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Abstract
Characterizing time-evolution of allele frequencies in a population is a fundamental problem in
population genetics. In the Wright-Fisher diffusion, such dynamics is captured by the transition
density function, which satisfies well-known partial differential equations. For a multi-allelic
model with general diploid selection, various theoretical results exist on representations of the
transition density, but finding an explicit formula has remained a difficult problem. In this paper, a
technique recently developed for a diallelic model is extended to find an explicit transition density
for an arbitrary number of alleles, under a general diploid selection model with recurrent parent-
independent mutation. Specifically, the method finds the eigenvalues and eigenfunctions of the
generator associated with the multi-allelic diffusion, thus yielding an accurate spectral
representation of the transition density. Furthermore, this approach allows for efficient, accurate
computation of various other quantities of interest, including the normalizing constant of the
stationary distribution and the rate of convergence to this distribution.

1. Introduction
Diffusion processes can be used to describe the evolution of population-wide allele
frequencies in large populations, and they have been successfully applied in various
population genetic analyses in the past. Karlin and Taylor (1981), Ewens (2004), and Durrett
(2008) provide excellent introduction to the subject. The diffusion approximation captures
the key features of the underlying evolutionary model and provides a concise framework for
describing the dynamics of allele frequencies, even in complex evolutionary scenarios.
However, finding explicit expressions for the transition density function (TDF) is a
challenging problem for most models of interest. Although a partial differential equation
(PDE) satisfied by the TDF can be readily obtained from the standard diffusion theory, few
models admit analytic solutions.

Since closed-form transition density functions are unknown for general diffusions,
approaches such as finite difference methods (Bollback et al., 2008; Gutenkunst et al., 2009)
and series expansions (Lukić et al., 2011) have been adopted recently to obtain approximate
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solutions. In a finite difference scheme, one needs to discretize the state space, but since the
TDF depends on the parameters of the model (e.g. the selection coefficients), the suitability
of a given discretization might depend strongly on the parameter values, and whether a
particular discretization would produce accurate solutions is difficult to predict a priori.
Series expansions allow one to circumvent the problem of choosing an appropriate
discretization for the state space. However, if the chosen basis functions in the
representation are not the eigenfunctions of the diffusion generator, as in Lukić et al. (2011),
then one has to solve a system of coupled ordinary differential equations (ODE) to obtain
the transition density. Lukić et al. (2011) solve this system of ODEs numerically, which may
introduce potential errors of numerical approximations.

If the eigenvalues and eigenfunctions of the diffusion generator can be found, the spectral
representation (which in some sense provides the optimal series expansion) of the TDF can
be obtained. For the one-locus Wright-Fisher diffusion with an arbitrary number K of alleles
evolving under a neutral parent-independent mutation (PIM) model, Shimakura (1977) and
Griffiths (1979) derived an explicit spectral representation of the TDF using orthogonal
polynomials. More recently, Baxter et al. (2007) derived the same solution by diagonalizing
the associated PDE using a suitable coordinate transformation, followed by solving for each
dimension independently. In a related line of research, Griffiths and Li (1983) and Tavaré
(1984) expressed the time-evolution of the allele frequencies in terms of a stochastic process
dual to the diffusion, and showed that the resulting expression is closely related to the
spectral representation.

The duality approach was later extended by Barbour et al. (2000) to incorporate a general
selection model. Although theoretically very interesting, this approach does not readily lead
to efficient computation of the TDF because of the following reason: Computation under the
dual process requires evaluating the moments of the stationary distribution. Although the
functional form of this distribution is known (Ethier and Kurtz, 1994; Barbour et al., 2000),
the normalization constant and moments can only be computed analytically in special cases
(Genz and Joyce, 2003), and numerical computation under a general model of diploid
selection is difficult. Incidentally, this issue arises in various applications (e.g., Buzbas et al.
2009, 2011), and it has therefore received significant attention in the past; see, for example,
Donnelly et al. (2001) and Buzbas and Joyce (2009).

Many decades ago, Kimura (1955, 1957) addressed the problem of finding an explicit
spectral representation of the TDF for models with selection. Specifically, in the case of a
diallelic model with special selection schemes, he employed a perturbation method to find
the required eigenvalues and eigenfunctions of the diffusion generator. Being perturbative in
the selection coefficient, this approach is accurate only for small selection parameters.
Recently, Song and Steinrücken (2012) revisited this problem and developed an alternative
method of deriving an explicit spectral representation of the TDF for the diallelic Wright-
Fisher diffusion under a general diploid selection model with recurrent mutation. In contrast
to Kimura’s approach, this new approach is non-perturbative and is applicable to a broad
range of parameter values. The goal of the present paper is to extend the work of Song and
Steinrücken (2012) to an arbitrary number K of alleles, assuming a PIM model with general
diploid selection.

