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Partial knowledge of patient health status and treatment re-
sponse is a pervasive concern in medical decision making. Clinical
practice guidelines (CPGs) make recommendations intended to
optimize patient care, but optimization typically is infeasible with
partial knowledge. Decision analysis shows that a clinician’s objec-
tive, knowledge, and decision criterion should jointly determine
the care he prescribes. To demonstrate, this paper studies a com-
mon scenario regarding diagnostic testing and treatment. A patient
presents to a clinician, who obtains initial evidence on health sta-
tus. The clinician can prescribe a treatment immediately or he can
order a test yielding further evidence that may be useful in predict-
ing treatment response. In the latter case, he prescribes a treatment
after observation of the test result. I analyze this scenario in three
steps. The first poses a welfare function and characterizes optimal
care. The second describes partial knowledge of response to testing
and treatment that might realistically be available. The third con-
siders decision criteria. I conclude with reconsideration of clinical
practice guidelines.

Partial knowledge of patient health status and treatment re-
sponse is a pervasive concern in medical decision making. To

improve decision making, modern societies invest in research
and in translational activities seeking to make the research useful
to clinical practice. Translational activities often become em-
bodied in clinical practice guidelines (CPGs). A recent report (1)
by the Institute of Medicine (IOM) gave this definition for CPGs
(ref. 1, p. 4): “Clinical practice guidelines are statements that
include recommendations intended to optimize patient care that
are informed by a systematic review of evidence and an assess-
ment of the benefits and harms of alternative care options.”

Clinical Practice Guidelines. Medical research makes much use of
biological science, technology, and quantitative inferential meth-
ods. However, translational activities such as CPGs typically are
informal and qualitative. The recent IOM report is illustrative. The
report repeatedly calls for the development of rigorous CPGs.
However, the eight standards proposed by the IOM committee
(ref. 1, pp. 6–9) are, to this reader, uncomfortably vague.
Although the IOM report aims to inform medical decision

making, it brings to bear no formal decision analysis. It discusses
decision analysis only briefly, stating the following (ref. 1, p. 171):
“A frontier of evidence-based medicine is decision analytic mod-
eling in health care alternatives’ assessment. . . . . Although thefield
is currently fraught with controversy, the committee acknowledges
it as exciting and potentially promising, however, decided the state
of the art is not ready for direct comment.”
This statement is surprising. The foundations of decision analysis

were largely in placemore than 50 y ago and applications have since
become common. Applications within medicine have been pro-
moted for over 30 y by the Society for Medical Decision Making.
However, the IOM report refers to decision analysis as “a frontier
of evidence-based medicine” in which “the state of the art is not
ready for direct comment.”
I consider use of decision analysis to be a prerequisite for

development of the rigorous CPGs cited as the objective of the
IOM report. A serious shortcoming of the report is its supposi-
tion that CPGs make recommendations intended to “optimize

patient care.” Optimization of care may be infeasible when one
has only partial knowledge of patient health status and treatment
response. Then various care optionsmay be reasonable, each using
the available knowledge in its own way. (I semantically distinguish
between evidence and knowledge. Evidence is synonymous with
data. Knowledge is the set of conclusions that one draws by com-
bining evidence with assumptions about unobserved quantities.)
If the IOM report were to embrace decision analysis, it would

observe that rigorous decision making regarding patient care
requires one to specify explicitly (i) the objective one wants to
achieve, (ii) the knowledge one has of patient health status and
treatment response, and (iii) the decision criterion one uses when
partial knowledge makes optimization infeasible. Moreover, the
report would observe that medical research speaks only to the
second of these factors. Research may help a clinician measure
health status and predict treatment response, but it cannot tell the
clinician what objective he should want to achieve and what de-
cision criterion he should use when optimization is infeasible.

Analysis of Testing and Treatment Decisions. To demonstrate the
conduct of decision analysis, this paper studies a class of medical
decisions that are straightforward to describe yet subtle to re-
solve. I consider a common scenario regarding diagnostic testing
and treatment. A patient presents to a clinician, who obtains
initial evidence on health status. The clinician either prescribes
a treatment immediately or orders a test that may yield further
evidence on health status. In the latter case, he prescribes a
treatment after observation of the test result. (My analysis
applies not only to diagnostic testing of symptomatic patients
but also to medical screening of unsymptomatic ones. I use the
term testing rather than screening throughout.)
For example, clinicians often decide between aggressive treat-

ment of an illness and active surveillance (a.k.a. watchful waiting).
Before prescribing treatment, they may order a diagnostic test. A
common practice is to choose aggressive treatment if the test
result is positive and active surveillance if it is negative or if the
patient is not tested. I call this practice aggressive treatment with
positive testing (ATPT) and use it to illustrate general ideas.
Given a specified objective for patient care and sufficient

