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Abstract Interleukin (IL)-17 is a pro-inflammatory

cytokine that plays critical roles in host defense against

extracellular bacteria and fungi and also in the pathogen-

esis of autoimmune diseases. While CD4? TCRab?

T helper (Th) 17 cells are the best-described cellular source

of IL-17, many innate-like T cells are in fact potent pro-

ducers of IL-17. Given the increasing interest in therapeutic

modulation of the IL-17 axis, it is crucial to better under-

stand the cellular origins of IL-17 in various infection and

diseases settings. While the diverse population of IL-17-

producing T cells share many common characteristics,

notable differences also exist. In this review, we discuss the

heterogeneity of IL-17-producing T cell types focusing on

their development, regulation, and function.
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Introduction

CD4? TCRab? T helper (Th) cells play a central role in

orchestrating immune response by producing a distinct

array of cytokines depending on each subset. The Th1/Th2

paradigm of CD4? T cell differentiation, first proposed by

Mosmann and Coffman 25 years ago [1], helped clarify

many phenomena of the adaptive immune system, albeit

with some unexplained enigmas. While an imbalance in

Th1 cell function was thought to result in autoimmunity,

subsequent studies demonstrated that mice lacking inter-

feron (IFN)-c, a Th1 cytokine, as well as mice deficient of

molecules required for Th1 cell differentiation developed

more severe experimental autoimmune encephalomyelitis

(EAE) [2–4], a mouse model of multiple sclerosis (MS).

This paradox was solved when interleukin (IL)-23 was

found to be crucial for the induction of EAE [5] and by the

following discovery that IL-23 expands a population of IL-

17-producing CD4? T cells that are capable of inducing

EAE [6]. Closely following this observation, multiple

studies established this novel population as a distinct T

helper cell subset, Th17 cells, and the immunology com-

munity welcomed a new and important member to the

CD4? T cell family.

Discovery of Th17 cells generated new interest and

excitement for the cytokine IL-17. Murine IL-17 was first

identified in 1993 [7] (human IL-17 was cloned in 1996

[8]) but had remained underexplored. IL-17 is a pro-

inflammatory cytokine that induces production of other

pro-inflammatory cytokines and chemokines from target

cells; the IL-17 receptor is ubiquitously expressed on

hematopoietic and non-hematopoietic cells throughout the

body. Since the identification of the Th17 lineage in 2005,

IL-17 has gained much attention due to its critical role in

host defense against extracellular bacteria and fungi,

especially at mucosal and barrier sites. In addition to EAE,

Th17 cells and IL-17 have been shown to be crucial in the

pathogenesis of other autoimmune diseases including

arthritis, psoriasis, and inflammatory bowel diseases [9].

These findings have been translated into therapeutic

advances that include the use of anti-IL-17 and anti-IL-17
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receptor antibodies to treat a number of autoimmune

syndromes.

With the growing interest in clinical modulation and

targeting of IL-17, it is important to better understand the

cellular sources of IL-17 at distinct physiological sites and

in specific disease settings. IL-17 is produced by a number

of adaptive and innate immune cells [10]. Among T lym-

phocytes, the best-characterized source of IL-17 is Th17

cells; however, CD8? T cells produce IL-17 as do ‘‘innate-

like’’ T cell lineages including natural Th17 cells, cd T

cells, and natural killer T (NKT) cells (Table 1). Within the

innate arm of the immune system, activated neutrophils,

mast cells, alveolar macrophages from asthmatic lungs,

natural killer (NK) cells, and lymphoid tissue-inducer cells

have also been shown to be potent sources of IL-17. The

development and function of many of these IL-17-pro-

ducing innate lymphoid cells have been the subject of

recent reviews [10, 11]. In this review, we will focus on the

diversity of IL-17-producing T cells and the differences

and/or similarities in their development, regulation, and

function.

Classification of IL-17-producing T cells

Conventional Th17 cells

Following the identification of IL-17-producing CD4? T

cells critical for the induction of EAE [6], two independent

groups showed that these cells constitute a distinct subset

of CD4? T helper cells, Th17 cells, that develop from

naive CD4? T cells independently from Th1 or Th2 cells

[12, 13]. Soon after, Littman and colleagues identified the

master regulator for the Th17 subset, retinoic orphan

receptor (ROR)ct, a transcription factor both necessary and

sufficient for Th17 cell development [14]. Further charac-

terization revealed that in addition to IL-17 (also known as

IL-17A), Th17 cells produce high levels of IL-17F, another

member of the IL-17 family, and IL-22 and express IL-23

receptor and CCR6 [15, 16]. Human Th17 cells have also

been identified and characterized [17–19]. Initial studies

highlighted several discrepancies between mice and human

Th17 cells, such as the requirement of TGFb for differ-

entiation (reviewed below), however, additional studies

reveal that they are more similar than originally

considered.

One intriguing aspect of both murine and human Th17

cells is their considerable heterogeneity. Co-production of

IFNc and IL-17 by CD4? T cells has been readily

observed under inflammatory conditions [14], and a recent

study using IL-17 reporter mice demonstrated that these

‘‘double-producers’’ originate from Th17 cells [20]. In

addition, the presence of Th17 cells expressing Foxp3, the

transcription factor specific for CD4? regulatory T (Treg)

cells, has been reported both in mice [21] and human [22]

although the differentiation pathway of these cells is

unknown.

Natural Th17 cells

While it was initially put forth that all Th17 cells differ-

entiate from mature naive CD4? T cells at peripheral

effector sites, recent work has identified another develop-

mental pathway for IL-17-producing CD4? T cells.

Studies from the Craft laboratory and our group have

independently identified a population of such cells that

acquire effector function in the thymus during development

prior to antigen exposure in the periphery [23, 24]. Using

multiple experimental approaches including recombinase-

activating gene-green fluorescence protein (Rag-GFP)

reporter mice [23] and fetal thymic organ culture (FTOC)

[24], these thymic Th17 cells have been demonstrated to be

of bona fide thymic origin rather than re-circulating cells

generated in the periphery. Based on their site of origin,

this population has been termed natural Th17 (nTh17)

cells. Furthermore, these nTh17 cells have been shown to

Table 1 Summary of IL-17-producing T cell types

T cell type Effector cytokines Cytokine requirements Transcription factors

CD4? abTCR? Th17 cell IL-17, IL-17F, IL-22 IL-6, TGFb, IL-1b, IL-23 RORct, RORa, AHR, c-Rel, IjBf [168],

BATF [169], RUNX1 [170],

IRF4 [171], HIF1a [172, 173]

CD4? abTCR? nTh17 cell IL-17, IL-17F, IL-22 IL-6, TGFb RORct, RelA, RelB

CD1d-tetramer? NK1.1- CD4-

IL-17? iNKT cell

IL-17 TGFb RORct

CD27- cdTCR?

