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Summary
Dendritic cell (DC) vaccination is emerging as a promising therapeutic option for malignant
glioma patients. However, the optimal antigen formulation for loading these cells has yet to be
established. The objective of this study was to compare the safety, feasibility, and immune
responses of malignant glioma patients on two different DC vaccination protocols. 28 patients
were treated with autologous tumor lysate (ATL)-pulsed DC vaccination, while 6 patients were
treated with glioma-associated antigen (GAA) peptide-pulsed DCs. Safety, toxicity, feasibility and
correlative immune monitoring assay results were compared between patients on each trial. Due to
HLA subtype restrictions on the GAA-DC trial, 6/15 screened patients were eligible for treatment,
while 28/32 patients passed eligibility screening for the ATL-DC trial. Elevated frequencies of
activated natural killer (NK) cells were observed in the peripheral blood from GAA-DC patients
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compared with the ATL-DC patients. In addition, a significant correlation was observed between
decreased regulatory T lymphocyte (Treg) ratios (post/pre vaccination) and overall survival (OS;
p=0.004) in patients on both trials. In fact, Treg ratios were independently prognostic for OS in
these patients, while tumor pathology was not in multivariate analyses. In conclusion, these results
suggest that ATL-DC vaccination is associated with wider patient eligibility compared with GAA-
DC vaccination. Decreased post/pre-vaccination Treg ratios and decreased frequencies of
activated NK cells were associated with prolonged survival in patients from both trials, suggesting
that these lymphocyte subsets may be relevant immune monitoring endpoints for immunotherapy
protocols in malignant glioma patients.
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Introduction
Despite advances in the understanding and treatment of malignant glioma, these primary
brain tumors still have a dismal prognosis and few long-term survivors1,2. Even with
aggressive therapy including surgery, radiation, and chemotherapy, survival is only
incrementally improved with a 5-year survival rate of 3%2. This poor prognosis for our
patients underscores the need to evaluate and develop novel therapies and adjust our
treatment paradigms based on our evolving understanding of brain tumor biology and
immunology.

Active immunotherapy is an emerging strategy that has the theoretical advantage of a high
degree of tumor-specific targeting, while sparing normal brain structures3. We and others
have utilized dendritic cell (DC)-based vaccine therapies to immunologically target tumors
within the central nervous system (CNS). Although prior clinical trials utilizing dendritic
cell vaccination in brain tumor patients have demonstrated acceptable safety and toxicity
profiles, along with initial clinical promise 4-19, the optimal method for loading dendritic
cells with tumor-associated antigens, the ideal dose and regimen for administration, and the
selection of patients for which immunotherapy may be beneficial, has yet to be fully
elucidated.

In this study, we compared the safety, toxicity, and feasibility of two separate, concurrent
DC-based Phase I protocols: one utilizing autologous tumor lysate (ATL) loading of DCs,
and the other using DCs loaded with synthetic glioma-associated antigen (GAA) peptides.
We also evaluated immune responses, PFS, and OS in the 34 malignant glioma patients
enrolled in these two clinical trials. Our results suggest that ATL-pulsed DC vaccination
may induce a more heterogeneous and diverse anti-tumor immune response against
malignant glioma. The monitoring of post/pre-vaccination ratios of Treg cells and activated
NK cell populations may be relevant immune monitoring endpoints in these patients.

Materials and Methods
Patient eligibility

This study reports on 34 patients diagnosed with malignant glioma at our institution and
treated with either autologous tumor lysate-pulsed (UCLA IRB #03-04-053, FDA IND
#11053, clinical trial registration # NCT00068510; n=28) or glioma-associated antigen
(GAA) peptide-pulsed (UCLA IRB #06-01-052, FDA IND #12966, clinical trial registration
# NCT00612001; n=6) DC vaccination between 2003 and 2010. All patients provided
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written informed consent according to University of California Los Angeles (UCLA)
Internal Review Board guidelines prior to treatment. Basic patient inclusion/exclusion
criteria can be found at ClinicalTrials.gov for these studies (http://clinicaltrials.gov/).