The rest of this paper is organized as follows. In Section 2, we lay out the necessary
mathematical background and review the work of Song and Steinrücken (2012) in the case
of a diallelic (K = 2) model with general diploid selection. In Section 3, we describe the
spectral representation for the neutral PIM model with an arbitrary number K of alleles.
Then, in Section 4, we generalize the method of Song and Steinrücken (2012) to an arbitrary
K-allelic PIM model with general diploid selection. We demonstrate in Section 5 that the
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quantities involved in the spectral representation converge rapidly. Further, we discuss the
computation of the normalization constant of the stationary distribution under mutation-
selection balance and the rate of convergence to this distribution. We conclude in Section 6
with potential applications and extensions of our work.

2. Background
2.1. The Wright-Fisher diffusion

In this paper, we consider a single locus with K distinct possible alleles. The dynamics of
the allele frequencies in a large population is commonly approximated by the Wright-Fisher
diffusion on the (K − 1)-simplex

where . For a given x = (x1, …, xK−1) ∈ ΔK−1, the component xi denotes the
population frequency of allele i ∈ {1, …, K − 1}. The frequency of allele K is given by xK =
1 − |x|.

The associated diffusion generator ℒ is a second order differential operator of form

(1)

which acts on twice continuously differentiable functions f : ΔK−1 → ℝ. The diffusion
coefficient bi,j(x) is given by

where the Kronecker delta δi,j is equal to 1 if i = j and 0 otherwise. For a neutral PIM model,
we use θi = 4Nui to denote the population-scaled mutation rate associated with allele i,
where ui is the probability of mutation producing allele i per individual per generation and N
is the effective population size. Under this model, the drift coefficient ai(x) is given by

where .

Consider a general diploid selection model in which the relative fitness of a diploid
individual with one copy of allele i and one copy of allele j is given by 1 + 2si,j. We measure
fitness relative to that of an individual with two copies of allele K, thus sK,K = 0. The
diffusion generator in this case is given by ℒ = ℒ0 + ℒσ, where ℒ0 denotes the diffusion
generator under neutrality and the additional term ℒσ, which captures the contribution from
selection to the drift coefficient ai(x), is given by
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where σi(x) denotes the marginal fitness of type i and σ̄(x) denotes the mean fitness of the
population with allele frequencies x. More precisely,

(2)

and

(3)

where σi,j = 2Nsi,j. Intuitively, the population frequency of a given allele tends to increase if
its marginal fitness is higher than the mean fitness of the population. The selection scheme is
specified by a symmetric matrix σ = (σi,j)1≤i,j≤K ∈ ℝK×K of population-scaled selection
coefficients, with σK,K = 0.

The operators ℒ0 and ℒ are elliptic inside the simplex ΔK−1, but not on the boundaries.
Thus, the precise domain of the generator is not straightforward to describe, but Epstein and
Mazzeo (2011) give a suitable characterization.

2.2. Spectral representation of the transition density function
For t ≥ 0, the time evolution of a diffusion Xt on the simplex ΔK−1 is described by the
transition density function p(t; x, y)dy = ℙ[Xt ∈ dy | X0 = x], where x, y ∈ ΔK−1. The
transition density function satisfies the Kolmogorov backward equation

(4)

where ℒ, the generator associated with the diffusion, is a differential operator in x.

We briefly review the framework underlying the spectral representation of the transition
density function. The operator ℒ is said to be symmetric with respect to a density π : ΔK−1
→ ℝ≥0 if, for all twice continuously differentiable functions f : ΔK−1 → ℝ and g : ΔK−1 →
ℝ that belong to the domain of the operator, the following equality holds:

A straightforward calculation using integration by parts yields that the diffusion generators
described in Section 2.1 are symmetric with respect to their associated stationary densities.

Theorem 1.4.4 of Epstein and Mazzeo (2011) guarantees that an unbounded symmetric
operator ℒ of the kind defined in Section 2.1 of this paper has countably many eigenvalues
{−Λ0, −Λ1, −Λ2, …}, which are real and non-positive, satisfying

with Λn → ∞ as n → ∞. An eigenfunction Bn : ΛK−1 → ℝ with eigenvalue −Λn satisfies

(5)
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and, furthermore, Bn(x) is an element of the Hilbert space L2(ΔK−1, π(x)) of functions
square integrable with respect to the density π(x), equipped with the canonical inner product
〈·, ·〉π. If ℒ is symmetric with respect to π(x), then its eigenfunctions are orthogonal with
respect to π(x):

where δn,m is the Kronecker delta and dn are some constants. In the cases considered in this
paper, the eigenfunctions form a basis of the Hilbert space L2(ΔK−1, π(x)).

It follows from equation (5) that exp(−Λnt)Bn(x) is a solution to the Kolmogorov backward
equation (4). By linearity of (4), the sum of two solutions is again a solution. Combining the
initial condition p(0; x, y) = δ(x − y) with the fact that {Bn(x)} form a basis yields the
following spectral representation of the transition density:

(6)

The initial condition being the Dirac delta δ(x − y) corresponds to the frequency at time zero
being x.

