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Bone remodeling requires osteoclasts to generate and maintain an
acidified resorption compartment between the apical membrane
and the bone surface to solubilize hydroxyapatite crystals within
the bone matrix. This acidification process requires (i) apical pro-
ton secretion by a vacuolar H+-ATPase, (ii) actin cytoskeleton re-
organization into a podosome belt that forms a gasket to restrict
lacunar acid leakage, and (iii) basolateral chloride uptake and bi-
carbonate extrusion by an anion exchanger to provide Cl− per-
missive for apical acid secretion while preventing cytoplasmic
alkalinization. Here we show that osteoclast-targeted deletion in
mice of solute carrier family 4 anion exchanger member 2 (Slc4a2)
results in osteopetrosis. We further demonstrate a previously un-
recognized consequence of SLC4A2 loss of function in the osteo-
clast: dysregulation of calpain-dependent podosome disassembly,
leading to abnormal actin belt formation, cell spreading, and mi-
gration. Rescue of SLC4A2-deficient osteoclasts with functionally
defined mutants of SLC4A2 indicates regulation of actin cytoskel-
etal reorganization by anion-exchange activity and intracellular
pH, independent of SLC4A2’s long N-terminal cytoplasmic domain.
These data suggest that maintenance of intracellular pH in osteo-
clasts through anion exchange regulates the actin superstructures
required for bone resorption.

Adult bone mass is determined by the rates of bone formation
by osteoblasts and bone resorption by osteoclasts. An im-

balance in bone remodeling favoring resorption over formation
contributes to many skeletal disorders, including osteoporosis.
Osteoclasts are multinucleated giant cells formed by fusion of
myeloid precursors in response to the stromal factors macro-
phage-colony stimulating factor (M-CSF) and receptor activator
for nuclear factor κB ligand (RANKL). Contact with bone matrix
polarizes the osteoclast to form a sealing zone, assembled from
actin-rich podosomes that mediate cell attachment and migra-
tion of motile cells (1). Podosomes consist of a core of densely
packed F-actin filaments with associated proteins such as cor-
tactin and gelsolin (1). The core is surrounded by a less dense F-
actin “cloud,” which colocalizes with attachment proteins such as
integrins and vinculin (2, 3). In osteoclasts cultured on glass,
podosomes initially group into clusters, which coalesce into rings
and expand to the cell periphery to form a belt in the mature cell
(4). This podosome belt is equivalent to the sealing zone formed
in bone-resorbing osteoclasts in situ (3). The two structures share
the same components and are stabilized by microtubules (2, 5).
The sealing zone surrounds a specialized membrane domain, the
ruffled border, through which hydrochloric acid and lysosomal
proteases are secreted to dissolve bone mineral and digest or-
ganic matrix, respectively (6). The sealing zone serves as a gasket
to anchor the osteoclast to bone and isolate the extracellular
resorptive microenvironment (7, 8).
As osteoclasts secrete acid across the ruffled border (9), a base

equivalent is left in the cytoplasm. To prevent cytoplasmic al-
kalinization, electroneutral exchange of intracellular bicarbonate

for extracellular chloride occurs through anion exchange at the
basolateral membrane (10). This anion exchanger was identified in
our report that solute carrier family 4 anion exchanger member
2−/− (Slc4a2) mice display osteopetrosis associated with dys-
functional osteoclasts (11), a finding corroborated by others (12–
14). Although it is known that SLC4A2-deficient osteoclast-like
cells (OCLs) are unable to resorb mineralized tissue and cannot
form an acidified extracellular resorption compartment in vitro,
the function of this molecule within the complex cell biology of
the osteoclast remains incompletely understood. Furthermore,
Slc4a2−/− mice display abnormalities that could indirectly affect
bone metabolism, including achlorhydria, failed tooth formation,
runting, and early lethality (15). These systemic abnormalities, as
well as a proposed role for anion exchange in other bone cells,
including osteoblasts (16, 17), require a cell-specific ablation ap-
proach to establish and characterize the osteoclast-intrinsic role in
the observed skeletal phenotype.
SLC4A2 belongs to a subfamily of three homologous Na+