knowledge of response to testing and treatment, one can opti-
mize care. Medical decision analysis of this type appears to have
originated with ref. 2. This study assumed that the clinician
knows the objective probability distributions of test results and
of patient outcomes under alternative treatments, conditional
on observed covariates and test results. It also assumed that the
objective is to maximize expected utility. In this context, the
usefulness of testing is expressed by the expected value of in-
formation, defined succintly in ref. 3 (p. 119) as “the change in
expected utility with the collection of information.”
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My concern is with settings in which the clinician lacks the
knowledge of objective probability distributions required to com-
pute the expected value of information and is unable to credibly
assert subjective distributions in their stead. Then the clinician faces
a problemof decisionmaking under ambiguity, wheremaximization
of expected utility is infeasible. (Use of the term ambiguity to de-
scribe settings where a decision maker does not assert a subjective
distribution on unknown decision-relevant quantities originates
with ref. 4. The term uncertainty describes settings in which a de-
cision maker places a subjective distribution on unknowns.) The
plan that the clinician should adopt depends on his objective,
knowledge, and decision criterion. Decision analysis does not pre-
scribe one best plan. It rather shows how the preferred plan depends
on the objective, knowledge, and decision criterion.
To flesh out these ideas, Optimal Testing and Treatment studies

optimal testing and treatment when a clinician has knowledge en-
abling optimization. Identification of Response to Testing and Treat-
ment When ATPT Is Standard Practice explains why this knowledge
may not be available in practice. To exemplify the broad issue, I
study identification of response to testing and treatment from ob-
servation of a study population where ATPT was the standard
clinical practice. Patient Care Under Ambiguity considers how a cli-
nician might make decisions with partial knowledge. Developing
Clinical Guidelines Under Ambiguity returns to the development of
CPGs, drawing implications from the analysis of the previous
three sections.

Background for the Analysis. The joint analysis of testing and
treatment in this paper builds on my previous research that
studied treatment decisions without considering the possibility
of ordering a test before treatment (refs. 5–8 inter alia). The
decision problems that I have studied share a simple structure.
A decision maker, termed a planner, must choose a treatment
for each member of a population. The planner observes some
covariates for each person. Treatment response may vary with
these covariates and also across persons having the same cova-
riates. In medical applications, the planner may be a clinician
treating patients. The covariates may be demographic attributes,
medical histories, health status observed in office examinations,
and the results of diagnostic tests.
I have supposed that the objective is to maximize the mean of

some outcome of interest across the treated population. The op-
timization problemhas an elementary solution. The planner should
divide the population into groups having the same covariates.
Within each group, he should assign everyone to the treatment with
the highest within-group mean outcome. Thus, persons with dif-
ferent covariates may receive different treatments, but persons in
the same group should be treated uniformly. Differential treatment
of persons with different observed covariates is called profiling or
personalized treatment.
Ideally, the plannermight learn treatment response by performing

a randomized trial or an observational study where treatment se-
lection emulates a trial. However, statistical imprecision and
identification problems limit knowledge in practice. Small sample
sizes limit the precision of inference. Identification problems are
the inferential difficulties that persist even when sample size grows
without bound.
Identification problems often are the dominant difficulty. The

unobservability of counterfactual treatment outcomes creates
a fundamental identification problem when attempting to draw
conclusions from observational studies, where treatment selec-
tion may be related to treatment response. Identification prob-
lems also complicate inference from randomized trials, which
typically do not attain the ideal that persons have in mind when
they refer to them as the “gold standard” for research.
The first task of decision analysis is to characterize the knowl-

edge possessed by a planner who observes specified evidence and
combines it with specified assumptions. For this purpose, I have

brought to bear my research on partial identification of treatment
response, exposited in ref. 6. Partial identification means that the
available evidence and maintained assumptions imply a bound on
treatment response but not a precise value. (Formally, a quantity is
partially identified if the evidence and assumptions imply that the
quantity lies in some informative set of values but do not enable
one to determine its precise value. The set of feasible values is
called the identification region.) I have found that partial identi-
fication is the norm when realistically available evidence is com-
bined with credible assumptions.
The second task is to study treatment choice with partial

knowledge. Consider a planner choosing between two treatments.
Partial identificationmay prevent the planner from knowing which
treatment is better. Specifically, he may know only a bound on the
treatment effect that covers zero. There is no optimal treatment
choice in this setting, but decision theory suggests various decision
criteria that one might view as reasonable. I have found it illumi-
nating to study the properties of expected utility maximization, the
maximin criterion, and the minimax-regret criterion. See refs. 7
and 8 for applications to medical decision making. [As far as I am
aware, research on medical decision making has otherwise not
explicitly studied decision making under ambiguity. However,
scattered studies discuss some related issues. Meltzer (3) discusses
bounding the value of information in the absence of subjective
probability distributions.]
Whereas the analysis in this paper focuses on ambiguity induced

by identification problems, clinicians may also face ambiguity stem-
ming from imprecision in drawing inferences from samples of study
populations. See refs. 9–11 for studies of treatment choice under this
type of ambiguity.