2.3. Univariate Jacobi polynomials
The univariate Jacobi polynomials play an important role throughout this paper. Here we
review some key facts about this particular type of classical orthogonal polynomials. An
excellent treatise on univariate orthogonal polynomials can be found in Szegö (1939) and a
comprehensive collection of useful formulas can be found in Abramowitz and Stegun (1965,
Chapter 22).

The Jacobi polynomials , for z ∈ [−1, 1], satisfy the differential equation

(7)

For given a, b > −1, the set  forms an orthogonal system on the interval [−1, 1]
with respect to the weight function (1 − z)a(1 + z)b. For a more convenient correspondence
with the diffusion parameters, we define the following modified Jacobi polynomials, for x ∈
[0, 1] and a, b > 0:

This definition is slightly different from that adopted by Griffiths and Spanò (2010).

Equation (7) implies that the modified Jacobi polynomials , for x ∈ [0, 1], satisfy the
differential equation

(8)
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For fixed a, b > 0, the set  forms an orthogonal system on [0, 1] with respect to
the weight function xa−1(1 − x)b−1. More precisely,

where δn,m denotes the Kronecker delta and

(9)

Note that  form a complete basis of the Hilbert space L2([0, 1], xa−1(1 − x)b−1).

For n ≥ 1, the modified Jacobi polynomial  satisfies the recurrence relation

(10)

while, for n = 0,

(11)

Also, note that . These recurrence relations play an important role in the work of
Song and Steinrücken (2012), and the multivariate analogues, discussed later in Section 3.2,
are similarly important for the present work.

The modified Jacobi polynomials satisfy other interesting relations, one of them being the
following:

(12)

Using this identity, polynomials with parameter b can be related to polynomials with
parameter b + 1. We utilize this relation later.

2.4. A review of the K = 2 case
To motivate the approach to be employed in the general case, we briefly review the work of
Song and Steinrücken (2012) for deriving the transition density function in the diallelic (K =
2) case. The vector of mutation rates is given by θ = (α, β), while the symmetric matrix
describing the general diploid selection scheme can be parametrized as

where σ is the selection strength and h the dominance parameter. For K = 2, the diffusion is
one dimensional and the simplex Δ1 is equal to the unit interval [0, 1]. With x denoting x1,
the generator (1) reduces to
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In the neutral case (i.e., σ = 0), the modified Jacobi polynomials  are eigenfunctions

of the diffusion generator with eigenvalues . Hence, a spectral
representation of the transition density function can be readily obtained via (6).

In the non-neutral case (i.e., σ ≠ 0), consider the functions , which
form an orthogonal basis of the Hilbert space L2([0, 1], eσ̄(x)xα−1(1 − x)β−1), where
eσ̄(x)xα−1(1 − x)β−1 corresponds to the stationary distribution of the non-neutral diffusion,
up to a multiplicative constant. Since the eigenfunctions Bn(x) of the diffusion generator are

elements of this Hilbert space, we can pose an expansion  in terms of

the basis functions , where wn,m are to be determined. Then, the eigenvalue equation
ℒBn(x) = −ΛnBn(x) implies the algebraic equation

where Q(x; α, β, σ, h) is a polynomial in x of degree four. Utilizing the recurrence relations
in (10) and (11), one can then arrive at a linear system Mwn = Λnwn, where wn = (wn,0, wn,1,
wn,2, …) is an infinite-dimensional vector of variables and M is a sparse infinite-
dimensional matrix with entries that depend on the index n and the parameters α, β, σ, h of
the model. The infinite linear system Mwn = Λnwn is approximated by a finite-dimensional
truncated linear system

where  and M[D] is the submatrix of M consisting of its first D
rows and D columns. This finite-dimensional linear system can be easily solved using

standard linear algebra to obtain the eigenvalues  and the eigenvectors  of M[D].

Song and Steinrücken observed that  converge very rapidly as the truncation

level D increases. Finally, the coefficients  can be used to approximate the

eigenfunctions Bn(x), and, together with the eigenvalues , an efficient approximation of
the transition density function can be obtained via (6).

3. The Neutral Case with an Arbitrary Number of Alleles
In this section, we describe the spectral representation of the transition density of a neutral
PIM model with an arbitrary number K of alleles. As in the case of K = 2, reviewed in
Section 2.4, for an arbitrary K the eigenfunctions in the neutral case can be used to construct
the eigenfunctions in the case with selection. The latter case is considered in Section 4.
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3.1. Multivariate Jacobi polynomials
In what follows, let ℕ0 = {0, 1, 2, …} denote the set of non-negative integers. As in
Griffiths and Spanò (2011), we define the following system of multivariate orthogonal
polynomials in K − 1 variables:

Definition 1. For each vector , the
orthogonal polynomial  is defined as

where .