IL-17? cd T cell

IL-17 TGFb RORct, RelB, RUNX1 [29], AHR, Hes1 [174]

Th T helper, n natural, iNKT invariant natural killer T, IL interleukin, TGF transforming growth factor, ROR retinoid orphan receptor, AHR aryl

hydrocarbon receptor, BATF basic leucine zipper transcription factor ATF-like, RUNX1 runt-related transcription factor 1, IRF4 interferon-

regulatory factor 4, HIF hypoxia inducible factor
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be a population distinct from conventional Th17 cells with

distinct TCR gene usage, thymic selection, and TCR sig-

naling requirements [24].

cd T cells

cd T cells are a potent source of innate IL-17 [25], IL-17-

producing cd T cells share characteristics of Th17 cells,

including expression of CCR6, IL-23R, and RORct. Unlike

conventional Th17 cells, they also express Toll-like

receptor 1 (TLR1), TLR2, and Dectin-1, however, it is

unclear whether cd T cells directly respond to TLR or

Dectin-1 ligand to expand and secrete IL-17 [26], or

whether activation in the presence of innate ligands is due

to stimulation by IL-1 and IL-23 produced by myeloid cells

in a TLR-induced manner [27, 28]. These IL-17-producing

cd T cells constitute one of two distinct functional subsets

of cd T cells, the other being IFNc-producers. Data suggest

that these effector fates are determined during thymic

selection. Consistent with this hypothesis, fetal thymocytes

can be distinguished as either IL-17- or IFNc-producing cd
T cell precursors by CD27 expression with IL-17-produc-

ing cd T cells being CD27- [29]. Human IL-17-producing

cd T cells have also been characterized, and these cells are

present at an increased frequency during some bacterial

infections [30].

Invariant natural killer T (iNKT) cells

iNKT cells are characterized by the expression of a highly

restricted TCR that recognizes glycolipid antigens pre-

sented by the non-polymorphic major histocompatibility

complex (MHC) class I-like molecule CD1d [31]. In

addition to iNKT subsets producing Th1 or Th2-associated

cytokines, an IL-17-producing iNKT cell subset has been

described [32]. These IL-17-producing CD44? NK1.1-

CD4- iNKT cells develop in the thymus and readily

produce IL-17 in response to a-galactoceramide (a-GalCer)

stimulation. A more recent study identified another marker

for IL-17-producing iNKT cells, IL-17RB, and demon-

strated a role for these cells in the pathogenesis of a virus-

induced airway hyperreactivity disease model [33].

Tc17 cells

IL-17-producing CD8? cells, termed Tc17 cells, have been

described. Tc17 cells share developmental requirements

similar to those of Th17 cells [34, 35]. Transcription fac-

tors that promote conventional IFNc-producing cytotoxic

T lymphocyte (CTL) development, such as T-bet and

Eomesodermin, inhibit Tc17 development [36]. The

physiological role of Tc17 cells is yet unclear.

In vivo ontogeny of IL-171 T cells

At steady state in vivo, Th17 cells are enriched in the

lamina propria (LP) of the small intestine; 80–90 % of IL-

17? cells in the small intestinal LP are CD4? TCRab?

cells [37]. However, these Th17 cells are not found in the

intestine of neonatal mice until approximately the 25th day

of life, which coincides with the timing of weaning and

subsequent colonization of the intestine with normal

commensal bacteria. Consistent with these observations,

studies using germ-free mice and mice administered a

broad antibiotic cocktail are also devoid of LP Th17 cells

[37, 38]. Taken together, these findings demonstrate that

Th17 cells differentiate from mature naive CD4? T cells at

the intestinal sites in vivo (Fig. 1). It remains to be deter-

mined whether CD4? TCRab? Th17 cells found at other

mucosal or barrier sites, such as the lung or skin, are also

induced from naive CD4? T cells at those sites or are

originated from the thymus-derived nTh17 cells. Of note,

IL-17? CD4? TCRab? are present in the peripheral

lymphoid organs of germ-free mice, raising the possibility

that these sites may be seeded by nTh17 cells (J.S.K. and

M.S.J., unpublished observation). Interestingly, intestinal

IL-17? cd T cells are not significantly affected by com-

mensal colonization as they constitute roughly 1–2 % of

CD3? LP lymphocytes throughout the neonatal period

without alteration (day 8 to day 33 of age) [37] and are

only slightly reduced in germ-free mice (*7 % of cd T

cells are IL-17?) compared to conventional mice (*10 %

IL-17? cd T cells) [37].

For the innate IL-17? T cells, the thymus is the site of

development and commitment as an IL-17? cell (Fig. 1).

Studies using FTOC have clearly demonstrated that the IL-

17-producing effector function is programmed and

acquired in the thymus during development in nTh17 [24],

Fig. 1 In vivo sites of origin and distribution of IL-17? T cells.

Conventional Th17 cells differentiate from naive CD4? T cells at

intestinal sites. The innate IL-17? T cells—nTh17, cd T, and iNKT

cells—acquire effector function during development within in the

thymus and subsequently emigrate to effector site
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cd T [29], and iNKT cells [39]. Since these innate IL-17?

T cells are present in many peripheral tissues, an intriguing

question is whether the effector site to which the different

thymus-generated IL-17? T cells emigrate is determined/

imprinted during development.

Developmental requirements of IL-171 T cells

Cytokines

Th17 cells: the ‘‘IL-6 plus TGFb’’ recipe challenged

While the identification of Th17 cells was driven by IL-23,

it initially was unclear how Th17 cells are derived from

naive CD4? T cells, as they do not express IL-23 receptor

(IL-23R). This mystery was solved through parallel studies

examining the requirements for differentiation of naive

CD4? cells into Th17 cells and for expression of the IL-

23R. Key to this work was three independent studies

demonstrating that the combination of transforming growth

factor (TGF)b and IL-6 is required to efficiently induce

Th17 cells from naive CD4? T cells in vitro (Fig. 2) [15,

40, 41].

IL-6 is a pro-inflammatory cytokine produced by many

cell types including innate immune cells [42]. IL-6-defi-

cient mice have drastically reduced numbers of Th17 cells

in the intestinal LP [14], and in vitro differentiation of

Th17 cells can be completely abolished by adding a

blocking antibody against IL-6 [40]. IL-6 leads to expres-

sion of IL-23R and strong activation of signal transducer

and activator of transcription 3 (STAT3), which is neces-

sary to induce RORct. However, the IL-6-dependent

STAT3 activation is not sufficient for RORct expression;

full induction of RORct requires the additional presence of

TGFb [43, 44]. Notably, IL-6 (via a STAT3-dependent,

RORct-independent mechanism) also increases the pro-

duction IL-21, a cytokine capable of upregulating IL-23R

expression. Moreover, IL-21 in concert with TGFb can

lead to robust RORct expression and support Th17 cell

differentiation [45–47].

TGFb is an immunoregulatory cytokine with pleiotropic

functions in T cell development and homeostasis [48]. The

importance of TGFb in Th17 cell development was ini-

tially established by a number of groups. Mice defective in

TGFb signaling (CD4dnTGFbRII) [49] or deficient in

TGFb1 expression [15] show impaired Th17 cell differ-

entiation in vitro and in vivo [as measured by the paucity of

Th17 cells in intestinal LP and mesenteric lymph nodes

(MLN)] and are protected from EAE. In contrast, trans-

genic overexpression of TGFb in T cells resulted in more

severe EAE with increased Th17 cell generation [41].

Taken together, these studies supported the role of TGFb as

an essential initiating factor for Th17 cell fate commitment.

This finding was intriguing, as TGFb was known to be a

cytokine crucial for the generation of Treg cells and

thereby provided the first indication that these two Th cell

subsets, with opposing roles in the immune system, were

developmentally linked. Additional studies support the

notion that Th17 and Treg cells have a reciprocal devel-

opmental relationship and that IL-6 plays a pivotal role in

determining the balance between the two [41]. In support

Fig. 2 Heterogeneity of mouse and human Th17 cells. Differentia-

tion of murine Th17 cells from naive CD4? T cells (CD62Lhi

CD44lo Foxp3-) includes TGFb and IL-6 for initial differentiation

and IL-23 and IL-b for stabilization and commitment (thick arrow).