Optimal Testing and Treatment
To substantiate the idea of optimal patient care, we need to specify
a decision maker, a set of feasible actions, and a welfare function
that embodies the objective of the decision maker. This done, we
can ask what action maximizes welfare and what knowledge the
decision maker needs to solve the optimization problem.
Caring for a Population of Patients poses a problem of optimal

testing and treatment by a clinician who cares for a population of
patients. Optimal Testing and Treatment studies its solution. As we
proceed, I point out simplifying assumptions made to illuminate
central issues and provide a tractable foundation for the analysis
ahead in Identification of Response to Testing and Treatment when
ATPT is Standard Practice. However one views the realism of
these assumptions, an important virtue of decision analysis is that
it forces one to make explicit assumptions and derive logically
valid conclusions.

Caring for a Population of Patients.Discussions of health care often
suppose that a clinician should optimize care for each patient in
isolation, without reference to his care of other patients. How-
ever, it is feasible to optimize care for a single patient only if the
clinician knows enough about individual treatment response to
be certain what treatment is best for this patient. Clinicians typ-
ically lack this knowledge, particularly when considering whether
to order a diagnostic test. After all, the medical purpose of a di-
agnostic test is to provide evidence on health status that may be
useful in choosing a treatment. If the clinician were to already
know what treatment is best, there would be nomedical reason to
contemplate a test. (I write that a clinician has no medical reason
to order a test if he already knows what treatment is best. The
adjective “medical” is necessary because a clinician may have
other reasons. A health insurance plan may require the test as
a condition for reimbursement of the cost of treatment. A legal
reason is that a clinician may want to use a test to exhibit due
diligence before choosing a treatment. These considerations may
play roles in clinical practice, but I abstract from them.)
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Rather than consider each patient in isolation, I suppose that the
objective of the clinician is to optimize care on average across the
patients in his practice. Optimization in this sense does not require
that the clinician be certain what treatment is best for each patient.
It only requires knowledge of mean treatment response within
groups of patients having the same observed covariates.
Basic notation for testing and treatment. To formalize the decision
problem, I consider a clinician who cares for the population of
patients who present to him. I consider this patient population to be
predetermined and I assume that patients always comply with the
clinician’s decisions. (In actuality, the patients who present to a cli-
nician may depend on his testing and treatment policies. If patients
can choose among alternative clinicians, they may do so in part on
the basis of their testing and treatment policies. I ignore this pos-
sibility, which substantially complicates analysis.)
When a patient presents, the clinician initially observes cova-

riates that may include demographic attributes, medical history,
indicators of health status, and patient statements of preferences
regarding care and outcomes. The clinician can prescribe a treat-
ment immediately or order a test that may yield further evidence.
In the latter case, the clinician prescribes a treatment after ob-
servation of the test result.
The notation x denotes the initially observed covariates of

a patient and t denotes a treatment. I suppose for simplicity that
there are two feasible treatments, t=Aand t=B. I use s to indicate
whether the clinician orders the diagnostic test, with s = 1 if he
orders the test and s = 0 if he does not. I use r to denote the test
result and suppose that r can take one of the two values p (positive)
or n (negative). Medical professionals commonly call a test result
“positive” if it indicates illness and “negative” otherwise.
With this notation, the actions that the clinician may choose

and the knowledge of patient covariates accompanying each
action may be expressed as a decision tree. The clinician chooses
s = 0 or s = 1with knowledge of x. If he chooses s = 0, he chooses
t = A or t = B with knowledge of x. If he chooses s = 1, he
chooses t = A or t = B with knowledge of (x, r).
Feasible testing and treatment allocations. When the clinician makes
testing decisions, patients with the same value of x are observa-
tionally identical, whereas those with distinct values are observa-
tionally distinct. Hence, the clinician can use x to profile, making
systematically different testing decisions for groups of patients with
different values of x. The clinician cannot profile within the group
of patients having the same value of x but he can randomly dif-
ferentiate within the group, ordering testing for some fraction and
not testing the remainder.
To formalize these ideas, let δS(x) be the fraction of the