-independent HCO3
−/Cl− anion-exchanger proteins: SLC4A1/

AE1 (band 3 of the red blood cell and renal type A intercalated
cell), SLC4A2/AE2, and SLC4A3/AE3. Each contains a three-
domain structure including an N-terminal cytoplasmic domain
of 400–700 amino acids, a central anion-exchange domain that
spans the membrane 12–14 times, and a short C-terminal cytoplas-
mic domain. In the red blood cell, the amino-terminal cytoplasmic
domain of SLC4A1 tethers the membrane to the cytoskeleton.
Accordingly, mutations in SLC4A1 cause membrane instability,
resulting in hereditary spherocytosis and stomatocytosis (18).
Here we demonstrate the osteoclast-intrinsic role of SLC4A2

in vivo using a conditional deletion strategy, and show that
osteoclasts lacking SLC4A2 display not only altered intracellular
pH (pHi) and resorption but also spreading abnormalities asso-
ciated with an enhanced life span of individual podosomes within
the actin belt. Regulation of the actin cytoskeleton and bone
resorption by SLC4A2 is independent of its large N-terminal
cytoplasmic domain and can be ascribed solely to its anion-
exchange function. SLC4A2-deficient OCLs also display a
reduction in calpain protease activity, which is necessary for
podosome disassembly. Moreover, cell-permeable inhibitors of
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calpain reproduce the spreading defect and enhanced podosome
life span seen in OCLs lacking SLC4A2.

Results
Establishment of the Osteoclast-Intrinsic Role of SLC4A2. Toestablish
the osteoclast-specific role of SLC4A2, we crossedmice bearing an
Slc4a2 allele flanked by loxP sites with cathepsin K-Cre (Ctsk-Cre)
transgenic mice (19). In contrast to mice germ line-deficient in all
Slc4a2 isoforms (15), Slc4a2fl/flCtsk-Cre+mice (referred to hereafter
as cKOmice)didnot exhibit early lethality or growth retardation, and
were not edentulous (Fig. 1A). Microcomputed tomography analysis
showed clubbing of the long bones with decreased marrow space
(Fig. 1B) and increased trabecular bone volume at 3 and 8 wk (Fig.
1C). This increased bone volume was largely secondary to in-
creased trabecular number and, to a lesser extent, increased tra-
becular thickness, whereas trabecular spacing was reduced (Fig.
S1A). The trabecular bone in the metaphysis of cKO mice con-
tained cartilage remnants from the growth plate, a pathologic
feature of osteopetrosis, as evidenced by dark purple staining
with toluidine blue (Fig. 1D). Tartrate-resistant acid phosphatase
(TRAP) staining showed increased osteoclast number in cKO tibiae
compared with control (Fig. 1E). These data indicate that SLC4A2
plays a critical, cell-intrinsic role inmouse osteoclast function in vivo.

Conditional Deletion of Slc4a2fl with Ctsk-Cre Is Incomplete in Vitro,
Resulting in Partially Reduced Osteoclast Function. Slc4a2−/− OCLs
are defective in cell spreading and bone resorption in vitro (11).
In contrast, cKOOCLs formed resorption pits on bone slices (Fig.
1F), but their activity was quantitatively reduced (Fig. 1G), al-
though the number of OCLs was similar to controls (Fig. S1B).
cKOOCLs also displayed a partial decrease in spread OCLs (Fig.
1H). Consistent with these incomplete phenotypes, the expression
of Slc4a2 mRNA in cKO OCLs was reduced by only 70% com-
pared with wild-type (WT) levels (Fig. S1C). Because only partial
deletion of Slc4a2fl was achieved in vitro using Ctsk-Cre, cells with
either a germ-line mutation or complete inducible deletion of
Slc4a2fl using Mx1-Cre were used for subsequent studies.