Recent studies suggest a pathogenic subset of Th17 cells (IFNc?

T-bet?) can be generated in a TGFb-independent manner from naive

CD4? T cells (thin line). In vivo, IFNc? IL-17? double-producers

are generated and are presumed to be converted from conventional

Th17 cells. The cytokine requirements for human Th17 cell

differentiation is similar to that of mouse Th17 cells (contrary to

some initial discrepancies—see text for details) yet the role of each

cytokine is still unclear. Heterogeneity within human CD4? Th17

cells can be appreciated following stimulation of naı̈ve CD4? T cells

with C. albicans or S. aureus, in which IFNc and IL-10, respectively,

have been found to be co-expressed with classic Th17 associated

cytokines
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of the in vitro studies, IL-6-deficient mice show increased

numbers of Treg cells in the periphery [41, 46]. Moreover,

RORct and Foxp3, the lineage-specific transcription factors

for Th17 and Treg cells, respectively, physically interact

and antagonize each other’s functions [21], providing a

molecular mechanism for the reciprocal relationship

between the two CD4? subsets.

The role of TGFb in Th17 cell generation, however, has

recently been challenged. O’Shea and colleagues demon-

strated that IL-17? T cells can be generated from naive

CD4? T cells with the combination of IL-6, IL-1b, and IL-

23, though significantly fewer IL-17? cells are generated

in this setting compared to the conventional IL-6 plus

TGFb condition [50]. Moreover, these TGFb-independent

Th17 cells, ‘‘Th17(23) cells’’, show a different transcrip-

tional profile compared to TGFb-dependent Th17 cells

‘‘Th17(b) cells’’. Th17(23) cells have more a ‘‘Th1-like’’

profile characterized by IFNc and T-bet expression and

demonstrate more pathogenicity in a transfer model of

EAE compared to Th17(b) cells. How can this be recon-

ciled with previous studies highlighting the indispensable

role of TGFb in Th17 cell differentiation? Since TGFb is

ubiquitously expressed, it is challenging to create an in

vivo condition where Th17 cells are generated in the

complete absence of TGFb. In vitro, TGFb is produced by

activated T cells, and Th17 cells themselves appear to

provide the TGFb required for their own generation [51].

Therefore, instead of a strict TGFb-dependent versus

-independent mechanism, perhaps it is the amount of TGFb
signaling received by naive CD4? T cells that shapes the

heterogeneity within the Th17 cell population. In fact, it

has been shown that low concentrations of TGFb promote

the Th17 cell program, while high concentrations of TGFb
inhibit IL-23R expression and RORct activity through

induction of Foxp3 [21]. While understanding the defini-

tive role of TGFb requires further studies, it is clear that

there is considerable heterogeneity within the Th17 cell

lineage and that TGFb likely serves as an important con-

tributing factor.

IL-1b is a proinflammatory cytokine that belongs to the

IL-1 superfamily. While initial in vitro studies suggested an

accessory role for IL-1b in Th17 cell generation [40], mice

lacking IL-1R1 were shown to be resistant to EAE, with

severe defects in IL-17? T cell generation in vivo [52].

Later it was demonstrated that the IL-1R1 is highly

expressed on Th17 cells, and IL-1 signaling in T cells, in

fact, is required for Th17 cell development in EAE [53].

The addition of IL-1 (both IL-1b and IL-1a) to the classical

IL-6 plus TGFb combination significantly enhances Th17

cell generation in vitro, and IL-1 regulates the expression of

RORct and IFN regulatory factor 4 (IRF4)—an additional

regulator of IL-17 gene transcription—during this process

[53]. A more recent study further emphasized the role of IL-

1b in intestinal Th17 cell development at steady state. IL-

1R1-deficient mice have greatly reduced numbers of Th17

cells in the intestinal LP, and in vivo administration of IL-

1b induces the generation of intestinal LP Th17 cells in

germ-free mice, which are normally devoid of Th17 cells at

this site [54]. Collectively, these studies highlight the less

appreciated role of IL-1b in murine Th17 cells.

While IL-23 is not required for Th17 cell development

at the initial stages, it is essential for the full and sustained

differentiation of the lineage. Specifically, developing

Th17 cells from IL-23R-deficient mice fail to undergo

normal effector cell differentiation in vivo, as assessed by

their altered CD27 and IL-7Ra expression, and they have

defective cell expansion [55]. Importantly, IFNc responses

are not inhibited in the absence of IL-23 signaling. With

the emerging concept of heterogeneity within the Th17

lineage, such as Th17(23) versus Th17(b) cells discussed

above, IL-23 might be a crucial factor promoting the more

‘‘pathogenic’’ subpopulations of the Th17 cells.

Cytokine requirements for Th17 cell differentiation

in humans

The cytokine requirements for human Th17 cell develop-

ment have been a point of controversy. A number of studies

initially claimed that human Th17 cells are induced effi-

ciently by the combination of IL-23, IL-1b, and IL-6, and

do not require TGFb [18, 19, 56, 57]. These findings

suggested an intriguing discrepancy between mice and

human Th17 cell biology. However, based on the method

by which naive cells were purified and the conditions under

which these cells were cultured, cellular and serum sources

of TGFb could not be ruled out. When these studies were

revisited in 2008, three independent groups demonstrated

that TGFb is necessary for human Th17 cell differentiation

[58–60]. Using stringent purification methods for the iso-

lation of naive CD4? T cells from umbilical cord blood

[59] and serum-free media [58] or carefully selected serum

lacking TGFb [59], these studies showed that TGFb is in

fact required for human Th17 cell differentiation in com-

bination with other inflammatory cytokines (Fig. 2).

Controversy over how human Th17 cells develop is not

completely settled, though, as disagreement surrounding

the relative roles of IL-6, IL-1b, and IL-23 remains, and

future studies are required to understand the root of this

discrepancy. Nonetheless, emerging data suggest that

mouse and human Th17 cells are more alike than previ-

ously thought and that studies in one system will aid the

other to deepen our understanding of the Th17 cell lineage.

As with murine Th17 cells, heterogeneity exists within

human Th17 cells. Recently, in an in vitro naive T cell

priming system using intact microbes and monocytes as

antigen presenting cells (APCs), Candida albicans-specific
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Th17 cells were found to co-produce IL-17 and IFNc and

express T-bet and RORct. In contrast, Staphylococcus

aureus-specific Th17 cells did not produce IFNc nor

express T-bet but were capable of producing IL-10 upon

restimulation (Fig. 2) [61].

Cytokine requirements for innate IL-17-producing T cells

The importance of TGFb and IL-6 in nTh17 cell devel-

opment has been demonstrated [23]. In this aspect, nTh17

cells appear to share similar developmental requirements as

conventional Th17 cells although the cellular source of

those cytokines within the thymic environment has yet to

be determined. However, the role of IL-1b and IL-23 in

nTh17 cell generation has not been studied. Interestingly,

requirements for IL-17? iNKT and cd T cell development

appear quite distinct. Examination of IL-6-deficient mice

revealed that these two IL-17-producing T cell populations

develop independently of IL-6 and do not require IL-6

stimulation to produce IL-17 [62–64]. This finding is in

contrast to the two TCRab? Th17 cell types and suggests

that iNKT and cd T cells might serve as an alternative

source of IL-17 when IL-6 is not present in the milieu.