patients with covariates x who are tested and 1 − δS(x) be the
fraction not tested. The clinician can choose δS(x) to be any frac-
tion in the interval [0, 1]. This done, he tests a randomly drawn
fraction δS(x) of the patient group and does not test the remainder.
I suppose for simplicity that the patient group is large. Then ran-
domization implies that the tested and untested subgroups have
approximately the same distribution of response to testing and
treatment.
Applying similar reasoning, the clinician can profile treatment

across groups of patients with different observed covariates and
randomly differentiate treatment among patients with the same
observed covariates. When considering treatment, we need to
distinguish three types of patients. Patients who are not tested
have observed covariates x when they are treated. Patients who
are tested have observed covariates (x, r) when treated, where r
equals n or p. Among patients who are not tested, let δT0(x) be
the fraction of the patients with covariates x who receive treat-
ment B and 1 − δT0(x) be the fraction who receive treatment A.
Among those who are tested, let δT1(x, r) be the fraction of the
patients with covariates (x, r) who receive B and 1 − δT1(x, r) be
the fraction who receive A.

Welfare function. Having specified the feasible actions, it remains to
specify the welfare function. The definition of CPGs in the IOM
report (1) stated that recommendations intended to optimize pa-
tient care should be informed by “an assessment of the benefits and
harms of alternative care options” (ref. 1, p. 4). I assume that the
clinician aggregates the benefits and harms of making a particular
testing and treatment decision for a given patient into a scalar
welfare measure denoted y. Thus, y(s, t) summarizes the clinician’s
overall assessment of the benefits and harms that would occur if he
were to make testing decision s and treatment decision t. The
welfare measure may take into account not only health outcomes
but also patient preferences and financial costs. Patients may re-
spond heterogeneously, so y(s, t) may vary across patients.
Mean welfare across the population of patients is determined by

the fraction of those in each covariate group that the clinician
assigns to each testing–treatment option. Suppose that x lies in
a finite set X of possible covariate values. For each x ∈ X, let P(x)
denote the fraction of patients with covariate value x. For r∈ {p, n},
let f(rjx) denote the fraction of patientswith covariates x whowould
have test result r if they were to be tested.
For each possible value of (s, t), let E[y(s, t) jx] be the mean

welfare that would result if all patients with covariates x were to
receive (s, t). Let E[y(s, t) jx, r] be the mean welfare that would
result if all patients with covariates x and test result r were to
receive (s, t). Let δ = [δS(x), δT0(x), δT1(x, r), x ∈ X, r ∈ {p, n}]
denote any specified testing–treatment allocation. Then the
mean welfare W(δ) that would result if the clinician were to
choose allocation δ is obtained by averaging the various mean
welfare values E[y(s, t) jx] and E[y(s, t) jx, r] across the groups
who receive them. Thus,

WðδÞ= Σ
x∈X

PðxÞ�½1− δSðxÞ�½1− δT0ðxÞ�E½yð0;AÞjx�
+ ½1− δSðxÞ�δT0ðxÞE½yð0;BÞjx�
+ Σ

r∈fp;ng
fðrjxÞfδSðxÞ½1− δT1ðx; rÞ�E½yð1;AÞjx; r�

+ δSðxÞδT1ðx; rÞE½yð1;BÞjx; r�g
�
:

[1]

Optimal Testing and Treatment. An optimal testing and treatment
allocation is any δ that maximizes W(δ). A derivation in SI Text,
section A shows that an optimal allocation is

δSðxÞ= 1if Σ
r∈fp;ng

fðrjxÞ½maxfE½yð1;AÞjx; r�;E½yð1;BÞjx; r�g�
≥maxfE½yð0;AÞjx�;E½yð0;BÞjx�g; = 0

otherwise:

[2A]

δT0ðxÞ= 1if E½yð0;BÞjx�≥E½yð0;AÞjx�; = 0
otherwise: [2B]

δT1ðx; pÞ= 1if E½yð1;BÞjx; p�≥E½yð1;AÞjx; p�;= 0
otherwise: [2C]

δT1ðx; nÞ= 1if E½yð1;BÞjx; n�≥E½yð1;AÞjx; n�;= 0
otherwise: [2D]

Each maximum is unique when the stated inequality is strict,
whereas all allocations yield the same welfare when the values
are equal.
The optimal treatment allocations given in Eqs. 2B–2D are

transparent. Whatever testing decisions the clinician may make,
he should choose treatments that maximize mean welfare con-
ditional on the observed covariates and test results.
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The optimal testing allocation given in Eq. 2A is more subtle.
Suppose first that testing has no direct effect on the welfare of
patients with covariates x. Thus, suppose that y (1, t) = y(0, t) for
both treatments and all patients. Jensen’s inequality implies that

Σ
r∈fp;ng

fðrjxÞ½maxfE½yð1;AÞjx; r�;E½yð1;BÞjx; r�g�
≥maxfE½yð1;AÞjx�;E½yð1;BÞjx�g:

[3]

Moreover,

yð1;TÞ= yð0;TÞ=>maxfE½yð1;AÞjx�;E½yð1;BÞjx�g
=maxfE½yð0;AÞjx�;E½yð0;BÞjx�g: [4]

Hence, it is optimal to test all patients with covariates x.
Why test if testing has no effect on the welfare of any patient?

