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Abstract

Background—Studies of the built environment and physical activity have implicitly assumed
that a substantial amount of activity occurs near home, but in fact the location is unknown.

Purpose—Examine associations between built environment variables within home and work
buffers and moderate-vigorous physical activity occurring within these locations.

Methods—Adults (/7= 148) from Massachusetts wore an accelerometer and GPS unit for up to
four days. Moderate and vigorous intensity activity was quantified within 50 m and 1 km home
and work buffers. Multiple regression models were used to examine associations between five
objective built environment variables within 1 km home and work buffers (intersection density,
land use mix, population and housing unit density, vegetation index) and moderate-vigorous
physical activity within those areas.

Results—The mean daily minutes of moderate-vigorous physical activity accumulated in all
locations = 61.1 + 32.8, while duration within 1 km home buffers = 14.0 + 16.4 min. Intersection
density, land use mix, and population and housing unit density within 1 km home buffers were
positively associated with moderate-vigorous physical activity in the buffer, while a vegetation
index showed an inverse relationship (all p< 0.05). None of these variables showed associations
with total moderate-vigorous activity. Within 1 km of work, only population and housing unit
density were significantly associated with moderate-vigorous physical activity within the buffer.

Conclusions—TFindings are consistent with studies showing that certain attributes of the built
environment around homes are positively related to physical activity, but in this case only when
the outcome was “location-based”. Simultaneous accelerometer-GPS monitoring shows promise
as a method to improve understanding of how the built environment influences physical activity
behaviors by allowing activity to be quantified in a range of physical contexts and thereby provide
a more explicit link between physical activity outcomes and built environment exposures.

Introduction

Physical inactivity continues to be a significant public health problem among the U.S.
population and in numerous other countries. This is true despite a shift in behavior change
paradigms from one dominated by a focus on psychological factors and individual
responsibility to one recognizing that environmental factors are important in shaping healthy
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behaviors of populations, such as physical activity.13 A growing body of evidence
demonstrates positive associations between characteristics of neighborhood built
environments, including higher levels of land use mix, population and residential density,
and street connectivity, and participation in recreational and utilitarian physical activity.45
Despite a rapid growth in this research and improved methods of measuring both the built
environment (e.g., via geographic information systems (GIS)) and physical activity
outcomes (e.g., via accelerometers)—the current evidence base is still emerging. One area
needing more work is use of an activity monitoring approach that provides a more precise
spatial match between built environment exposures and physical activity outcomes—an
approach that spatially contextualizes physical activity behaviors.”

Current evidence has not yet revealed the dynamic interactions between individuals, their
environment, and their physical activity behaviors over time and space. Recent studies have
examined relationships between objective built environment variables and objectively
measured physical activity using an analytic approach that assumes activity occurs within a
designated area surrounding a residential address® or within another defined neighborhood
area.? The lack of specificity with respect to where physical activity occurred in these
studies may contribute to dilution of the observed associations, resulting in an inability to
observe true associations or an underestimation of the strength of real associations.

To address this limitation, a sample of free-living adults was monitored with accelerometer
and global positioning system (GPS) devices. This study builds on previous research by
Rodriguez and colleagues’ by examining a larger sample over a longer monitoring period
and using different methodological approaches. The aims of this cross-sectional study were
to: 1) quantify moderate-vigorous physical activity occurring within buffers around home
and work locations using accelerometer and GPS data; and 2) examine associations between
built environment characteristics and moderate-vigorous physical activity within the buffers
(i.e., “location-based” physical activity).

and Recruitment Procedures

Participants were adults (19-78 years of age) who completed brief (5 min) intercept surveys
at one of five trails in eastern Massachusetts, were either walking, jogging/running,
bicycling or in-line skating, reported using the trail at least four times during the previous 4
weeks, and agreed to wear an accelerometer and GPS unit for four days. The sampling frame
was limited to trail users because this project was a follow-up to a previous study examining
physical characteristics of trails.10

The specific trail location, time of day, and day of the week for intercepts were
systematically varied. Surveys were conducted on a minimum of two weekdays and two
weekend days during the fall of 2004 and spring and summer of 2005. Among 1194 trail
users surveyed, 294 individuals (24.6%) initially agreed to participate in activity monitoring
and provided contact information. Equipment was deployed to 178 individuals (14.9% of
those surveyed). Among 116 individuals who provided contact information, but did not
participate, the primary reasons were schedule conflicts, loss of interest, or inability to re-
contact them. Methods for this study were approved by the Human Subjects Committee at
the Harvard School of Public Health. Participants in the activity monitoring signed an
informed consent form.