Although IL-6 is dispensable, TGFb plays an essential

role in the development of IL-17? iNKT and cd T cells. In

TGFb-deficient mice, IL-17? cd T cells are greatly reduced

in the thymus and completely absent in the periphery, while

the overall cd T cell development remains intact [65]. This

suggests that TGFb is crucial for the development and

maintenance of IL-17? cd T cells. A recent study using

mice either deficient for TGFb or expressing a constitu-

tively active form of TGFbR on T cells also demonstrated

the need for TGFb/Smad4 signaling in IL-17? iNKT cell

development and IL-17 production from this subset [66].

Since both IL-17? iNKT and cd T cells develop indepen-

dently of IL-6, the question arises whether TGFb alone is

sufficient to induce RORct expression in these cells and, if

so, what the mechanism may be.

Alternatively, a common characteristic of IL-17? iNKT

and cd T cells is the constitutive expression of IL-23R and

IL-1R1 [26, 63, 64]. Thus, constitutive IL-23R/IL-1R1

expression on innate-like T cells may contribute to the IL-

6-independent nature of IL-17 production observed by

these cell types. In vitro stimulation of cd T cells with IL-

23 and IL-1b, in the absence of antigen, induces rapid IL-

17 production [26, 27], and only 4 h after injection of IL-

23 and IL-1b into the foot pad of mice, cd T cells are

stimulated to produce IL-17 [27]. iNKT cells also produce

IL-17 after ex vivo stimulation with IL-23 alone [63]. In

terms of development, studies using IL-23p19-deficient

mice demonstrated that IL-23 is dispensable for the

development of IL-17? cd T cells [65]. However, whether

IL-23 and/or IL-1b are truly required for the development

of IL-17? iNKT cells (and IL-1b for cd T cells) has not

been determined.

T cell receptor (TCR) signal

The strength of TCR signaling, determined by the avidity

between TCRs and peptide:MHC complexes on APCs, is an

important determinant in the development of various T cell

subsets. Indeed, within the CD4? Th subsets, TCR signal

strength is known to be an important factor in Th1 versus

Th2 cell differentiation [67]; yet, how TCR signals control

Th17 cell differentiation is incompletely understood. Sev-

eral reports show that CD4? T cells from mutant mice with

dampened TCR signaling exhibit defective Th17 cell dif-

ferentiation. SH2 domain-containing leukocyte protein of

76 kDa (SLP-76) is a key adaptor protein in the TCR sig-

naling pathway [68]. SLP-76 Y145F mice, where the

N-terminal tyrosine 145 residue is mutated to phenylalanine

thereby creating a hypomorphic TCR signaling mutant,

have defective Th17 cell differentiation both in vitro and in

vivo in the intestinal LP [69]. In addition, mice lacking

inducible T cell kinase (Itk), a Tec family tyrosine kinase

required for TCR-induced PLCc1 activation and a binding

partner of SLP-76 at the Y145 reside, also exhibit decreased

IL-17 production [70]. Altering lipid rafts in CD4? T cells

via deleting Raftlin [71] or lowering glycosphingolipid

levels [72] attenuates TCR signaling and results in defective

Th17 cell differentiation and reduced severity of EAE.

Moreover, IL-17 can be induced in vitro under Treg skewing

conditions (TGFb and IL-2) if in the presence of high TCR

stimuli [73]. Together, these studies suggest that weak TCR

signal strength is insufficient for Th17 cell generation.

However, weak TCR stimulation was shown to favor Th17

cell differentiation of human CD4? T cells stimulated with

low versus high numbers of anti-CD3/anti-CD28 coated

beads or antigen-pulsed dendritic cells (DCs) [74].

The role of TCR signal strength in nTh17 cell devel-

opment is also unclear. nTh17 cells are greatly enriched in

double transgenic mice where T cells bearing a transgenic

TCR develop in the presence of their ubiquitously

expressed cognate self-antigen [23]. However, SLP-76

Y145F mice, with attenuated TCR signaling in thymocytes,

also show enhanced nTh17 cell development [24]. These

studies seem to conflict with each other. However, the

apparent differences may be explained by alterations in the

sensitivity of Y145F thymocytes to both positive and

negative selection. More definitive studies are required to

determine the relative TCR signal strength for optimal

nTh17 cell development. To this end, it will be interesting

to dissect the peptide requirement of nTh17 cells compared

to that of nTreg cells, as their peripheral counterparts share

an antagonistic developmental relationship. While strong

TCR signals are often thought to drive cd T cell
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development versus ab T cell commitment, how signals

through the TCR influence the generation of different cd T

cell subsets is not fully known due in part to our incomplete

knowledge surrounding the ligand requirements for cd T

cell development. Despite this limitation, recent studies

demonstrated that IL-17? cd T cells develop in the absence

of antigen encounter during their development in the thy-

mus [75]. These data suggest that a lack of TCR

engagement supports the IL-17? subset. However, selec-

tion of these cells may be due to ligand-independent

signaling, for example through TCR oligomerization or

TCRc/TCRd pairing, for which ‘‘signal strength’’ has not

been fully defined [75–77]. The strength of TCR signal for

IL-17? iNKT, in comparison to their non-IL-17-producing

subsets, has not been studied. Clearly, further work is

needed to understand how TCR signaling influences IL-

17? T cell subset development and discoveries in this area

will provide valuable insights into how lineage choice of

these IL-17? T cells is controlled during development.

Transcription factors

Retinoid orphan receptors (RORs)

RORs are orphan nuclear receptors that belong to the ret-

inoid receptor family. There are three members of the

family, RORa, RORb, and RORc, each encoded by a dif-

ferent gene; a splice variant of RORc is expressed

exclusively in lymphoid cells and termed RORct. Every Th

cell subset has a key transcription factor that specifies most

of the phenotypic and genotypic characteristics of the

subset and is usually referred to as a ‘‘master regulator’’.

RORct serves as the master regulator for Th17 cells and is

selectively expressed in Th17 cells generated in vitro or in

vivo in the intestinal LP, a physiological site enriched with

this Th subset. RORct is both necessary and sufficient for

Th17 cell development, as RORct-deficient CD4? T cells

show impaired Th17 cell differentiation in vitro and in vivo

and retroviral transduction of RORct into naive CD4? T

cells induces IL-17 production [14]. Furthermore, chro-

matin immunoprecipitation (ChIP) analysis revealed that

RORct drives IL-17A transcription by directly binding to

the IL-17A promoter [78]. However, RORct-deficient mice

are not completely devoid of Th17 cells. Dong and col-

leagues demonstrated that RORa is also preferentially

expressed in Th17 cells and is required for optimal IL-17

production in these cells. While RORa deficiency results in

a relatively mild defect in Th17 cell development com-

pared to RORct deficiency, CD4? T cells from mice

deficient of both RORa and RORct show complete abro-

gation of Th17 cell polarization in vitro, and RAG1-/-

chimeric mice reconstituted with RORa-/-RORct-/-

double-deficient stem cells have no Th17 cells in the

intestinal LP and are completely protected from EAE [44].

As in mice, RORct is both necessary and sufficient to

induce human Th17 cells in experiments using human

umbilical cord blood. In addition, RORa also promotes IL-

17 production in human Th17 cells [58].

nTh17 cells also have selectively high expression levels

of RORct compared to their CD4 single-positive (SP)

thymocyte counterparts [24]. During thymocyte develop-

ment, RORct serves as a survival factor for CD4? CD8?

double-positive (DP) thymocytes [79]. As cells undergo

selection and mature into either CD8 or CD4 SP thymo-

cytes, RORct expression is repressed. Further studies are

required to understand how the expression of RORct is

maintained (or upregulated) specifically in nTh17 cells

compared to other maturing CD4SP thymocytes. The

dependency of nTh17 cells on IL-6 and TGFb suggests that

mechanisms regulating RORct expression in nTh17 cells

may at least partially overlap with those regulating con-

ventional Th17 cells.