The explanation is that testing yields evidence on health status,
which may be useful in decision making. Jensen’s inequality shows
that the mean welfare achieved by conditioning treatment on (x, r)
is at least as high as that achieved by conditioning only on x. [Basu
and Meltzer (12) use this implication of Jensen’s inequality to
recommend that clinicians elicit the preferences of their patients to
individualize care. In their analysis, the test is a questionnaire
eliciting patient preferences. Responding to the questions does not
affect welfare directly.]
This conclusion continues to hold if testing has no negative

effect on welfare, that is, if y(1, t) ≥ y(0, t) for all treatments
and patients. Hence, a decision not to test can be optimal only
if testing sometimes negatively affects welfare. This may hap-
pen if testing is invasive, is costly, or may harm patients by
delaying treatment.
The subtlety is that testing may be optimal even if it always has

a negative direct welfare effect, that is, even if y(1, t) < y(0, t) for
all treatments and patients. The explanation again is that testing
yields evidence on health status. Eq. 2A makes precise the cir-
cumstances in which the information value of testing outweighs
any direct negative effect that testing may have on welfare.
It remains to characterize when testing has positive informa-

tion value for decision making. The form of Jensen’s inequality
given in Eq. 3 is only a weak inequality. Testing has positive in-
formation value for decision making when the inequality is strict.
This occurs if and only if (a) the test result is uncertain in the
absence of testing and (b) the optimal treatment decision varies
with the test result.
Illustration: aggressive treatment vs. active surveillance. To illustrate,
consider a choice between aggressive treatment of a possible illness
(say t = B) and active surveillance (say t =A). The ATPT practice
chooses aggressive treatment if the result of a test is positive and
active surveillance if the result is negative or if the patient is not
tested. Under the assumptions maintained in this section, ATPT
is optimal if E[y(0, A) jx] > E[y(0, B) jx], E[y(1, A) jx, n] > E[y(1,
B) j x, n], and E[y(1, B) j x, p] > E[y(1, A) jx, p].
What about the decision to test? The mean-response inequal-

ities stated above imply that optimal treatment varies with the test
result. Hence, testing has positive information value, a necessary
condition for testing to be optimal. However, positive information
value does not suffice to conclude that testing is optimal. It is op-
timal if the inequality in Eq. 2A holds. Then the information value
of testing is large enough to exceed any negative effect on welfare
that testing may have.

Identification of Response to Testing and Treatment When
ATPT Is Standard Practice
Determination of optimal treatments for untested and tested pa-
tients requires sufficient knowledge of E[y(0, t) jx] and E[y (1, t) j x,
r], respectively, for t ∈ {A, B}, r ∈ {n, p}, and x ∈X. One need not
know the precise values of these quantities, but one must know

whether the inequalities in Eqs. 2B–2D hold. Optimal testing also
requires enough knowledge of the distribution f(rjx) of test results
to conclude whether the inequality in Eq. 2A holds.
In principle, one might obtain this knowledge by performing

a randomized trial or an observational study that emulates a trial.
An ideal trial with four arms, one for each value of (s, t), would
reveal mean response and the distribution of test results. Murphy
(13) studies estimation of optimal plans, using such data. How-
ever, an ideal trial often is infeasible. Available evidence may
come from observational studies and/or imperfect trials. Hence,
partial knowledge is common in practice.
A large body of research has analyzed identification of treatment

response without considering the possibility of ordering testing
before treatment. Here I provide new analysis of identification of
response to testing and treatment. To study a reasonably realistic
setting, I suppose that one observes a study population where
ATPT was standard clinical practice. (I do not attempt to explain
how ATPT became standard practice in the study population. In
particular, I do not assume that ATPT solves the optimization
problem inOptimal Testing and Treatment.) I suppose that no other
evidence is available. For example, the clinician is unable to learn
over time by observing the outcomes of his own testing and treat-
ment decisions and drawing lessons for future patients.
I analyze the identification problem that arises from the unob-