Preparation of Autologous Dendritic Cells and pulsing with glioma antigen
Monocyte-derived DCs were established from adherent peripheral blood mononuclear cells
(PBMC) obtained via leukapheresis, as we have recently described 11,12. All ex vivo DC
preparations were performed in the UCLA-Jonsson Comprehensive Cancer Center GMP
facility under sterile and monitored conditions.

Treatment Schema and Vaccine Administration
Newly diagnosed glioblastoma patients underwent surgery and a standard course of external
beam radiotherapy (to 60 Gy) with concurrent temozolomide chemotherapy prior to DC
vaccination2. These patients were then given three biweekly DC vaccinations prior to
adjuvant temozolomide treatment. Recurrent malignant glioma patients had previous
radiation therapy and chemotherapy prior to presenting with tumor recurrence, so they
underwent surgical resection of their tumors followed by DC immunotherapy after they had
recovered from surgery and were tapered off peri-operative steroids. Eligible patients
initially received three (3) intradermal injections at biweekly intervals, and then booster
vaccinations every 3 months until the autologous vaccine ran out or until tumor recurrence,
whichever came first.

Collection of PBMC for immune monitoring and flow cytometric analysis of PBMC
Peripheral blood was drawn from subjects at several designated time points pre- and post-
DC vaccination (pre-tx, post 1st, 2nd, 3rd vaccination, 6 month follow-up). Antibody
cocktails were prepared according to manufacturer's specifications, and used as we have
recently published20. The lymphocyte subsets that were gated include: CD3+CD4+ helper T
cells, CD3+CD8+ cytotoxic T cells, CD3-CD16+ classical natural killer (NK) cells,
CD3+CD16+ NKT cells, CD3-CD19+ B cells, CD3+CD25+CD127low Treg cells.

Results
Patient and tumor characteristics

Patient and tumor data are provided in Table 1. The median age for the ATL-DC patients
was 49 years, while that of patients on the GAA-DC trial was 44. The age of patients on the
two trials was not significantly different (p=0.27). At the time of DC vaccination, the
median KPS score was 90 for the ATL-DC patients and 80 for the GAA-DC patients. This
difference in KPS scores was also not statistically significant (p=0.19).

Of the patients treated on the ATL-DC clinical trial (n=28), 23 were histologically classified
as glioblastoma (WHO Grade IV; 82.1%; 15 newly diagnosed and 8 recurrent), and 5 with
anaplastic glioma (WHO grade III; 17.9%). Of the patients treated on the GAA-DC clinical
trial (n=6), 4 were classified as glioblastoma (66%; 2 newly diagnosed and 2 recurrent) and
2 with anaplastic tumors (33%). 17% of tumors from the ATL-DC trial had evidence of
IDH1 mutations, while 50% of tumors from the GAA-DC trial were IDH1 mutated (Table
1). Mutant IDH1 alleles were almost exclusively found in tumors histologically
characterized as WHO Grade III in this series of patients, suggesting that the majority of
glioblastoma patients in these two vaccine trials were primary glioblastomas21.
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Safety and Feasibility
The incidence of adverse events (AE) related to DC vaccination was similar between the
two clinical trials. The frequency and severity of AE was also similar between the two
protocols, with predominantly NCI CTC grade I-II sequelae (CTCAE, v.4), directly or
probably related to the vaccination procedure. The most common grade I-II AE were flu-like
symptoms (headache, low-grade fever, nausea/vomiting, fatigue), injection site reactions,
lymphadenopathy, and rashes developing 24-48 hours after vaccination (Supplementary
Table 1). Grade III SAE were rare (i.e., seizures) and likely related to tumor progression.