SLC4A2 Regulates Cell Spreading and Actin Cytoskeletal Organization
in Osteoclasts. TRAP-stained SLC4A2-deficient OCLs fail to
spread normally in vitro (11) (Fig. 1H). Slc4a2−/−OCLs stained for
actin displayed a pericellular belt with a significantly reduced di-
ameter (Fig. 2A), confirming the spreading defect. Consistent with
this cytoskeletal defect, SLC4A2-deficient OCLs showed slower
migration rates compared with WT (Fig. 2B). The abnormal mor-
phology of SLC4A2-deficient osteoclasts was confirmed in vivo.
Compared withWT, Slc4a2−/− osteoclasts exhibited smaller ruffled
borders that did not extend deep into the cytoplasm (Fig. 2C).
Immunofluorescence revealed that SLC4A2-deficient osteoclasts
often formed several small (Fig. S2A) but dense actin patches (Fig.
2D) resembling sealing zones. Consistent with the failure to form
a ruffled border, the V-ATPase was not targeted to the apical
membrane between the sealing zones in SLC4A2-deficient osteo-
clasts (Fig. 2D). Based on these results, we hypothesized that
SLC4A2 regulates the osteoclast cytoskeleton. To explore this, we
examined theorganizationof podosomes inSlc4a2+/+ andSlc4a2−/−
OCLs as defined in Fig. 3A. During the course of differentiation,
more SLC4A2-deficient OCLs displayed actin clusters and fewer
progressed to develop rings or a mature actin belt (Fig. 3B), sug-
gesting that SLC4A2 regulates the dynamic organization of podo-
somes. Furthermore, the thicker actin belts of Slc4a2−/− OCLs
consisted of uniformly enlarged, punctate podosomes (Fig. 3 C and
D). The width of the sealing zone, the functional equivalent of the
actin belt when OCLs are cultured on a resorptive surface, was also
thicker in Slc4a2−/−OCLs (Fig. 3E). Podosomes in Slc4a2−/−OCLs
still exhibited the typical organization of an actin core surrounded
by the adhesion molecule vinculin, which colocalized with the actin
cloud (Fig. S2B). Tubulin, which stabilizes the organization of actin,
was also distributed similarly (Fig. S2C). Last, we previously
reported reduced differentiation of Slc4a2−/− OCLs (11), which
could indirectly affect spreading. However, under the culture
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Fig. 1. Osteoclast-intrinsic role of SLC4A2. (A) Photographs of 3-wk-old
mice. (B) Three-dimensional microquantitative computed tomography
images of femurs from 8-wk-old mice. (C) Bone volume per tissue volume
(BV/TV) (means ± SE) of the distal femoral metaphysis of 3- and 8-wk-old
mice (**P < 0.01, cKO versus Slc4a2fl/fl Ctsk-Cre−; similar results were obtained
when cKO was compared with Slc4a2fl/+ Ctsk-Cre+). (D and E) Toluidine blue
(D) and TRAP (E) stains of tibiae from 8-wk-old mice. Images are represen-
tative of at least three sex- and age-matched littermate mice analyzed per
genotype. (Scale bars, 500 μm.) (F and G) Toluidine blue stain (F) and su-
pernatant C-terminal type I collagen fragments (CTX) ELISA (G) (means ± SE)
of bone slices incubated with bone marrow macrophages and M-CSF and
RANKL. (Scale bars, 200 μm.) Representative of three separate experiments
(*P < 0.05, **P < 0.01). (H) TRAP stain of OCLs.

2164 | www.pnas.org/cgi/doi/10.1073/pnas.1206392110 Coury et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1206392110/-/DCSupplemental/pnas.201206392SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1206392110/-/DCSupplemental/pnas.201206392SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1206392110/-/DCSupplemental/pnas.201206392SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1206392110/-/DCSupplemental/pnas.201206392SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1206392110/-/DCSupplemental/pnas.201206392SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1206392110/-/DCSupplemental/pnas.201206392SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1206392110/-/DCSupplemental/pnas.201206392SI.pdf?targetid=nameddest=SF2
www.pnas.org/cgi/doi/10.1073/pnas.1206392110


conditions reported here, no differences were observed in the
number of OCLs with more than two nuclei (Fig. S2D).

Enhanced Podosome Life Span in the Actin Belts of Slc4a2−/− OCLs. To
study the dynamic properties of podosomes in WT and Slc4a2−/−

OCLs in real time, cells were microinjected with cDNA encoding
GFP-actin. As previously visualized by phalloidin staining (Fig.
3C), the actin belts in live Slc4a2−/− OCLs were thicker and in-
dividual podosomes were larger and more uniformly distributed
(Fig. 3F). GFP-actin recovery after photobleaching did not differ

within podosomes of Slc4a2+/+ and Slc4a2−/− OCLs (Fig. 3G).
However, whereas average podosome life span within clusters was
similar in Slc4a2+/+ and Slc4a2−/− OCLs, podosome life span in
belts was substantially longer in SLC4A2-deficient OCLs (Fig. 3H
and I). Thus, SLC4A2 accelerates podosome belt formation and
promotes turnover of individual podosomes within the actin belt.