Both mouse and human IL-17? cd T cells show high

expression of RORct [29, 30]. RORct appears to be

required for their development, as RORct-deficient mice

lack IL-17? cd T cells [14]. IL-17? iNKT cells constitu-

tively express RORct (both mouse [63, 80] and human

[64]) and require RORct for their development as RORct-

iNKT cells cannot be induced to produce IL-17 following a

FTOC-like culture with Ja18-/- thymocytes, as feeder

cells, in the presence of IL-7 [39]. While IL-6-dependent

STAT3 activation is considered to be crucial for RORct

expression in Th17 cells, both IL-17? cd T and iNKT cells

develop independently of IL-6 (reviewed above), thereby

distinguishing them from conventional Th17 and nTh17

cells. What drives RORct expression in these cells is cur-

rently unknown.

Aryl hydrocarbon receptor (AHR)

AHR is a ligand-activated transcription factor belonging to

the basic helix-loop-helix (bHLH)-Per-Arnt-Sim homology

domain (PAS) family of transcription factors. The AHR

pathway is evolutionarily conserved and is activated fol-

lowing detection of naturally occurring or environmental

ligands including the well-known toxin, dioxin [81].

Interest in the role of AHR in the immune system was

heightened recently, as three groups independently showed

that AHR is selectively expressed on Th17 cells (both

mouse and human) [82–84]. Activation of AHR by the

endogenous ligand b-formylindolo[3,2-b]carbazole (FICZ),

a tryptophan-derived photoproduct, promotes IL-17, IL-

17F, and IL-22 expression in Th17 cells in vitro and

increased the severity of EAE in vivo [82, 83]. Moreover,

the differential presence of natural AHR agonists between

commercial culture media was shown to contribute to the
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variability of in vitro Th17 cell polarization efficiencies

observed among independent laboratories [85]. However,

AHR is not necessary or sufficient for Th17 cell differen-

tiation, since AHR-deficient CD4? T cells cultured under

in vitro Th17-promoting conditions show intact expression

of RORct, IL-17A, IL-17F, and retroviral transduction of

AHR into CD4? T cells under neutral, Th1, Th2, or Treg

polarizing conditions does not induce IL-17 [82]. However,

AHR-deficient Th17 cells do not produce IL-22, indicating

a specific requirement of AHR in the induction of IL-22

[82]. Interestingly, not all AHR ligands promote Th17 cell-

mediated immune responses; in contrast to FICZ, AHR

activation by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)

induces Treg cell differentiation, resulting in protection

against EAE in mice [83]. This ligand-specific regulation

of Th17 versus Treg cell differentiation makes AHR a

potentially attractive therapeutic target.

IL-17? cd T cells also express AHR and respond to

FICZ-mediated AHR activation [26]. Mice immunized

with heat-killed Mycobacterium tuberculosis (Mtb) and

FICZ show increased numbers of IL-17? cd T cells with

even greater enhancement in the number of IL-17? IL-

22? double-producing cd T cells compared to Mtb alone

[26]. Similar to Th17 cells, AHR-deficient mice have intact

numbers of IL-17? cd T cells, but those cells fail to pro-

duce IL-22. It is currently unknown whether nTh17 cells

express AHR. One report showed that human iNKT cells

(either from peripheral blood or cord blood) expanded with

a-GalCer and IL-2 in the presence of TGFb, IL-1b, and IL-

23 upregulate AHR expression. Interestingly, FICZ-

induced AHR activation in these iNKT cells suppresses IL-

17 while increasing IL-22 production [80], indicating that

the same AHR ligand can have opposing effects on Th17-

associated cytokine production. Whether AHR plays a role

in murine IL-17? NKT cells is unknown.

It remains unclear how AHR promotes Th17 cell

responses and IL-22 induction in Th17 cells. AHR was

shown to co-immunoprecipitate with STAT1 and STAT5,

and this interaction has been suggested to suppress STAT1

and STAT5 signaling to negatively regulate Th17 cell

development [84]. The expression of AHR by most IL-17-

producing T cells might be an evolutionarily conserved

phenomenon linked to their prominent roles in host defense

at barrier sites with proximity to the environment.

Nuclear factor-jB (NF-jB)

NF-jB is an inducible transcription factor playing an

essential role in controlling both innate and adaptive

immunity. The mammalian NF-jB family consists of five

members: RelA (p65), RelB, c-Rel, NK-jB1 (p50:p105),

and NK-jB2 (p52:p100) [86]. Several NF-jB family

members play critical roles in Th17 cell differentiation,

including c-Rel. Mice lacking c-Rel show defective Th17

cell development in vitro and in vivo and are resistant to

EAE [87]. ChIP analysis revealed that c-Rel binds to the

RORct promoter region in Th17 cells, thereby directly

inducing the Th17 cell program [87, 88]. While data

regarding the dispensable role of RelB in Th17 cells are

consistent, the role of RelA is controversial. While one

study showed defective in vitro Th17 cell differentiation of

RelA-deficient CD4? T cells from chimeric mice gener-

ated with RelA-/- fetal liver cells [88], another study

demonstrated intact Th17 cell polarization of RelA-defi-

cient CD4? T cells from Lck-Cre RelAfl/fl mice [89]. This

discrepancy is potentially due to the difference in timing of

RelA deletion during development, and further work is

required to determine the role of RelA in Th17 cells.

In contrast to conventional Th17 cells, mice deficient of

RelA or RelB have drastically reduced numbers of nTh17

cells, indicating a role for these two NF-jB family mem-

bers in nTh17 cell development [89]. These mice also show

defective development of IL-17? cd T cells. Experiments

using mice which lack RelA or RelB in both cd and DP

thymocytes (Lck-Cre) or only in DP thymocytes (CD4-Cre)

alone revealed that RelA controls IL-17? cd T cell

development via a cell-extrinsic mechanism by regulating

LTbR ligand expression on accessory thymocytes, while

RelB has an intrinsic role in the development of IL-17? cd
T cells regulating RORct and RORa expression [89].

Global disruption of the NF-jB pathway results in defec-

tive iNKT cell development, and c-Rel, RelA, and NF-jB1

each have differential roles in distinct states of iNKT cell

development [90]. However, mice with individual deletion

of c-Rel, RelA, or NF-jB1 all have intact IL-17? iNKT

cell development [91]. It is possible that these factors play

redundant roles in the development of IL-17? iNKT cells,

and further comprehensive studies are needed to reveal the

role of NK-jB in these cells.

Given the central role of NF-jB in the immune system,

especially in inflammation, it is not surprising that this

transcription factor regulates all IL-17? T cell types.

Individual NF-jB family members appear to play differ-

ential roles in distinct IL-17? T cell populations. Future

studies revealing mechanistic details on how each NF-jB

transcription factor mediates this function and interaction

with other pathways will provide a global picture of how

NF-jB fine-tunes the IL-17 axis of the immune system.