For x = (x1, …, xK−1) ∈ ΔK−1, let Π0(x) denote an unnormalized density of the Dirichlet
distribution with parameter θ = (θ1, …, θK):

(13)

where xK = 1 − |x|. The following lemma, a proof of which is provided in Appendix A,

states that the above multivariate Jacobi polynomials  are orthogonal with respect to
Π0(x):

Lemma 2. For ,

where  and

(14)

with  defined in (9).

Remark: The multivariate Jacobi polynomials form a complete basis of L2(ΔK−1, Π0(x)), the
Hilbert space of functions on ΔK−1 square integrable with respect to the unnormalized
Dirichlet density Π0(x).

3.2. Recurrence relation for multivariate Jacobi polynomials
Recall that the univariate Jacobi polynomials satisfy the recurrence relation (10). Theorem
3.2.1 of Dunkl and Xu (2001) guarantees that the multivariate Jacobi polynomials satisfy a
similar recurrence relation. More precisely, we have the following lemma, the proof of
which is provided in Appendix A:
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Lemma 3. Given , define

. For given i ∈ {1, …, K − 1} and n,  satisfies the
recurrence relation

(15)

where  are known constants (provided in Appendix A) and

(16)

Impose an ordering on the (K − 1)-dimensional index vectors . Then, the
recurrence (15) can be represented as

where  corresponds to an infinite dimensional matrix in which columns and rows are
indexed by the ordered (K − 1)-tuples, and the (n, m)-th entry is defined as

(17)

Note that for each given n, the number of non-zero entries in every row of  is finite. One
can deduce the following corollary from the new representation:

Corollary 4. Let  be such that . Then

where .

Remark: Since under multiplication xi commutes with xj for 1 ≤ i, j ≤ K − 1, the

corresponding matrices  also commute.

3.3. Eigenfunctions of the neutral generator ℒ0

It is well known that the stationary distribution of the Wright-Fisher diffusion under a
neutral PIM model is the Dirichlet distribution (Wright, 1949). The density of the Dirichlet
distribution is a weight function with respect to which the associated diffusion generator ℒ0

is symmetric. As discussed in Section 3.1, the multivariate Jacobi polynomials  are
orthogonal with respect to the weight function Π0(x), which is equal to the density of the
Dirichlet distribution up to a multiplicative constant. Given the discussion in Section 2.2,

one might then suspect that  are potential eigenfunctions of ℒ0. The following lemma
establishes that this is indeed the case:
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Lemma 5. For all , the multivariate Jacobi polynomials  satisfy

where

(18)

That is,  are eigenfunctions of ℒ0 with eigenvalues .

A proof of this lemma is deferred to Appendix A. We conclude this section with a few
comments.

Remarks:

i. Substituting the eigenvalues and eigenfunctions into the spectral representation (6),
we obtain

(19)

ii. For every , note that  only depends on the norm |n|, which implies
degeneracy in the spectrum of ℒ0. Griffiths (1979) constructed orthogonal kernel
polynomials indexed by |n|, that is the sum over all orthogonal polynomials with
index summing to |n|, and obtained the transition density expansion (19).

4. A General Diploid Selection Case with an Arbitrary Number of Alleles
In this section, we derive the spectral representation of the transition density function of the
Wright-Fisher diffusion under a K-allelic PIM model with general diploid selection. This
work extends the work of Song and Steinrücken (2012), the special case of K = 2 briefly
summarized in Section 2.4, to an arbitrary number K of alleles. The recurrence relation
presented in Lemma 3 plays a crucial role in the following derivation.

Recall that the backward generator for the full model is ℒ = ℒ0 + ℒσ, where ℒ0
corresponds to the generator under neutrality and ℒσ corresponds to the contribution from
selection. The diffusion has a unique stationary density [see Ethier and Kurtz (1994) or
Barbour et al. (2000)] proportional to

(20)

where Π0(x) is defined in (13) and σ̄(x) is the mean fitness defined in (3). As mentioned in
Section 2.2, ℒ is symmetric with respect to Π(x). For n ∈ ℕ0, we aim to find the
eigenvalues −Λn and the eigenfunctions Bn of ℒ such that

(21)

By convention, we place Λn in non-decreasing order. The symmetry of ℒ implies that
{Bn(x)} form an orthogonal system with respect to Π(x), that is
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Such a system of orthogonal functions, however, is not unique. The orthogonality of 
with respect to Π0, established in Lemma 2, can be used to show that the functions

(22)

are orthogonal with respect to Π, as are Bn(x). Furthermore, the fact that  form a

complete basis of L2(ΔK−1, Π0(x)) means that  is a complete basis of L2(ΔK−1, Π(x)).
Since Bn ∈ L2(ΔK−1, Π(x)), we thus seek to represent Bn(x) as linear combination of the

basis :

(23)

where un,m are some constants to be determined.