Both clinical trials utilized a Phase 1, dose-escalation scheme with identical numbers of DC
for vaccination (1, 5, and 10 × 106 DC/injection). The ATL-DC trial utilized 7-day,
monocyte-derived DC, but without a dedicated maturation step 9,11,12. The GAA-DC trial
similarly used 7-day monocyte-derived DC, but added a maturational step for 24-48 hours to
upregulate MHC and co-stimulatory molecules, as previously demonstrated by other
investigators 22. A comparison of the typical flow cytometric profiles for DC produced for
the ATL and GAA DC clinical trials is shown in Supplementary Figure 1. We generated
adequate numbers of viable loaded DC for all dose cohorts, with all of the appropriate lot
release requirements, for 100% of patients on each clinical trial. In addition, there were no
differences in the time delay after surgical resection until the first DC vaccination between
patients on each clinical trial (p=0.75; Table 1). Thus, there were no feasibility and time
delay differences in our ability to produce clinical-grade DC and initiate vaccination
between the two clinical trials for this patient population.

Using our documentation of all eligible patients screened and enrolled, we compared the
percentage of patients eventually treated relative to the intent-to-treat population on these
two distinct DC-based protocols. On the ATL-DC trial, 28 out of 32 screened patients
received DC vaccination, resulting in a 12.5% screen failure rate. The GAA-DC trial
required an additional HLA typing requirement because the synthetic glioma-associated
antigen peptides utilized were restricted to HLA-A0201+ MHC haplotypes. On the GAA-
DC trial, we screened 15 patients and eventually treated only 6 patients, resulting in a 60%
screen failure rate. Since the only difference in eligibility criteria between these two clinical
trials was the HLA-A0201 requirement, at least twice as many of the intent-to-treat
population could be treated on our ATL-DC vaccination protocol compared to a more HLA-
restrictive immunotherapy trial.

Immune Monitoring
The source of tumor antigen used to load DC was the main distinction between these two
trials. The ATL-DC trial utilized autologous, patient-specific proteins derived from primary,
digested tumor cells after freeze-thaw cycles. The GAA-DC trial utilized synthetic peptide
antigens (TRP-2, gp100, her-2/neu, survivin) known to be expressed by gliomas 23,24. While
expression of these GAA was not an eligibility criterion for enrollment onto the GAA-DC
trial, post-hoc IHC staining confirmed that survivin was expressed uniformly by all tumor
samples, while her-2 expression was patchy and variable. Gp100 was not easily detectable
by IHC when compared with melanoma (Fig. 1), which is consistent with other recent
studies10. TRP-2 was only detectable at the mRNA level, and previously shown to be
variably expressed24.

Because different tumor antigen preparations were loaded onto DC for these two clinical
trials, a direct comparison of discrete tumor antigen-specific T lymphocyte responses was
not possible. Increased tetramer positive CD8+ T cells were observed in GAA-DC patients
(Supplementary Figure 2). However, as with other recent glioma-associated antigen
peptide-pulsed DC trials, no association was found between tumor antigen-specific T
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lymphocyte induction and survival10. Thus, we elected to compare lymphocyte subsets,
activation markers, and regulatory T cell (Treg) frequencies obtained from peripheral blood
lymphocytes post/pre DC vaccination.

Using flow cytometry, we stained PBL from patients pre- and post-DC vaccination using a
multi-color panel of antibodies designed to evaluate lymphocyte populations (T cells, B
cells, NK cells) and the expression of activation markers (CD69, CD25) on each sub-
population. No differences in the frequency of helper T cells (CD3+CD4+), cytotoxic T cells
(CD3+CD8+), regulatory T cells (Treg; CD3+CD4+CD25+CD127low), NK cells
(CD3-CD16+) or B cell populations (CD3-CD19+) were observed between PBL samples
from both clinical trials (Table 2). Interestingly, a significantly elevated population of
activated NK cells (CD3-CD16+CD25+) was observed in the samples from the GAA-DC
trial (Table 2, Fig. 2). No other differences in activated lymphocyte populations were
observed.