SLC4A2 Anion-Exchange Activity Is Required for pHi Regulation
and OCL Spreading. Anion-exchange activity and pHi were in-
vestigated in singleOCLs.WhenWT cells were superfusedwith an
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Fig. 3. Altered actin cytoskeletal dynamics in Slc4a2−/−

OCLs. (A) Confocal images of F-actin (red) and nuclei
(blue) in OCLs. Arrowheads indicate a podosome
cluster (green), actin ring (white), and actin belt (blue).
(Scale bar, 50 microns.) (B) Quantification of OCLs
(>2 nuclei) per cm2 with clusters, rings, or belts of
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GFP-actin in actin belts of OCLs. Red arrows indicate
individual podosomes. (I) Distribution of podosome
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expressing GFP-actin (#n.s., ***P < 0.001).
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HCO3
−-containing solution, followed by removal of bath Cl− in

the continued presence of CO2/HCO3
−, a rapid cytoplasmic al-

kalinization was observed (Fig. 4A). Restoration of extracellular
Cl− rapidly restored the original pHi. In contrast, bath Cl− re-
moval did not change the pHi in Slc4a2−/− OCLs (Fig. 4A). In
addition, resting pHi in Slc4a2−/− OCLs was more alkaline than
in WT OCLs (Fig. 4B). Consistent with defective acidification
of the lacunar compartment in situ (11), acidification of in-
tracellular lysosomes in Slc4a2−/− OCLs was also largely ab-
rogated (Fig. S3).
To determine how SLC4A2 regulates spreading, bone re-

sorption, anion exchange, and pHi, Slc4a2
−/− OCLs were trans-

duced with a series of functionally characterized SLC4A2 mutants
(20–22) (Fig. S4A). These included (i) full-length SLC4A2a
(SLC4A2-WT), (ii) Δ659, a deletion mutant lacking the first 659
amino acids of the N-terminal cytoplasmic domain (21), (iii) RL1,
a chimeric protein with the pH-sensitive, putative first re-entrant
loop (RL1) of the SLC4A2 transmembrane domain replaced by
the corresponding pH-insensitive region of SLC4A1 (22), and (iv)
R1056A, a missense mutant that abrogates anion-exchange activity
(20). As expected, SLC4A2-WT restored anion exchange, spread-
ing, and resorption in Slc4a2−/− OCLs (Fig. 4 C–E and Fig. S4B).
Similarly,Δ659 andRL1 restored each of these functions (Fig. 4C–
E). In contrast, R1056A was unable to restore anion-exchange ac-
tivity (Fig. 4C) and complemented neither the defect in resorption
nor the defect in spreading observed in Slc4a2−/−OCLs (Fig. 4C–E
and Fig. S4B) despite the fact that this mutant appropriately lo-
calized to the OCL basolateral membrane (Fig. S4C). In addition,
whereas SLC4A2-WT, Δ659, and RL1 reduced the resting pHi
in Slc4a2−/− OCLs to normal values, R1056A-expressing OCLs

continued to exhibit an alkaline pHi (Fig. 4F). Consistent with these
results, cKO OCLs that partially maintain the ability to spread and
resorb bone in vitro (Fig. 1 G and H) also displayed preserved
anion-exchange activity (Fig. S4D), consistent with incomplete
deletion of the floxed allele (Fig. S1C). Thus, SLC4A2 regulates
bone resorption and actin cytoskeleton organization in osteo-
clasts via the anion exchange-dependent maintenance of pHi.