servability of counterfactual testing and treatment outcomes. To
focus attention on this core difficulty, I abstract fromothers thatmay
arise in practice. I suppose that one observes the entire study pop-
ulation rather than just a sample. This enables study of identification
per se, without having to also cope with statistical imprecision. I
suppose that the study population has the same composition as the
population to be treated. Hence, retrospective findings about re-
sponse to testing and treatment in the study population imply the
same prospective findings in the population to be treated. I also
suppose that outcomes are bounded and, to simplify notation,
measure welfare on the unit interval.
As in previous research, I find it illuminating to first analyze

identification with relatively weak maintained assumptions and
then consider stronger assumptions that may be credible in some
applications. Basic Analysis assumes only that the population to be
treated has the same composition as the study population. Com-
bining the evidence with this assumption partially identifies some
of the quantities relevant to optimization of testing and treatment
but reveals nothing about others. Random Testing, Test Result as
a Monotone Instrumental Variable, and Monotone Response to
Testing add further assumptions that sharpen inference.

Basic Analysis. To optimize care, the clinician wants to learn
enough about {E[y(0, t) jx], E[y(1, t) jx, r], f(rjx)} for t ∈ {A, B},
r ∈ {n, p}, x ∈X to evaluate the inequalities in Eq. 2. Thus, there
are eight relevant quantities for each value of x. Given the basic
assumption alone, observation of the outcomes yielded by the
ATPT practice reveals nothing about three quantities and par-
tially identifies the other five.
The evidence reveals nothing about E[y(0, B) jx], E[y(1, B) jx, n],

and E[y(1, A) jx, p]. It is uninformative about E[y(0, B) jx] and
E[y(1, B) jx, n] because ATPT prescribes treatment A for all
patients who are untested or who are tested and have negative
results. The evidence is uninformative about E[y(1, A) jx, p] because
ATPT prescribes B for all tested patients with positive results.
When outcomes are bounded, the basic assumption and the

evidence partially identify E[y(0, A) jx], E[y(1, A) jx, n], E[y(1, B) j
x, p], f(r= pjx), and f(r= njx). To analyze each quantity, we need to
distinguish the members of the study population who were and
were not tested. Thus, let z= 1 if a person was tested and z= 0 if he
was not. The present basic analysis assumes nothing about the
association of z with potential outcomes.
The identification region for each partially identified quantity

is a bound, given below in Eqs. 5–8. The proofs are collected
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in SI Text, section B. In what follows, g(n, x) ≡ f(r = n j x, z =
1)P(z = 1 j x) + P(z = 0 j x) and g(p, x) ≡ f(r = p j x, z = 1)P(z =
1 j x) + P(z = 0 jx):

E½yð0;AÞjx; z= 0�Pðz= 0jxÞ≤E½yð0;AÞjx�
≤E½yð0;AÞjx; z= 0�Pðz= 0jxÞ+Pðz= 1jxÞ:

[5]

E½yð1;AÞjx; n; z= 1�fðr= njx; z= 1ÞPðz= 1jxÞ=gðn; xÞ
≤E½yð1;AÞjx; n�≤ fE½yð1;AÞjx; n; z= 1�fðr= njx; z= 1ÞPðz= 1jxÞ
+Pðz= 0jxÞg=gðn; xÞ: [6]

E½yð1;BÞjx; p; z= 1�fðr= pjx; z= 1ÞPðz= 1jxÞ=gðp; xÞ
≤E½yð1;BÞjx; p�≤ fE½yð1;BÞjx; p; z= 1�fðr= pjx; z= 1ÞPðz= 1jxÞ
+Pðz= 0jxÞg=gðp; xÞ: [7]

fðr= njx; z= 1ÞPðz= 1jxÞ≤ fðr= njxÞ
≤ fðr= njx; z= 1ÞPðz= 1jxÞ+Pðz= 0jxÞ: [8A]

fðr= pjx; z= 1ÞPðz= 1jxÞ≤ fðr= pjxÞ
≤ fðr= pjx; z= 1ÞPðz= 1jxÞ+Pðz= 0jxÞ: [8B]

All bounds are generally informative, each having a width that is
less than one except in special cases.