To account for the heterogeneity in PBL populations between patients, comparisons were
made between pre- and post-DC vaccination for each patient, in order to calculate fold
changes. We examined these fold changes in each lymphocyte subset and looked for
associations with overall survival in these patients. Using a Cox proportional hazards model
stratifying on each trial, we discovered a significant relationship between Treg cell fold
changes and survival in both the GAA-DC and ATL-DC trials (hazard ratio=7.19; 95% C.I.
(1.87, 27.73); Table 3). Based on this statistical assessment, every unit increase in the Treg
cell ratio is associated with an increased risk of death by 6.19 times. This association is
statistically significant (p=0.004). A non-significant trend (p=0.08) was also observed
between the activated NK cell ratio (post/pre DC vaccination) and overall survival (Table
3). These findings suggest that extended survival is observed in patients whose Treg and
activated NK cell frequencies significantly decreased after DC vaccination.

We then utilized univariate and multivariate stratified Cox models to examine the
association of various clinical and immune monitoring factors with overall survival. KPS,
tumor pathology, and the Treg cell ratio were all significantly correlated with survival for
each clinical trial (Table 3). When adjusted for each other in a multivariate model, tumor
pathology no longer was significant (p=0.485), while the Treg ratio was still borderline
significant (Table 4; p=0.057). These data suggest that the Treg ratio (post/pre-DC
vaccination) may be a prognostic biomarker for overall survival in glioblastoma patients that
received DC vaccination, even after controlling for tumor pathology.

Discussion
In this study, we compared the safety, feasibility, immune responses and survival of
malignant glioma patients treated with two distinct methods of dendritic cell vaccination.
One cohort of patients received autologous tumor lysate-pulsed DC vaccination, while the
other patient cohort received glioma-associated antigen peptide-pulsed DC vaccination.
There were no dose-limiting toxicities and no detectable differences in safety or toxicity
between the two trials. Due to the requirement for a particular HLA type (HLA-A0201), the
feasibility of treating patients with GAA peptide-pulsed DC vaccination was more limited
than tumor lysate-pulsed DC vaccination, as only 40% of the intent-to-treat population was
eligible for treatment on the GAA peptide DC vaccination regimen compared to 88% of
screened patients on the ATL-DC trial.

The ATL-DC trial utilized DC without a dedicated maturational step in vitro so that tumor
lysate proteins could be efficiently uptaken, processed, and presented; a process known to be
downregulated upon final maturation25. We included an in vitro cytokine maturation step
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(TNFα, IL-6, IL-1β, PGE2) for DC on the GAA-DC trial because previous data had
suggested that such a cytokine cocktail upregulated MHC and costimulatory molecules
advantageous for class I peptide binding22,26, and promoted enhanced lymph node
trafficking dependent on chemokine responsiveness27,28. However, PGE2 has recently been
shown to facilitate DC interactions with regulatory T cells 29 and even directly promote Treg
cell development30. It is possible that the PGE2 included in the DC maturational cocktail for
the GAA-DC trial may have induced regulatory T cell or NK cell populations that inhibited
anti-tumor immune responses.

This may have contributed to the shorter survival observed in these patients. In contrast, we
administered the Toll-like receptor (TLR) agonists, imiquimod or poly ICLC, following
intradermal injections of ATL-DC to induce DC maturation in vivo. We previously
demonstrated in pre-clinical models that the utilization of TLR agonists could enhance the
survival and trafficking of DC in situ and enhance the priming of tumor antigen-specific T
lymphocytes 31. The findings from this current study suggest that the induction of patient-
specific anti-tumor immunity using ATL-DC vaccination and in situ maturation with TLR
agonists may represent a preferred formulation for DC-based therapies.