In vivo function of IL-171 T cells

IL-17? T cells in infection and host defense

Early studies demonstrated that IL-17 is a potent inducer of

inflammatory cytokines [IL-1, IL-6, IL-8, tumor necrosis
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factor a (TNFa), granulocyte colony-stimulating factor (G-

CSF), granulocyte–macrophage (GM)-CSF)], chemokines

(CXCL1, CXCL5, CXCL8, CXCL10, CCL2, CCL7),

matrix metalloproteinases (MMP1, MMP3, MMP13), and

recruits neutrophils and monocytes to the site of inflam-

mation [92, 93]. Thus, as would be predicted, IL-17-

deficient mice are highly susceptible to bacterial and fungal

infections (Table 2). This is true not only in animal model

studies as humans with mutations leading to defects in the

IL-17-axis are impaired in their ability to mount effective

immune responses. Job’s syndrome (or hyper-IgE syn-

drome) is a rare immune disorder characterized by

recurrent pulmonary infections, pneumatoceles, staphylo-

coccal abscesses, mucocutaneous candidiasis, eczema, and

abnormalities of the bone [94]. Dominant-negative muta-

tions in STAT3 have been characterized as the underlying

cause of this disease [95], and in accordance with the role

of STAT3 in IL-17 induction, these patients lack IL-17-

producing T cells. Furthermore, naı̈ve T cells from these

patients fail to differentiate into Th17 cells in vitro [96].

More recently, genetic deficiencies in IL-17F or the IL-17

receptor A have been found in patients with chronic

mucocutaneous candidiasis disease (CMCD), a disorder

characterized by recurrent and/or persistent C. albicans

infection in the skin and mucosal areas [97]. In addition,

thymoma or autoimmune polyendocrinopathy candidiasis

ectodermal dystrophy (APECED) patients with CMCD

were found to have neutralizing autoantibodies against IL-

17 that correlated with the infections [98]. While these

reports demonstrate the importance of IL-17 in bacterial

and fungal infections, the precise cellular source of IL-17

in each infection is unclear. This section reviews the spe-

cific roles of IL-17-producing T cells (based on studies

using mouse models) in host defense at various mucosal

and barrier sites (Table 2).

Lung

In the lung, IL-17 is induced in a time- and dose-dependent

manner in a number of infections, including Klebsiella

pneumoniae [99]. Administration of IL-17 to mice results

in more neutrophils in the bronchoalveolar lavage fluid

(BALF) and enhances the clearance of bacteria following

intranasal K. pneumoniae challenge [99]. Conversely,

Table 2 Role of IL-17-producing T cell populations in host defense

Site T cell type Cytokine Experimental system References

Intestine CD4? abTCR? IL-17, IL-17F IL-17-/-, IL-17F-/-, and IL-17-/- IL-17F-/- mice are

less efficient in clearing Citrobacter rodentium infection

[104]

CD4? abTCR? IL-17 Nod1- and Nod2-dependent ‘‘innate’’ Th17 cells contribute to the

early phase (4–7 days post infection) of Citrobacter rodentium
infection

[110]

cd, CD4? abTCR? IL-17 cd T cells are the major source of IL-17 in Salmonella Typhimutium
infection; IL-23p19-/- mice have reduced level of IL-17 and

neutrophil recruitment into the cecal mucosa during Salmonella
Typhimutium infection

[110, 175]

CD4? abTCR? IL-17 Administration of anti-IL-17 antibody results in impaired vaccine-

induced clearance of Helicobacter pylori infection

[105]

Skin cd IL-17 Mice deficient in cd T cells show defects in IL-17 production and

impaired clearance in Staphylococcus aureus infection

[112]

? IL-17 IL-17R-/- mice are more susceptible to Candida albicans infection [176]

CD4? abTCR?, cd IL-17 Both CD4? and cd T cells produce IL-17 during Candida albicans
infection

[20]

Lung ? IL-17 IL-17-/- and IL-23p19-/- mice are greatly susceptible to

K. pneumoniae; recombinant IL-17 enhances bacterial clearance

in K. pneumoniae infection

[99, 101, 177]

CD4? abTCR? IL-17 IL-17 and IL-17F from CD4? T cells contribute to bacterial clearance

in Mycoplasma pneumoniae infection

[178]

CD4? abTCR? IL-17,

IL-17F

Ag-specific IL-17? CD4? T cells rapidly respond to infection after

Mycobacterium tuberculosis vaccination

[103]

cd IL-17 cd T cells are the major source of IL-17 in Mycobacterium
tuberculosis infection

[102]

? IL-17 Ab-mediate IL-17 depletion or IL-17R-deficiency abrogates vaccine-

induced protection against Pseudomonas aeruginosa infection

[179]

CD4? abTCR?, cd IL-17 cd T cells are the major source of IL-17 in Mycobacterium bovis
bacille Calmette-Guérin (BCG) infection

[180]

Diversity of IL-17? T cells 2279

123



IL-17R-deficient mice show increased bacteremia and

mortality following K. pneumoniae infection [100, 101].

Similarly, mice deficient in IL-23p19 showed reduced

survival after infection with this bacteria species that was

associated with decreased levels of IL-17 and IL-17-

induced cytokines and chemokines [101]. Administration

of recombinant IL-17 to IL-23p19-deficient mice rescues

these defects [101]. While the exact cellular origin of IL-17

in K. pneumoniae infection is unclear, given that IL-17 is

detectable in BALF as early as 12 h following infection

[99], it is likely to be produced by innate cells. In M.

tuberculosis infection, cd T cells have been shown as a

major source of IL-17 in the lung [102]. However, CD4?

Th17 cells and other non-cd T cells also produce IL-17

during M. tuberculosis infection, and the functional con-

tribution of each subset has not been dissected fully. In an

M. tuberculosis vaccination model, upon vaccination,

antigen-specific IL-17? CD4? T cells populated the lung

and rapidly responded to subsequent infections [103].

Intestine

In the gastrointestinal tract, IL-17 confers protection

against Citrobacter rodentium, Helicobacter pylori, and

Salmonella enterica serovar Typhimurium [104–106]. The

C. rodentium model has been valuable for investigating

how various IL-17-producing cell types contribute to pro-

tection against intestinal infection. Mice deficient in both

IL-17 and IL-17F (IL-17-/- IL-17F-/-) or either cyto-

kine (IL-17-/- or IL-17F-/-) show increased bacterial

burdens and disrupted intestinal pathology following C.

rodentium infection [92, 104]. In addition, mice lacking IL-

6 or IL-23 fail to control the infection and show enhanced

mortality [12, 15, 107]. C. rodentium induces an early

innate IL-17 response (in the colon and cecum) at 4–7 days

post-infection, followed by a robust adaptive IL-17

response at 10–14 days post-infection [108]. Th17 cells are

the major source of IL-17 in the later adaptive phase [104],

while lymphoid tissue-inducer (LTi)-like cells have been

shown to control the innate response following the infec-

tion [109]. Recently, an ‘‘innate’’ Th17 cell population,

which is dependent on nucleotide oligomerization domain

(Nod)-like receptors Nod1 and Nod2, in the colon has been

characterized to contribute to the early phase of C.

rodentium infection (4 days post-infection) [110]. Whether

and how these Th17 cells are different from the conven-

tional Th17 cells in the gut, which control the adaptive

response to C. rodentium infection, are unclear. While an

IL-17? cd T cell response is not observed during the

course of C. rodentium infection, in S. Typhimurium

infection, strong induction of IL-17 expression in cd T cells

is seen in the acute phase of the infection (1 day post-

infection). This observation demonstrates that although

Th17 cells are the dominant IL-17-producing cell type in

the gut, innate IL-17? T cells are likely to play important

roles in more acute and earlier phases of host defense

against enteric pathogens.