Random Testing. Each of the five quantities that is partially
identified in the basic analysis becomes point identified if testing
is random conditional on x. Random testing may occur through
performance of a randomized trial of testing, which is not pro-
hibited by the ATPT practice. Or it may occur without an explicit
trial if clinicians caring for the study population make testing
decisions that are statistically independent of test results and of
response to testing and treatment.
Random testing implies these equalities:

E½yð0;AÞjx�=E½yð0;AÞjx; z= 0�: [9A]

E½yð1;AÞjx; n�=E½yð1;AÞjx; n; z= 1�: [9B]

E½yð1;BÞjx; p�=E½yð1;BÞjx; p; z= 1�: [9C]

fðr= njxÞ= fðr= njx; z= 1Þ: [9D]

fðr= pjxÞ= fðr= pjx; z= 1Þ: [9E]

The evidence reveals the right-hand side of Eq. 9A if P(z= 0jx)> 0
and it reveals the right-hand sides of Eqs. 9B–9E if P(z = 1jx) > 0.
Hence, all of the quantities that were partially identified in the
basic analysis are now point identified provided only that positive
fractions of the study population are untested and tested.
The assumption of random testing does not help to identify

E[y(0, B) jx], E[y(1, B) jx, n], and E[y(1, A) jx, p]. However, other
assumptions are informative about these quantities. I consider
two such assumptions below.

Test Result as aMonotone Instrumental Variable.Patients with negative
results on a diagnostic test are often thought to be healthier than
ones with positive results. Hence, a clinician may find it credible to
predict that patients with negative test results have better future

prospects, on average, than do patients with positive results.
Consider, for example, use of a PET/computer-assisted tomogra-
phy (CT) scan to detect metastasis of a cancer diagnosed at a pri-
mary site. A clinician may reasonably predict better prospects, on
average, for patients with negative scans than for those with
positive ones.
Formally, the clinician may find it credible to assume that

the inequality

E½yðs; tÞjx; n�≥E½yðs; tÞjx; p� [10]

holds for one or more specified values of (s, t). This inequality
asserts that the test result is a monotone instrumental variable
(MIV), as defined in ref. 14.
Assertion of Eq. 10 for (s, t) = (1, A) yields an upper bound on

E[y(1, A) jx, p]. This assumption alone implies that E[y(1, A) jx, p]
is no larger than the upper bound on E[y(1, A) j x, n] given in Eq.
6. If one also assumes random testing, then E[y(1, A) jx, p] is no
larger than the known value of E[y(1, A) jx, n] given in Eq. 9B.
Analogously, assertion of Eq. 10 for (s, t) = (1, B) yields

a lower bound on E[y(1, B) jx, n]. This assumption alone implies
that E[y(1, B) jx, n] is no smaller than the lower bound on
E[y(1, B) jx, p] given in Eq. 7. If one also assumes random testing,
then E[y(1, B) jx, n] is no smaller than the known value of
E[y(1, B) jx, p] given in Eq. 9C.

Monotone Response to Testing. In some settings, a clinician may
believe that testing cannot directly improve welfare but may de-
crease it. For example, he may think that testing has no therapeutic
effect but may be invasive or costly. Formally, the clinician may find
it credible to assume the inequality

yð0; tÞ≥ yð1; tÞ [11]

for specified values of t and for all patients. This is a monotone-
response assumption as defined in ref. 15.
Assertion of Eq. 11 for t=B yields a lower bound onE[y(0, B) jx],

the bound depending on what other assumptions are imposed. To
begin, it follows from this assumption that

E½yð0;BÞjx�≥E½yð1;BÞjx�: [12]

In the absence of other assumptions, we may extend Basic
Analysis to derive an informative lower bound on E[y(1, B) jx] and,
hence, a lower bound on E[y(0, B) jx]. The derivation is somewhat
complex, so I omit it.
A simple finding emerges if one combines the monotone-re-

sponse assumption with Eq. 10 for (s, t) = (1, B). The latter as-
sumption implies that E[y(1, B) jx] ≥ E[y(1, B) jx, p]. This and
Eq. 12 imply thatE[y(0, B) jx]≥E[y(1, B) jx, p].Hence, E[y(0, B) jx]
is no smaller than the lower bound on E[y(1, B) jx, p] given in Eq. 7.
If one also assumes random testing, then E[y(0, B) j x] is no smaller
than the known value of E[y(1, B) jx, p] given in Eq. 9C.

Patient Care Under Ambiguity
Identification of Response to Testing and TreatmentWhen ATPT Is
Standard Practice demonstrated that identification problems
occur regularly when studying response to testing and treatment.
Combining available evidence with credible assumptions may
yield informative bounds on response but not precise conclusions.
Hence, identification problems make partial knowledge common
in practice.
Clinicians must somehow use the knowledge they have to make

decisions about patient care. This section discusses how decision
theory can contribute to clinical practice. States of Nature and
Dominance describes basic principles and Decision Criteria con-
siders specific decision criteria.
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States of Nature and Dominance. Suppose that a clinician wants to
choose a testing–treatment allocation that maximizes the welfare
function in Eq. 1. However, he has only partial knowledge of the
quantities that determine welfare. He knows that they jointly lie
in some identification region, determined by the available evi-
dence and the assumptions that he finds credible. Hence, the
clinician does not know his welfare function. He knows only that
it is one of a set of functions, each corresponding to a feasible
value for the unknown quantities.
The first step in application of decision theory is to specify the

set of feasible welfare functions. Let Γ index the feasible values
for the quantities that determine welfare. Thus, let {Eγ[y(0, t) jx],
Eγ[y (1, t) jx, r], fγ(rjx), t ∈ {A, B}, r ∈ {n, p}, x ∈ X}, γ ∈ Γ be the
joint identification region for the vector. Then the feasible wel-
fare functions are [W(*, γ), γ ∈ Γ], where