The Actigraph™ accelerometer (model 7164) is a small, lightweight (42.6g) uniaxial
activity monitor that captures vertical acceleration and stores acceleration data as
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dimensionless units!! referred to as activity counts (cts). Previous studies in both the
laboratory and field have established the validity of the Actigraph for measuring the volume,
intensity and temporal patterns of activities such as walking and running.12-14
Accelerometers were initialized to collect data in one-minute epochs. After each
deployment, accelerometers were checked using the manufacturer’s calibration device and
recalibrated as necessary. Participants were instructed to wear the monitor on their right hip
using an adjustable nylon belt.

The GeoStats (Atlanta, GA) Wearable GeoLogger™ is a GPS device designed for collection
of detailed travel data. Components included a data logger that recorded position and speed,
a rechargeable battery and a patch antenna (total weight ~ 0.45 kg). Small backpacks were
purchased to house the units and the antenna was fastened to one of the shoulder straps
(Figure 1). The GPS units were initialized to spatial coordinates within the metropolitan
Boston area and were initially programmed to collect data at five-second intervals.
Subsequently, when a longer-lasting battery became available, this interval was changed to
one second.

Data Collection

Research staff met participants at a public location (e.g., library, town hall, coffee shop) 1-3
days before activity monitoring began. Participants completed an informed consent form,
were instructed on how to wear the equipment, and were given a daily log sheet for both
devices. Participants were instructed to wear the accelerometer at all times, except when
sleeping, bathing, or swimming, for four consecutive days (2 weekend days and 2
weekdays). They were also told to wear the GPS unit anytime they were outdoors,
regardless of whether they were being physically active (e.g., walking) or traveling in a car,
train, or bus. After the monitoring period, research staff met participants within 1-3 days to
collect equipment, review log sheets, and have participants complete the International
Physical Activity Questionnaire.1®

Data Processing

Accelerometer and GPS data were downloaded using Actigraph and GeoStats software,
respectively. For each participant, an analyst manually reviewed animations of the raw GPS
data over the 4-day monitoring period and identified outlying points and discontinuities.
Outliers resulting from poor GPS signals and multiple points clouding around stops were
removed from the database. After this step, a processor was applied to aggregate the GPS
points into one-minute intervals that temporally aligned with the accelerometer data. GPS
and accelerometer data were merged using their respective time stamps and processed into a
database with one record for each minute of activity. The precision of the clock systems and
synchronicity of the GPS and accelerometer data that allowed for merging were described
previously.16 GPS coordinates for each monitoring minute (starting and ending latitude and
longitude) were imputed prospectively in cases where a missing GPS reading followed a
monitoring minute with “actual” (non-imputed) coordinates. This last known GPS point
position was maintained for each minute until a new reading was obtained.

Physical activity summary variables were created for monitor wearing time (min/d), average
counts per minute per day (ct/min/d) and for time (min) spent in moderate (1952-5724 ct/
min) and vigorous activity (= 5725 ct/min)12. Valid days of monitoring were based on both
accelerometer and GPS criteria. A valid accelerometer day was defined as = 600 minutes of
wear time, determined using the algorithm developed by NHANES.17.18 To establish criteria
for a valid GPS day, the distribution of non-imputed GPS readings for 642 participant-days
of monitoring that had valid GPS readings were examined. GPS monitoring time ranged
from 2 to 601 minutes per day, with mean and median values of 130.7 + 90.1 and 113.0
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minutes, respectively. A minimum value equivalent to 1 standard deviation below the mean
(i.e., = 40 minutes) was selected as the criterion for a valid GPS day. Out of 178
participants, 151 met the accelerometer and GPS criteria. Three additional individuals were
excluded because their home or work address was missing or was not considered valid,
resulting in a final sample = 148.