Define an index set  {1, …, K − 1}L and for i = (i1, …, iL) ∈ ℐ, define xi = xi1 ⋯
xiL. We have the following theorem for solving the eigensystem associated with the full
generator ℒ:

Theorem 6. For all n ∈ ℕ0, the eigenfunction Bn(x) of ℒ can be represented by (23). The
corresponding eigenvalues −Λn and the coefficients un,m can be found by solving the
infinite-dimensional eigensystem

(24)

where  and

Here,  is defined as in (18) and, for i = (i1, …, iL) ∈ ℐ, we define , where

 is given in (17). When L =0,  is defined to be the identity matrix. Explicit expressions
of the constants q(i) are provided in Appendix C.

Remarks:

i. Although M is infinite dimensional, it is in fact sparse with only finitely many non-
zero entries in every row and column.

ii. Equation (24) implies that Λn and un are in fact the left eigenvalues and
eigenvectors of M. To solve the eigensystem in practice requires some truncation
of the matrix to finite dimensions, as in the K = 2 case described in Section 2.4. For
a given n ∈ ℕ0, we would like both Λn and un,m to converge as the truncation level
increases. In Section 5, we demonstrate that this is indeed the case using empirical
examples.

Steinrücken et al. Page 11

Theor Popul Biol. Author manuscript; available in PMC 2014 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



We now provide a proof of the theorem.

Proof of Theorem 6. Substituting (23) into (21) we obtain

It is shown in Appendix D that

(25)

where

with σi(x) and σ̄(x) defined as in (2) and (3), respectively. Thus, one arrives at the following
equation:

(26)

We solve the equation by first representing Q(x; σ, θ)  as a finite linear combination of

. Observe that Q is in fact a fourth-order polynomial in x. Collecting terms, Q
can be written in the form

(27)

for the constants q(i) given in Appendix C. Applying Corollary 4 recursively, we obtain

Finally, substituting this equation into (26), multiplying both sides of (26) by , and
integrating with respect to Π0(x) over the simplex ΔK−1 yields the matrix equation (24).

5. Empirical Results and Applications
In this section, we study the convergence behavior of the eigenvalues and eigenvectors as
we approximate the solutions of (24). Further, we show how the spectral representation can
be employed to obtain the transient and stationary density explicitly (especially the
normalizing constant), and to characterize the convergence rate of the diffusion to
stationarity. A Mathematica implementation of the relevant formulas for computing the
spectral representation is available from the authors upon request.
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5.1. Convergence of the eigenvalues and eigenvectors
In what follows we order the Jacobi polynomials according to the graded lexicographic

ordering of their corresponding indices. Thus  if

• |n1| < |n2|, or

• |n1| = |n2| and n1 is lexicographically smaller than n2.

Fix K and note that, for a given truncation level D ∈ ℕ0 and l ∈ ℕ0, there are 

polynomials  with |n| = l, and  polynomials with index |n| ≤ D. For
the computations in the rest of this section we chose K = 3, unless otherwise stated.

Now, one can obtain a finite-dimensional linear system approximating (24) by truncation,
that is, taking only those entries in M and un whose associated index vectors satisfy |n| ≤ D.

More explicitly, with M[D] = ([M]k,l) ∈ ℝ D)× D) and , where

 such that |k|, |l| ≤ D, the solutions of

should approximate the solutions of the infinite system Λn and un. The convergence patterns

of  as D increases are exemplified in Figure 1 for the parameters

i)

K = 3, θ = (0.01, 0.02, 0.03), ; and

ii)

K = 3, θ = (0.01, 0.02, 0.03), .

Figure 2 displays the convergence behavior for the parameters

iii) K = 3, θ = (10, 20, 30), σ = σ1; and

iv)

K = 4, θ = (0.01, 0.02, 0.03, 0.04), .

In all cases,  converge with increasing truncation level to empirical limits. The

eigenvalues  decrease towards the empirical limit, whereas the coefficients  show
oscillatory behavior before ultimately stabilizing. The rate of convergence is faster for
smaller selection intensity. Varying the mutation parameters does not influence convergence

behavior significantly. As expected,  converges rapidly to zero in all cases, consistent

with the fact that the diffusion has a stationary distribution. For a fixed n,  and its

associated coefficients  roughly converge at similar truncation levels.
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Figure 3 shows  for D = 24 and 0 ≤ n ≤ 35 under neutrality (σ = 0) and selection (σ = σ1

and ). Upon inspection all of the eigenvalues displayed have converged properly.
Under neutrality, the eigenvalues are functions of |n|, thus they are degenerate and cluster
into groups. In the presence of selection, however, we empirically observe that all of the
eigenvalues are distinct. For moderate selection intensity, the group structure is less
prominent. In general, increasing the selection parameters evens out the group structure and
shifts the entire spectrum upward.

Computing the transition density function for large selection coefficients requires combining
terms of substantially different orders of magnitude, because of the exponential weighting

factors in the density (20) and in the expansion (22). Therefore, the coefficients  have to
be calculated with high precision to obtain accurate numerical results under strong selection.