No obvious differences in any lymphocyte population were evident before or after DC
vaccination between these two clinical trials, suggesting that baseline T cell populations
were similar between the two groups. We designed these trials to focus our immune
monitoring at two time points because they represent lymphocyte populations before and
after the completion of vaccination cycles. While such discrete time points cannot rule out
some inherent bias, the number of samples tested at these points may have minimized the
variability. A significantly elevated population of activated NK cells (CD3-CD16+CD25+)
was found in the peripheral blood of GAA-DC patients. A recent study demonstrated that
this population of activated NK cells was a negative prognostic biomarker for non-small cell
lung cancer patients treated with a MUC1 vaccine and chemotherapy32. Such data are
representative of a new, emerging understanding of how activation and inhibitory receptor
stimulation by NK cells may influence adaptive immune responses 33 and impact clinical
outcomes in cancer patients 34.

When we evaluated the ratios of post-vaccination vs. pre-vaccination lymphocyte population
frequencies, we found a striking, independent association between Treg cell ratios (post/pre-
DC vaccination) and overall survival, which was independent of tumor pathology.
Decreased post-vaccination frequencies of T-reg cell populations, relative to pre-
vaccination, were associated with longer overall survival in patients from both clinical trials.
These findings are consistent with the current understanding that Treg cells may play a
significant role in down regulating anti-tumor immune responses. In support of this,
Mitchell et al. recently demonstrated that immune responses were dramatically enhanced
after dendritic cell vaccination in glioblastoma patients that received CD25 mAb blockade
(daclizumab, Roche Pharmaceuticals) and temozolomide chemotherapy35. The observations
of Treg changes seen in our study are intriguing and warrant further, detailed analysis and
validation in prospectively designed immunotherapy clinical trials.

The number of patients treated in this comparative study does not allow for meaningful
comparisons in survival. However, the patient characteristics (age, KPS, extent of resection)
and tumor histopathologies suggest that these two patient cohorts were comparable. In
addition, the patients on each trial were enrolled during the same time period (2003-2010),
had similar eligibility criteria and similar other treatments. The median survival of patients
on the ATL-DC trial was 34.4 months, while that of patients on the GAA-DC trial was 14.5
months. It is possible that our choice of antigenic targets (survivin, her-2/neu, gp100,
TRP-2), or inclusion of PGE2 in the DC maturation cocktail, may have negatively impacted
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effective anti-tumor immune responses elicited by our GAA-DC vaccination. It is also
possible that the diversity of patient-specific anti-tumor immune responses induced by tumor
lysate-pulsed DC vaccination may be more important than the small number of well
characterized, tumor-specific antigens targeted by GAA peptide-pulsed DC vaccination.
Such conjecture is supported by recent clinical investigations using ipilumimab, with and
without gp100 peptide vaccination, for metastatic melanoma patients. The addition of a
gp100 peptide vaccine with ipilumimab did not extend survival beyond ipilumimab alone,
and in fact, was associated with a worse outcome 36. Although enhanced vaccine-elicited
gp100-specific immune responses were observed when followed by ipilumimab37, patient
survival was not similarly extended, suggesting that it may be more important to induce
heterogeneous immune responses rather than to drive single antigen responses.

In conclusion, our studies demonstrate that two distinct modes of tumor antigen-loaded
dendritic cell vaccination are safe and without any dose-limiting toxicity in malignant
glioma patients. In our patient population, ATL-pulsed DC vaccination was associated with
wider feasibility for treatment of the intent-to-treat population and decreased fractions of
activated NK cell populations, compared with GAA peptide-pulsed DC vaccination.
Multivariate analyses suggest that the monitoring of regulatory T cell ratios (post-
vaccination/pre-vaccination) may be an independent prognostic indicator of survival for
glioma patients treated with immunotherapy. Our results also suggest that the induction of a
diverse, patient-specific anti-tumor immune response may be an important factor in the
efficacy of DC vaccination strategies for malignant glioma patients.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Immunhistochemical detection of GAA in malignant glioma patient tumor tissue
Representative IHC staining of survivin, her-2/neu, and gp100 from a patient (GAA-03).
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Figure 2. Increased frequencies of activated NK cells in peripheral blood from patients on the
GAA peptide-pulsed DC trial
PBL from pre and post-DC vaccination timepoints were stained with an antibody cocktail
that identifies activated NK cells populations (CD3-CD4+CD16+CD25+). (A) Representative
FACS plots of activated NK cell populations from a representative patient on the GAA DC
trial (Top) and ATL DC trial (Bottom). (B) Quantitative analysis of activated NK cell
frequencies from peripheral blood. ***p<0.0001 by 2-way ANOVA testing.
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Table 1