Skin

IL-17? cd T and iNKT cells are readily observed in the

skin of naive (uninfected) mice [20, 64, 111]. Following

cutaneous S. aureus infection, mice deficient in cd T but

not ab T cells show defects in IL-17 production after intra-

dermal challenge with S. aureus, substantially larger skin

lesions with higher bacterial burden, and impaired neu-

trophil recruitment [112]. Administration of recombinant

IL-17 to cd T cell-deficient mice rescued the impaired

immune response [112], demonstrating that IL-17? cd T

cells play a critical role in host defense against S. aureus.

While there are no studies yet demonstrating iNKT cells

participating in antimicrobial responses in the skin, the

skin-resident IL-17? iNKT cells expand and produce IL-

17 rapidly in a mitogen-induced injury model [64], sug-

gesting that these cells might contribute to innate responses

in cutaneous infection. In C. albicans infection, both Th17

and cd T cells upregulate IL-17 expression, where cd T

cells mediate the early response (day 3 post-infection)

followed by progressive involvement of Th17 cells (day 5

post-infection) [20]. It is still not known whether cd T cells

are the functionally dominant IL-17 producers critical for

clearance of C. albicans infection, as in S. aureus. Further

studies are required to better dissect the cellular origin of

IL-17 in host defense against various infections in the skin

as evidence from humans clearly demonstrate the crucial

role of IL-17 in cutaneous infections and the severe clinical

burden of the patients, especially in CMCD.

IL-17? T cells in autoimmunity and inflammatory

disorders

Conventional Th7 cells

IL-17 has garnered interest in part due to its association

with many autoimmune and inflammatory diseases and the

hope that, because of its presumed causal role in disease, it

may serve as an effective therapeutic target. As mentioned

above, intense experimental interest in IL-17 and Th17

cells quickly followed the discovery that IL-23, at the time

a newly described cytokine, was important for the patho-

genesis of EAE [5] and could promote Th17 responses [6].

IL-12 is composed of the cytokine subunits p35 and p40,

and the protection of p40-/- mice from EAE, for many

years, was attributed to defective IL-12 production and Th1

differentiation. The realization that p40 also pairs with p19

to form IL-23 led to a reevaluation of the role of IL-12 and
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IFNc in EAE, and studies revealed that lack of IL-12

(through p35 deficiency) does not protect against EAE

[113, 114]; rather, it is the lack of IL-23 (revealed through

utilization of p19-/- mice) that provides protection

against EAE [5]. In line with the role of other cytokines in

the differentiation and/or expansion of Th17 cells, IL-

1bR1-/- mice [52] and mice deficient for TGFb1 [51] in

activated T cells also have ameliorated EAE.

Despite these data, the role of IL-17 secreting CD4? T

cells in EAE is not without debate. Several investigators

have approached identifying the role of Th17 cells in EAE

through induction of disease in mice lacking IL-17 and by

adoptive transfer of Th17 versus Th1 cells; these studies

provide examples of the complex nature of cytokine

involvement in EAE. While transfer of myelin oligoden-

drocyte glycoprotein (MOG)-primed wild-type CD4? T

cells into mice induces EAE, transfer of similar cells from

IL-17-/- mice does not [115]. In contrast, mice deficient

in IL-17A or IL-17F are still susceptible to EAE, and this

susceptibility cannot be explained by redundancy within

the IL-17 family, as administration of anti-IL-17A blocking

antibodies in the context of IL-17F deficiency does not

significantly alter the disease course [115, 116]. However,

close evaluation of the disease kinetics in IL-17-deficient

mice revealed that in the absence of IL-17, disease onset is

delayed, and prolonged evaluation revealed that IL-

17A-/- mice display early amelioration of disease [115].

These data indicate that IL-17 and Th17 cells are indeed

pathogenic in EAE but are not required for disease

induction. The precise role of IL-17 and Th17 cells in the

course of EAE is still under investigation. Several studies

indicate that Th17 cells promote atypical EAE [117, 118]

characterized by high levels of IL-17 in the brain that

triggers inflammation and cellular infiltration at this site

[117]. This disease course is in contrast to mice receiving

in vitro generated Th1 cells that induce classic EAE

characterized by spinal cord inflammation [117]. A com-

bined pathogenic effect of Th17- and Th1-cytokines has

also been suggested, and several studies show that dual IL-

17- and IFNc-producing CD4? T cells are associated with

severe EAE [20, 50].

Initial queries into a potential role for IL-17 in MS

revealed elevated IL-17 message in mononuclear cells

from the blood and cerebrospinal fluid of MS patients

compared to controls, and these differences were aug-

mented during periods of active disease compared to

remission [119]. Additional studies have corroborated and

extended these findings to implicate CD4? as well as

CD8? T cells as sources of IL-17 in active MS lesions

[120]. As in EAE, there is also a role for IFNc-producing

CD4? T cells in MS [121], and their presence positively

correlates with disease severity. Moreover, treatment of

patients with IFNc exacerbates disease [122] and anti-IFNc

administration delays disease progression [123]. Similar to

studies in mice, whether the co-production of IL-17 and

IFNc leads to severe disease in MS patients is also being

investigated. To this end, IL-17/IFNc double-producing

CD4? cells can be readily seen in active lesions of MS

patients [124].

The finding that IL-23, not IL-12, was the major inducer

of EAE prompted reevaluation of the role of IL-12 and Th1

cells in other autoimmune diseases. In mouse models of

arthritis, IL-23 deficiency protects from organ-specific

inflammation and this protection correlates with decreased

IL-17 production from CD4? T cells [125]. Additionally,

blocking IL-17 alleviates disease in some murine models of

arthritis [126–129]. In the case of arthritis, the pathogenic

nature of IL-17 may be two-fold. In addition to promoting

infiltration of inflammatory cells, IL-17 stimulates differ-

entiation and activation of osteoclasts, which directly

mediate bone erosion [130, 131]. Consistent with elevated

levels of IL-17 in the synovium of rheumatoid arthritis

patients, trials with anti-IL-17 antibodies are being met

with success [132, 133].

As described above, IL-17 functions at barrier sites to

protect the host against infection. However, if not properly

regulated, IL-17 can instead play a pathological role pro-

moting autoimmunity and autoinflammation at these sites.

Psoriasis, a chronic skin disorder characterized by inflam-

mation and keratinocyte hyperproliferation, is thought to be

a consequence of dysregulated T cell responses. The

effective use of blocking antibodies targeting Th17 cells in

active psoriasis has rapidly focused the field’s attention on

the IL-23/IL-17 axis and its role in this disease. A mono-

clonal antibody specific for IL-12/IL-23p40 (ustekinumab)

was approved for the treatment of psoriasis in 2009. More

recent studies have focused on specific targeting of IL-17

and monoclonal antibodies against IL-17 (ixekizumab)

[134] or the IL-17 receptor (brodalumab) [135] have

demonstrated efficacy and safety for the treatment of pso-

riasis in phase 2 trials.

Crohn’s disease and ulcerative colitis (UC) are the two

major types of inflammatory bowel disease (IBD). While

the etiology of IBD is unknown, a number of studies show

that the inflamed intestine of patients with Crohn’s disease

or UC contains increased Th17 cells (and increased IL-17

RNA expression) compared to normal colonic mucosa

[136, 137]. Also, genome-wide association studies have

identified multiple single-nucleotide polymorphisms

(SNPs) in the IL-23R gene region with both Crohn’s dis-

ease and UC. In mouse studies, the role of Th17 cells in

intestinal inflammation has been demonstrated in a number

of different models. Administration of IL-17-neutralizing

antibodies results in attenuated intestinal inflammation in a

T cell transfer model of colitis [138], suggesting that IL-

17? T cells are necessary for colitis. A more recent study
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has demonstrated that Bacteroides fragilis, a human colo-

nic bacterium, can colonize mice and trigger colitis that is

dependent on Th17 cells in the colon [139].