Wðδ; γÞ= Σ
x∈X

PðxÞ�½1− δSðxÞ�½1− δT0ðxÞ�Eγ ½yð0;AÞjx�
+ ½1− δSðxÞ�δT0ðxÞEγ ½yð0;BÞjx�
+ Σ

r∈fp;ng
fγðrjxÞ

�
δSðxÞ½1− δT1ðx; rÞ�Eγ½yð1;AÞjx; r�

+ δSðxÞδT1ðx; rÞEγ½yð1;BÞjx; r�
��
:

[13]

Eq. 13 gives all feasible versions of the welfare function in Eq. 1,
each version indexed by γ. In decision theory, γ is called a state of
nature and Γ is called the state space.
A basic principle of decision theory is that a decision maker

should not choose a dominated action. In the present context, δ
is dominated if there exists another allocation that is certain to
yield at least the same welfare and may yield more. Thus, δ is
dominated if there exists a δ′ such that W(δ, γ) ≤ W(δ′, γ) for all
γ ∈ Γ and W(δ, γ) < W(δ′, γ) for some γ ∈ Γ. SI Text, section C
illustrates this.

Decision Criteria. The decision-theoretic prescription that a clini-
cian should not choose a dominated allocation is compelling.
However, how should he choose among undominated allocations?
Let δ and δ′ be two undominated allocations. Then either

[W(δ, γ) = W(δ′, γ), γ ∈ Γ] or there exist γ1 ∈ Γ and γ2 ∈ Γ such
that W(δ, γ1) > W(δ′, γ1) and W(δ, γ2) < W(δ′, γ2). In the former
case, the clinician is indifferent between δ and δ′. In the latter case,
he cannot order the two allocations: δmay yield a better or a worse
outcome than δ′. Thus, the question “How should the clinician
choose?” has no unambiguously correct answer.
The fact that there is no one correct choice among undomi-

nated allocations explains why, in the introductory section, I crit-
icized the supposition in the 2011 IOM report that CPGs make

recommendations intended to optimize patient care. Optimization
may be infeasible when a clinician has only partial knowledge.
When optimization is infeasible, clinicians must still choose

patient care. Hence, it is important to ask what guidance decision
theory offers on choice among undominated actions. Many per-
spectives have been expressed and various decision criteria stud-
ied. I describe some prominent criteria in SI Text, section D.

Developing Clinical Guidelines under Ambiguity
I observed in the introductory section that rigorous medical de-
cision making requires specification of the objective, knowledge,
and the decision criterion. I then studied a class of testing and
treatment decisions. To conclude, I return to the development of
CPGs. I think it is important to separate two tasks for CPGs.One is
to characterize medical knowledge. The other is to make recom-
mendations for patient care.
Accomplishment of the first task has substantial potential to

improve clinical practice. Characterization of available knowl-
edge should draw on all available evidence, experimental and ob-
servational. It should maintain assumptions that are sufficiently
credible to be taken seriously. It should combine the evidence and
assumptions to draw logically valid conclusions.
I am skeptical whether CPGs should undertake the second task.

Making rigorous recommendations for patient care asks the
developers of CPGs to aggregate the benefits and harms of care
into a scalar measure of welfare. And it requires them to specify
a decision criterion to cope with partial knowledge. These activities
might be uncontroversial if there were consensus about how wel-
fare should be measured and what decision criterion should be
used. However, care recommendations may be contentious if per-
spectives vary across clinicians, patients, and other relevant parties.
Then the recommendations made by the developers of CPGs may
not embody the considerations that motivate actual care decisions.
An alternative to having CPGs make care recommendations

would be to bring specialists in decision analysis into the clinical
team. Modern clinical practice often has a group of professionals
jointly contribute to patient care. Surgeons and internists may
work together and in conjunction with nurses and technical per-
sonnel. However, existing patient-care teams do not ordinarily
draw on professionals having specific expertise in the framing and
analysis of complex decision problems. It may be that adding such
professionals to clinical teams would be more beneficial to patient
care than asking physicians to adhere to care recommendations
made by distant organizations.
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