Reduced Calpain Activity in SLC4A2-Deficient OCLs. We then hy-
pothesized that the link between pHi and the cytoskeleton could
be via a pH-sensitive regulator of actin turnover. Calpains are pH-
sensitive cysteine proteases (23), which regulate a variety of sig-
naling cascades, including those involved in cell motility. Reduced
calpain activity could therefore underlie the cytoskeletal defects
observed in Slc4a2−/− osteoclasts. This hypothesis was based on
the following observations. First, both μ-calpain (CAPN1) and m-
calpain (CAPN2) are expressed in osteoclasts, where they localize
to the actin belt (24). Second, both Capn1−/− OCLs and OCLs
treated with calpain inhibitors display reduced motility and re-
sorptive activity (24). Third, calpain inhibition in dendritic cells
impairs motility and enlarges podosomes due to reduction in
Wiskott–Aldrich syndrome protein (WASP) cleavage, which pro-
motes podosome disassembly (25, 26). To generate sufficient
numbers of SLC4A2-deficient OCLs for biochemical studies of
calpain activity, Slc4a2fl/fl mice were crossed with Mx1-Cre, which
can be induced postnatally by polyI:C and deletes broadly, in-
cluding within the hematopoietic system (27, 28). As expected, and
similar to Slc4a2−/− mice (11), Slc4a2fl/fl Mx1-Cre mice treated with
polyI:C (hereafter Slc4a2Δ/Δ) developed increased bone mass
associated with enlarged osteoclasts that poorly attached to
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bone surfaces (Fig. S5 A–D). In vitro, Slc4a2Δ/Δ OCLs did not
spread normally and had undetectable levels of Slc4a2 mRNA
(Fig. S5 E and F). Despite normal levels of μ- and m-calpain
protein, Slc4a2Δ/Δ OCLs displayed reduced calpain activity mea-
sured either by immunoblot for calpain-specific cleavage products
of Rous sarcoma oncogene (SRC) and WASP or by a fluorogenic
assay with a synthetic cell-permeable substrate (Fig. 5 A–D).
Similar to SLC4A2-deficient OCLs, treatment of WT OCLs
with a calpain inhibitor blocked spreading, increased the per-
centage of cells with podosome clusters versus belts, and aug-
mented podosome life span (Fig. 5 E–G). Thus, the cytoskeletal
defects observed in osteoclasts lacking SLC4A2 can be explained,
at least in part, by a reduction in calpain activity.

Discussion
Of the five murine Slc4a2 gene products, the longest, Slc4a2a,
predominates in osteoclasts (11). Slc4a2−/− mice lack all five
isoforms and display a perinatal-lethal phenotype with severe
osteopetrosis (11, 13, 15). This phenotype contrasts with the
milder phenotype of the Slc4a2a,b−/− mouse, in which only the a,
b1, and b2 isoforms are deleted. Although Slc4a2a,b−/− mice
display augmented bone mass, the increase is mostly in cortical
bone, and the mice lack the hallmark of osteopetrosis: increased
trabecular bone near the growth plate (12). The milder pheno-
type of Slc4a2a,b−/− mice could reflect compensatory expression
of SLC4A2c, differences in genetic background, or discrepant
functions for SLC4A2 isoforms in other skeletal cells or tissues
with hormonal and metabolic effects on bone. Supporting this
last possibility are observations that SLC4A2 is expressed and
functional in osteoblasts, ameloblasts, and the gut and kidney
(15–17, 29). Taken together, these studies left uncertain the
relative role of SLC4A2 within the osteoclast for its potential
broader function in other cells involved in bone homeostasis.
Here we confirm that both osteoclast-specific and postnatal

deletion of Slc4a2, using Ctsk-Cre and Mx1-Cre, respectively,
results in osteoclast-rich osteopetrosis. The phenotype of the cKO
mice generated using Ctsk-Cre is milder than that of germ-line
deletion (11), in that the former do not display growth retardation
or early lethality, and are not edentulous. This milder skeletal
phenotype may reflect incomplete in vivo deletion of the Slc4a2fl

allele or a function for SLC4A2 in other bone cells. The classic
osteopetrotic findings in cKO mice contrast with the milder skel-
etal phenotype of Slc4a2a,b−/−mice, restricted largely to increased
cortical bone. Because the skeletal phenotype of cKO mice phe-
nocopies neither the Slc4a2−/− nor Slc4a2a,b−/− mice, a function
for this gene in other skeletal cells remains possible. Thus, the
defects observed in Slc4a2−/−mice can be attributed to the function
of this gene in osteoclasts as well as in other tissues.
Mature osteoclasts alternate between phases of migration