5.2. Transient and stationary densities

The approximations to the eigenvalues  and the eigenfunctions Bn (via the eigenvectors

 and equation (23)) can be used in the spectral representation (6) to approximate the
transition density function at arbitrary times t. Examples with σ = σ1 for different times are
given in Figure 4. At first, the density is concentrated around the initial frequencies x =
(0.02, 0.02, 0.96), but as time increases, the frequencies of the first and second allele
increases, since these have a higher relative fitness. Eventually, the transition density
converges to the stationary distribution (similar to distribution at t = 2), where the bulk of
the mass is concentrated at high frequencies for the first and second allele.

The eigenvalues  and coefficients  can also be employed to approximate the constant
that normalizes the stationary distribution Π(x) to a proper probability distribution.
Following the same line of argument as Song and Steinrücken (2012), the orthogonal
relations enable us to circumvent the difficulty involved in directly evaluating a multivariate
integral over the simplex ΔK−1. First, note that since ℒ maps constant functions to zero, any
constant function is an eigenfunction with associated eigenvalue Λ0 = 0, thus B0(x) = B0(y)
= const. In (6), taking t → ∞, we get

Then for x = y = 0, by (23) we have

(28)

since σ̄(0) = σK,K = 0 and . Here  is the constant
defined in (14). The purely algebraic form of the right hand side in equation (28) allows to
compute an accurate approximation of the normalizing constant CΠ by replacing the infinite
sums by sums over all indices m such that |m| is less or equal then a given truncation level.
This offers an attractive alternative to other computationally intensive methods (Donnelly et
al., 2001; Genz and Joyce, 2003; Buzbas and Joyce, 2009).
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Figure 5 shows two examples of stationary distributions for different selection coefficients.
In Figure 5(a) the stationary density is concentrated in the interior of the simplex, since all
homozygotes are less fit then the heterozygotes. This situation is referred to as heterozygote
advantage, resulting in a balancing selection pattern, and the different alleles co-exist at
stationarity. In Figure 5(b), allele number 1 is strongly favored by the given selection
coefficients, and thus the stationary density is concentrated at high frequencies for this
allele.

We can also use (6) to investigate the rate of convergence of the diffusion process to the
stationary distribution. Denote the difference between the transition density and the
stationary density by

We measure the magnitude of d(t; x, y) by the square of its L2 norm with respect to the
weight function 1/Π(y), that is,

(29)

Again, the sums in this expression can be approximated by truncating at a given level.

Figure 6 shows  as a function of time t, for σ = σ1, σ = 0.5σ1, σ = 0.1σ1. The
initial frequencies were x = (0.02, 0.02, 0.96). As expected, the distance to the stationary
distribution decreases over time. Further, the rate of convergence is faster if the values in σ
get larger, which was observed by Song and Steinrücken (2012) too. We note that the
spectral representation can also be readily employed to study convergence rates measured by
other metrics such as the total variation distance or relative entropy.

6. Discussion
In this paper, we have extended the method of Song and Steinrücken (2012) to obtain an
explicit spectral representation of the transition density function for the multi-dimensional
Wright-Fisher diffusion under a PIM model with general diploid selection and an arbitrary
number of alleles. We have demonstrated the fidelity and fast convergence of the
approximations. Further, as an example application of our work, we have computed the
normalization constant of the stationary distribution and quantified the rate at which the
transition density approaches this distribution.

Efficient approximations of the eigensystem and the transition density function lead to a
number of important applications. Combining the stationary distribution discussed in
Section 5.2 with the recurrence relation shown in Lemma 3, one can calculate algebraically
the probability of observing a given genetic configuration of individuals sampled from the
stationary distribution of the non-neutral diffusion. This kind of algebraic approach would
complement previous works (Evans et al., 2007; Živković and Stephan, 2011) on sample
allele frequency spectra that involve solving ODEs satisfied by the moments of the
diffusion. Further, the algebraic approach is potentially more efficient than computationally
expensive Monte Carlo methods (Donnelly et al., 2001) and more generally applicable than
methods relying on the selection coefficients being of a certain form (Genz and Joyce,
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2003). Note that, by discretizing time and space, our representation of the transition density
function can be used for approximate simulation of frequencies from stationarity as well as
frequency trajectories, which can in turn be employed in the aforementioned Monte Carlo
frameworks.

The sampling probability can be applied, for example, to estimate evolutionary parameters
via maximum likelihood or Bayesian inference frameworks. Furthermore, the notion of
sampling probability can be combined with the spectral representation of the transition
density function in a hidden Markov model framework as in Bollback et al. (2008), to
calculate the probability of observing a series of configurations sampled at different times.
The method developed in this paper would allow for such an analysis in a model with
multiple alleles subject to recurrent parent-independent mutation and general diploid
selection.