Demographic and baseline clinical characteristics

Characteristic ATL-DC GAA-DC

(N=28) (N=6)

AGE – yr 49 44

Gender

    • Male 20 6

    • Female 8 0

KPS (@ DC vacc.) 90 80

Tumor Pathology

    • Glioblastoma (WHO Grade IV) 23 (82.1) 4 (66)

    • Anaplastic glioma (WHO Grade III) 5 (17.9) 2 (33)

Tumor Characteristics

    • IDH1 (% mutated) 17 50

Time to Treatment
*
 (months)

4.9+/-4.1 4.4+/-1.8

Survival Characteristics

    • OS (months) 34.4 14.5

    • PFS (months) 18.1 9.6

*
Time interval from the date of surgery until date of 1st DC vaccination in months +/- standard deviation.
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Table 2

Lymphocyte Subset Changes Following DC Vaccination

ATL-DC Trial GAA-DC Trial

Lymphocyte Subset
* Post-Tx (Avg %) Post-Tx (Avg %)

CD3+CD4+ Helper T cells 37+/-3.0 43.1+/-4.4

CD3+CD8+ CTL 23.5+/-2.5 27.7+/-4.5

CD3+CD16+ NK T cells 2.6+/-0.9 4.7+/-1.8

CD3-CD16+ NK cells 15.6+/-1.5 13.22+/-3.7

CD3-CD16+CD25+ activ. NK 9.1+/-2.5 39.5+/-5.9

CD3-CD19+ B cells 10.2+/-1.6 9.5+/-0.6

CD3+CD4+CD25+CD127low Treg 17.1+/-3.1 23.3+/-3.9

*
Percent of cells stained from ficoll-isolated PBMC at each timepoint.
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Table 3

Stratified Cox proportional hazards model for survival with clinical endpoints and immune monitoring ratios

Covariate
* Hazard Ratio 95% C.I. for Hazard Ratio p-value

Age (1 unit increase in years) 1.03 (0.99, 1.08) 0.187

Gender (Female vs Male) 1.77 (0.51, 6.10) 0.368

KPS 0.92 (0.86, 0.98) 0.010

Overall Tumor Path Effects 0.023

    Recurrent Grade IV vs. newly dx Grade IV 4.42 (1.46, 13.38) 0.009

    Recurrent Grade IV vs. Grade III 6.86 (0.62, 75.91) 0.116

    Grade IV vs. Grade III 1.55 (0.15, 15.56) 0.709

Treg cell fold change
** 7.19 (1.87, 27.73) 0.004

Activated NK cell fold change
** 1.99 (0.92, 4.31) 0.081

*
Each model includes a single covariate. Stratification is on trials.

**
Refers to frequency of cells (%) at post-DC vaccination/pre-DC vaccination
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Table 4

Multivariate stratified Cox model for Overall Survival.

Covariate Hazard Ratio 95% C.I. for Hazard Ratio p-value

Treg-fold change (1 unit increase) 4.56 (0.96, 21.73) 0.057

Overall Tumor Path Effects 0.485

    Recurrent Grade IV vs. newly dx Grade IV 2.08 (0.53, 8.16) 0.293

    Recurrent Grade IV vs Grade III 3.57 (0.26, 48.00) 0.338

    Grade IV vs. Grade III 1.71 (0.16, 18.92) 0.661

*Stratification is on trials. Covariates included are tumor pathology and Treg cell fold change.
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