In asthma, a classic Th2-mediated disease, a role for IL-

17 is emerging. In humans, several reports link elevated

IL-17 levels in serum and sputum with increased asthma

severity. Additionally, an IL-17F polymorphism resulting

in antagonism of IL-17 function appears to be protective

against asthma [140]. In murine models, IL-17 deficiency

renders mice resistant to allergic asthma as determined by

decreased granulocytic lung infiltration, Th2-cytokine

production, and IgE production [141]. Consistent with

these findings, adoptive transfer of allergen-primed Th17

cells followed by nasal allergen challenge results in lung

neutrophilia, mucus secretion, and airway hyperreactivity

[142, 143]. When administered with Th2 cells, Th17 cells

augment Th2 cell-induced eosinophilia in addition to

eliciting neutrophil infiltration, suggesting that IL-17 can

exacerbate the Th2 response [144]. Importantly, in this

adoptive transfer model, the Th17 cell-mediated arm of

asthma is not quelled by steroids, leading to the notion that

IL-17 may contribute to steroid-resistant asthma [142]. In

contrast to these findings, however, provision of exoge-

nous IL-17 during established asthma can lessen disease

symptoms via a mechanism leading to decreased Th2

cytokine and chemokine expression [145, 146]. Infection

with viruses or challenge with bacterial products that

evoke a Th17 response, either concurrently or directly

following asthma induction, can also alter the course of

this disease. In such a scenario, IL-17 drives development

of neutrophilic asthma and suppresses eosinophilic asthma

[147]. These data suggest administration of IL-17 may be

therapeutic for established asthma but that its presence

during asthma induction or sensitization augments the

disease.

Innate IL-17? T cells in autoimmunity

A growing number of reports illustrate the contribution of

IL-17 from innate-like T cells in Th17-mediated autoim-

mune and inflammatory diseases. These studies have

largely focused on cd T cells with the exception of one

report implicating nTh17 cells as an early source of IL-17

in asthma [148]. IL-17 from cd T cells have been impli-

cated in murine models of psoriasis, arthritis, EAE, and

colitis. Although IL-17? cd T cells are not required for

arthritis induction in mice, deletion of these cells alleviates

disease severity and incidence [149]. Among cd subtypes,

Vc4/Vd4 cells have been specifically implicated in colla-

gen-induced arthritis, EAE, and psoriasis, where deletion

of cd T cells is associated with decreased IL-17 production

and delayed and diminished disease [27, 150]. While the

precise role of cd T cells in these autoimmune diseases is

not completely understood, their localization within the

target tissues and effect on disease course suggests that IL-

17 from these cells may serve to amplify further IL-17

production [131, 151]. This hypothesis is consistent with

recent data demonstrating that IL-17 from cd T cells

facilitates CD4? Th17 differentiation in an adoptive

transfer model of colitis [152].

IL-17? T cells in cancer

The accumulating number of studies investigating the role

of IL-17 and Th17 cells in malignancy reflects both the

growing interest in IL-17 during immunosurveillance and

the controversy over its pro- or anti-tumor effects.

Inflammation is known to promote tumorigenesis, tumor

growth, and metastasis [153], and early studies showed that

IL-17 produced by CD4? T cells induces angiogenesis and

tumor size [154]. The pro-tumor effects of Th17 cells

heavily rely on induction of angiogenesis, recruitment of

other inflammatory cells, and activating oncogenic tran-

scription factors. Recent studies demonstrated that IL-17

produced by Th17 cells promotes tumor growth in mela-

noma and bladder carcinoma models in a STAT3-

dependent manner [155] as well as tumorigenesis in

enterotoxigenic Bacteroides fragilis-induced inflammatory

colon cancer [139]. In contrast, other studies suggest that

Th17 cells mediate anti-tumor effects. In the setting of

established murine B16 tumors, injection of in vitro–gen-

erated tumor-specific Th17 cells resulted in tumor

regression and increased survival compared to IFNc-pro-

ducing Th1 cells [156]. Interestingly, protection in this

model was dependent upon IFNc, but not IL-17, from the

Th17 cells and was associated with increased persistence of

Th17 over Th1 cells within the tumors. Additional studies

have manipulated the tumor microenvironment to favor the

generation of Th17 versus Treg cells [157–159]. In these

studies, slowed tumor growth was associated with

increased IL-17? cells, decreased Treg cell numbers and in

some cases, increased numbers of tumor infiltrating CD8?

T cells. While these data point to a positive correlation of

Th17 cells with anti-tumor immunity, the mechanism of

protection in these models remains unclear. The role of

Th17 cells in the tumor microenvironment may depend

more on their requirements for survival, cytokine profile,

plasticity and/or their developmental relationship with

other T cell populations than their ability to secrete IL-17.

The role of IL-17? cd T cells in tumor biology is also

highly context-dependent. Following chemotherapy, IL-17-

producing cd T cells have been implicated in directing the

accumulation of cytotoxic CD8? T cells at tumor sites and

in mediating the ensuing anti-tumor immune response

[160]. IL-17? cd T cells have also been shown to be

important in Mycobacterium bovis BCG adjuvant therapy
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used for the treatment of bladder cancers. In a murine

model for this treatment, it was suggested that cd T cells

were the IL-17 source required for neutrophil recruitment

to the bladder, an important parameter for successful BCG

treatment [161]. Conversely, IL-17 from cd T cells, as well

as other T cell sources have been suggested to drive

angiogenesis and thus support tumor growth [162]. It

should be noted that not all sources of IL-17 and/or its

isoforms regulate angiogenesis in the same way as illus-

trated by the findings that IL-17F from non-T cell sources

appears to inhibit this process [163, 164].

Human studies correlating the presence of IL-17-pro-

ducing cells with disease outcomes have also given

conflicting conclusions. Some studies have shown that IL-

17? T cells correlate with slower tumor growth suggesting

they play a protective role while other studies find the

reverse relationship or no association at all [165]. It is

likely that the complexity reflected in these studies lies in

the tumor type, location, and underlying inflammatory state

of the tumor microenvironment. These issues have been

more fully addressed in recent reviews [165, 166].

Concluding remarks

The IL-17 field has experienced a rapid expansion over the

past 7 years. In addition to advancing our understanding on

the cytokine itself, the findings have inspired insights to the

broader concepts in the field of immunology, such as

lineage identity and commitment. While terminally dif-

ferentiated effector CD4? T cells (Th1 and Th2 cells) were

thought to represent a stable and irreversible stage of

lineage commitment, Th17 cells do not seem to obey that

paradigm. In vitro generated Th17 cells can become IFNc?

Th1-like or IL-4? Th2-like cells when further polarized

with IL-12 or IL-4, respectively [167]. This plasticity can

also be seen in vivo using IL-17 fate-mapping reporter

mice where Th17 cells became IFNc? T-bet? ‘‘ex-Th17’’

cells during chronic inflammation [20]. Do innate IL-17?

T cells also possess a certain degree of plasticity, or are

they at a more stable stage of terminal differentiation?

What is the developmental and/or functional relationship

between adaptive and innate IL-17? T cells? With these

remaining questions and increasing interest in IL-17 in

clinical settings, future studies investigating the differen-

tiation, activation, and maintenance of the diverse

population of IL-17? T cells will not only provide better

understanding of the immune system but also improve the

ongoing therapeutic targeting of the IL-17 axis in immune-

mediated diseases.
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