor samples in which they

appear in double dosage. In this example, a large overexpression is

observed among tumor samples with gene amplification as

compared to both normal samples and tumor samples in which

the gene is diploid. Thus, a large ZNORMAL and ZTUMOR would

be obtained, and therefore ZCOMB would be consistently large as

well.

(PDF)

Table S1 Mean ± standard deviation obtained by
Oncodrive-CIS benchmarking measurements (rows)
across the 100 synthetic data sets generated for each of
the simulation settings (columns). MCC means Matthew’s

correlation coefficient.

(PDF)

Table S2 Summary of the genes manually selected as
being of interest within the top-30 ranking list obtained
by Oncodrive-CIS for the gliobastoma multiforme data
set analysis. Summary extracted from Omim, Entrez Gene,

UniProtKB/Swiss-Prot public resources. An * means that the gene

is included in the Sanger Cancer Gene Census.

(PDF)

Table S3 Same as Table S2 but for the Oncodrive-CIS
results obtained in the ovarian serous carcinoma data
set.

(PDF)
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