along and attachment to the bone surface, creating successive
resorption lacunae. This process depends on cell polarization
and cytoskeletal rearrangements (30). The high-bone mass phe-
notype of mice deficient in β3-integrin, PYK2, or SRC highlights
the importance of this step in bone resorption (31–33). Osteo-
clasts attach to bone through actin-rich podosomes, which cluster
around the cell periphery to form the sealing zone (1). Here we
demonstrate that SLC4A2-deficient OCLs form small, dense
sealing zones in vivo and attach poorly to the bone surface. In
vitro, SLC4A2-deficient osteoclasts display a delay in formation
of the actin ring, the functional equivalent of the sealing zone.
Once formed in these cells, however, this podosome belt is
thickened and made up of enlarged podosomes with an in-
creased life span. Because the N-terminal cytoplasmic domain of
SLC4A1 anchors the red blood cell membrane to the cytoskel-
eton (18, 34), we hypothesized that SLC4A2 might similarly di-
rectly interact with cytoskeletal components. However, our
complementation experiments demonstrate that SLC4A2 regu-
lates the actin cytoskeleton independent of its intracellular do-
main and by regulating pHi in an anion exchange-dependent
manner. As the distribution of proteins that support podosome
structure and the rate of actin flux within the podosomes were

normal in SLC4A2-deficient osteoclasts, our data suggest that
disassembly of F-actin is retarded by elevated pHi.
We found that calpain activity is reduced in osteoclasts lacking

SLC4A2.Moreover, a cell-permeable calpain inhibitor recapitulates
many of the features observed in SLC4A2-deficient osteoclasts, in-
cluding reduced spreading and belt formation and increased podo-
some life span. These data support recent findings that podosome
disassembly and motility in dendritic cells are promoted by calpain-
mediated cleavage of WASP (25, 26). Calpain activity can be
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reduced at pH above 7.5 (23, 35), but direct inhibition of calpain by
elevated pHi remains to be demonstrated. The regulation of calpain
activity within cells is complex and involves autolysis and calcium-,
phospholipid-, and calpastatin-mediated pathways (36), any of which
could be pHi-sensitive. Further work is needed to define how ele-
vated pHi reduces calpain activity in osteoclasts, and whether this
pathway functions during normal cycles of bone resorption. Last,
other proteins that regulate F-actin dynamics in motile cells may be
pH-sensitive and changes in their activity may contribute to the
observed cytoskeletal defects in Slc4a2−/− osteoclasts.
The ability of theΔ659 mutant to restore resting pHi and anion-

exchange function in Slc4a2−/− OCLs is concordant with previous
studies demonstrating intact anion exchange in mutants lacking
the majority of the SLC4A2 N-terminal cytoplasmic domain (18).
However, the N-terminal cytoplasmic domain is required for acute
inhibition of SLC4A2 by acidic pH (21). Similarly, RL1 of the
SLC4A2 transmembrane domain is also critical for regulation by
pHi (22), but the RL1mutant restored the abnormal phenotype of
Slc4a2−/− OCLs. Our results suggest that neither acute pH sensi-
tivity of SLC4A2 nor the SLC4A2 cytoplasmic domain is required
for bone resorption by OCLs. However, within the bone micro-
environment, these domains may play a regulatory role.
Our results demonstrate the osteoclast-intrinsic role of

SLC4A2 in bone resorption in vivo and show that SLC4A2
mediates cytoskeletal organization in osteoclasts by regulating
calpain activity via anion exchange-dependent control of pHi.

Materials and Methods
Mice. Slc4a2−/− mice were previously described (15). The Slc4a2fl allele was
generated by flanking exon 8 with loxP sites, and will be described in detail

elsewhere. Cre-mediated deletion of the 181-nt exon 8 (numbered ac-
cording to Ensembl transcript variant Slc4a2-001; GenBank accession no.
NM_009207.3), which is present in all Slc4a2 variants, removes codons 319–
378 and generates a frame-shift that eliminates the membrane-spanning
domains needed for anion-transport activity. The Slc4a2fl allele was de-
leted specifically in osteoclasts or in adolescent mice using cathepsin K-Cre
[kindly provided by S. Kato (University of Tokyo, Tokyo, Japan) (19)] or
Mx1-Cre and treating mice with polyI:C as described (27), respectively. The
Standing Committee on Animals at Harvard Medical School approved all
experimental protocols.

Preparation of OCLs. See SI Materials and Methods.

Microinjection and Time-Lapse Microscopy. See SI Materials and Methods.

Single-Cell Measurement of pHi. See SI Materials and Methods.

Calpain Activity Assay. See SI Materials and Methods.
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