An important, albeit very challenging, future direction is to extend our current approach to
analyze the dynamics of multi-locus diffusions with recombination and selection. Such an
extension would allow for the incorporation of additional data at closely linked loci, which
has the potential to significantly improve the inference of evolutionary parameters,
especially the strength and localization of selection. We have only considered Wright-Fisher
diffusions in a single panmictic population of a constant size. As achieved in the alternative
approaches of Gutenkunst et al. (2009) and Lukić et al. (2011), mentioned in Introduction, it
would be desirable to generalize our approach to incorporate subdivided populations
exchanging migrants, with possibly fluctuating population sizes. Another possible extension
is to relax the PIM assumption and consider a more general mutation model.

We note that our present technique relies on the diffusion generator being symmetric. This
symmetry does not hold in some of the scenarios mentioned above, making a direct
application of the ideas developed here difficult. However, we believe that it is worthwhile
investigating whether one could apply our approach to devise approximations to the
transition density function that are sufficiently accurate for practical applications.
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Appendix A

Proofs of lemmas

Proof of Lemma 2. For two indices , consider the integral

(A.1)

where the right hand side can be obtained by the coordinate transformation introduced in
Appendix B and the multivariate integration through substitution rule. Using
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the determinant of the Jacobian

see Baxter et al. (2007)[Equation B.1], and the transformed Jacobi polynomials (B.1), it can
be shown that

holds, with

In the case n = m this can be seen immediately. If n ≠ m without loss of generality let 1 ≤ l
≤ K − 1 be the largest l such that nl < ml and nk = mk for all k = l+1, …, K − 1. Then Nl = Ml

(recall NK−1 = MK−1 = 0) and  (ξl) is orthogonal to all polynomials of lesser

degree with respect to the weight function  (1 − ξl)Θl+2Ml−1, and thus the l-th factor and
the whole product is zero.

Proof of Lemma 3. We found it most convenient to derive a recurrence relation for

(A.2)

by projecting expression (A.2) onto the orthogonal basis , and investigate the
respective coefficients. First, note that the coordinate transformation introduced in Appendix
B yields xi = ξi Πj<i(1 − ξj), so

(A.3)

Further, integrate expression (A.3) against the base function  times the weight function
Π0 to get the respective coefficient in the basis representation. Using the integration by
substitution rule again, as in equation (A.1), this yields
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The first term on the right hand side yields zero, unless mj = nj for all j > i, thus Mi = Ni. In
this case the term is equal to 1. Since mj = nj for j > i, note that the second term on the right
hand side is of the form

with wα,β(ξ) = ξα−1(1 − ξ)β−1, α = θi, and β = Θi + 2Ni. Here we applied the recurrence

relation (10) to  and used the orthogonality of the Jacobi polynomials. The

constants  are given by

This expression is non-zero for −1 ≤ ni−mi ≤ 1. Furthermore, the form of the integral for j =
i − 1 depends on this difference, or rather the difference between Nj and Mj. Depending on
the difference Nj − Mj we have to consider the integrals

(A.4)

(A.5)

(A.6)

Steinrücken et al. Page 18

Theor Popul Biol. Author manuscript; available in PMC 2014 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



with α = θj and β = Θj + 2Nj. In expression (A.6) we have to assume β > 2, which is
equivalent to Nj ≥ 1. This holds true, because if Nj = 0, this case would not have to be
considered.

Applying relation (12) twice to the polynomial  in equation (A.4) and using
orthogonality yields

for some constants . Here . Thus, in the case Mj = Nj + 1, the
expression for j is non-zero for mj = nj, nj − 1, and nj − 2. Furthermore, relation (10) can be

applied to the term  (1 − ξ), together with orthogonality to get

for given constants , with . In the case Mj = Nj, the expression is non-zero

for mj = nj − 1, nj, and nj + 1. Finally, applying relation (12) to the term  in
expression (A.6) combined with orthogonality yields

for given constants . Again . Thus this expression is non-zero for

mj = nj, nj + 1, and nj + 2. The constants  are given by
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Now considering all three possible values for Nj − Mj, and all possible implications for the
difference nj − mj, it can be shown that 1 ≤ Nj−1 − Mj−1 ≤ 1 has to hold as well. Using
induction shows that 1 ≤ Nj − Mj ≤ 1 holds for all j < i. Thus for all j < i the same integrals
(A.4), (A.5), and (A.6), with adjusted parameters α = θj and β = Θj + 2Nj, have to be
considered.

Combining these results shows that for fixed i and n the polynomials with a non-zero

contribution to the recurrence relation for  are exactly those with indices from the set

defined in (16). Thus,

where the coefficients  are given by

Proof of Lemma 5. Using the coordinate transformation introduced in Appendix B, and

applying ℒ0, given in equation (B.2), to  from equation (B.1) yields

(A.

7)

Employing equation (8), one can show that the terms in the brackets on the right hand side
of equation (A.7) reduce to
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and substitution yields

with , since Θ0 = |θ|, N0 = |n|, and NK − 1 = 0.

Appendix B

Change of coordinates
Working with the multivariate Jacobi polynomials and the neutral diffusion, it is convenient,
for some derivations, to transform the equations to a different coordinate system. This
transformation maps the simplex ΔK − 1 to the K − 1-dimensional unit cube [0, 1]K−1. It is
implicitly used in Griffiths and Spanò (2011, Section 3), but more explicitly introduced and
used as a transformation in Baxter et al. (2007). The vector ξ(x) = (ξ1(x), …, ξK−1(x)) is
obtained from the vector of population frequencies x via the transformation

for 1 ≤ i ≤ K − 1. The inverse of this transformation is given by

for 1 ≤ i ≤ K − 1. The inverse relation can be derived by noting that 1 − ∑j<i xj = Πj<i(1 − ξj)
holds.

Definition 1 yields immediately that the multivariate Jacobi polynomials  take the form

(B.1)

in the transformed coordinates. The neutral diffusion generator ℒ0 in the transformed
coordinate system is given by the following lemma.

Lemma 7. Using variables in the new coordinate system, the backward generator of the
diffusion under neutrality ℒ0 can be written as

(B.2)

with
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and

The proof of this lemma is paraphrased in Appendix B of Baxter et al. (2007). The
transformation diagonalizes the operator by removing all the mixed second order partial
derivatives.

Appendix C

Coefficients of the polynomial Q(x; σ, θ)

Appendix D

Derivation of equation (25)

Applying ℒ to ,
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It can be shown that the last two terms in the above expression sum up to 0. Note that for 1 ≤
i, j ≤ K − 1,

(D.1)

(D.2)

It follows that
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where we used equation (D.1) for the second equality and  for the last equality.

Further, using equation (D.1) and (D.2) one can show that

where Q takes the form (27), that is Q(x; σ, θ) = ∑i∈ℐ q(i)xi, with the constants q(i) given in
Appendix C.
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Figure 1.
Convergence of the truncated eigenvalues Λn and coefficients of the eigenvectors un as the
truncation level D increases, for K = 3 with low mutation rates. Subfigures (a) and (b) show

 for σ = σ1 and σ = σ2, respectively. Subfigures (c) and (d) show

 for σ = σ1 and σ = σ2, respectively. The mutation rates were set
to θ = (0.01, 0.02, 0.03) for all computations.
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Figure 2.
Convergence of the truncated eigenvalues Λn and coefficients of the eigenvectors un as the
truncation level D increases, for K = 3 with high mutation rates and for K = 4 with low

mutation rates. Subfigures (a) and (c) show  for n = 0, 75, 150, and  for m = (8, 2),
(7, 3), (6, 4), respectively, for mutation rates θ = (10, 20, 30) and selection coefficients σ =

σ1. The convergence behavior for K = 4 is shown in subfigures (b) and (d) for  with n =

0, 75, 150, and  with m = (3, 2, 4), (5, 3, 4), (3, 5, 2), respectively; the mutation rates
were set to θ = (0.01, 0.02, 0.03, 0.04) and the selection coefficients to σ = σ3.
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Figure 3.
The first 36 eigenvalues of the different spectra for the selection parameters σ = 0, σ1 and

, respectively. The latter was chosen so that the ranges of the eigenvalues are
comparable. The truncation level D was set to 24 and mutation rates θ = (0.01, 0.02.0.03)
were used.
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Figure 4.
Approximation of the transition density function (6) for different times t ∈ {0.04, 0.2, 1.0,
2.0}. Selection was governed by the matrix of coefficients σ = σ1 and x = (0.02, 0.02, 0.96)
was used as initial condition. The truncation level was set to D = 40, whereas the summation
in equation (23) ranged over all m such that 0 ≤ |m| ≤ 36, and all eigenfunctions and
eigenvalues with 0 ≤ n ≤ 561 were included in equation (6). The mutation rates were set to θ
= (0.01, 0.02.0.03). The plots only vary in y1 and y2, since y3 = 1 − y1 − y2. (a) t = 0.04. (b) t
= 0.2. (c) t = 1.0. (d) t = 2.0.
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Figure 5.
Two examples of the stationary distribution for different selection parameters. The mutation
rates were set to θ = (0.01, 0.02.0.03) in both cases. Again, a truncation level of D = 40 was
used, the summation in equation (28) ranged over all m such that 0 ≤ |m| ≤ 36. The plots
only vary in y1 and y2, since y3 = 1 − y1 − y2.
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Figure 6.
Convergence of the transition density to stationarity as time evolves, for initial frequencies x

= (0.02, 0.02, 0.96)T. Deviation from the stationary density is measured by ,
defined in (29). The mutation rates were chosen to be θ = (0.01, 0.02, 0.03) and the selection
parameters were σ = 0.1σ1, σ = 0.5σ1 and σ = 0.1σ1, respectively. The truncation level was
set to D = 40, and (29) was approximated by summing over 0 ≤ n ≤ 561 and m, k such that 0
≤ |m|, |k| ≤ 36.
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