GIS Processing: Location-Based Physical Activity Variables

A GIS road layer (StreetMap 2005, Environmental Systems Research Institute, Redlands,
CA) was used for geocoding addresses and to create network buffers. In total, 174 home
addresses and 87 work addresses were successfully located using standard geocoding
procedures (out of 174 and 96 participants who provided these addresses, respectively).
Participants who provided work addresses reported only one work site; thereby obviating the
need to geocode and quantify activity within multiple work buffers. Areas within a 1 km
road network distance of home and work locations were delineated using network polygon
buffers. This buffer size is consistent with recent studies.8:1920 Turning restrictions
applicable to vehicular traffic were not used in the network buffer algorithm because the
intention was to model pedestrian movement. Interstates, major highways, and off-ramps
were excluded from the street network.

GIS procedures were used to create dichotomous (yes/no) location variables that
characterized where a participant was during each monitoring minute. The last GPS point
recorded during each minute was used to represent the spatial location associated with the
corresponding accelerometer reading. Minutes occurring within 50 m of home and work
addresses were identified based on straight-line distance from geocoded addresses to the
GPS coordinates (point) for a given minute. These variables were used to estimate activity
occurring indoors at home and work or within close proximity to these locations. Spatial
queries were also applied to create location variables that identified whether GPS
coordinates occurred within a participant’s home or work 1 km buffer. Location variables
for the 50 m and 1 km buffers were mutually exclusive. If a given minute was identified as
falling within the 50 m buffer, it was coded as not in the 1 km buffer. Location-based
physical activity variables were then created using the GPS and accelerometer data for each
monitoring minute. Summary activity variables were created for each of the four buffers
examined (50 m home and work, 1 km home and work). An illustration of location-based
physical activity occurring near one participant’s home and work is shown in Figure 2.

GIS Processing: Built Environment Variables

Within the 1 km home and work buffers, five built environment variables that have been
used in previous studies were created®6.21-25: intersection density (connectivity), land use
mix, residential population density, housing unit density, and a vegetation index (see Table
1). Intersection density was defined as the number of intersections within the network buffer
divided by the total street segment length within that buffer (intersections per km). Land use
mix was estimated using 1999 land use data provided by the Massachusetts Office of
Geographic and Environmental Information (MassGIS http://www.mass.gov/mgis/). Four
categories of land use (residential, commercial, recreational, urban public) were used in an
entropy formula developed by Frank and colleagues.1® Population and housing unit density
within network buffers were estimated from Census 2000 data at the block group level using
methods modified from Forsyth.26 Greenness within network buffers was estimated using a
satellite image of the study region captured on 27 September 2000 by the Landsat Enhanced
Thematic Mapper Plus sensor. The normalized difference vegetation index (NDVI) is
commonly used in environmental remote sensing applications and has been shown to be a
significant predictor of plant health, percent vegetated ground cover, and photosynthetic
green biomass.2” NDVI is a unitless metric that compares reflectance values in satellite
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remote sensing measurements. NDV1 values range between +/- 1, with higher values
indicative of healthy green vegetation and low values characteristic of non-vegetated land
cover. Greenness was estimated as the mean NDVI within network buffers following
methods used in previous studies that found this variable was a significant predictor of
smaller increases in child BMI24 and increased pedestrian trail traffic.23

Statistical Analysis

Results

Descriptive statistics (means and standard deviations) were used to summarize total
moderate-vigorous physical activity and activity accumulated within buffers (i.e., location-
based physical activity). The percentage of total time within each buffer classified as
moderate and vigorous was also calculated. Five separate multiple linear regression models
(one for each built environment variable) were used to estimate associations between the
built environment variables within the home buffer and mean minutes per day of moderate-
vigorous physical activity, controlling for potential confounding by age, gender and race.
Associations with total and location-based moderate-vigorous physical activity were
examined. Both outcomes had non-normal distributions; therefore, square root
transformations were used. Location-based physical activity around work was also non-
normally distributed. Due to the large number of observations with ‘0’ values, square root
and log transformations did not provide adequate correction. Therefore, associations were
estimated using a generalized linear model (Poisson regression). All data analyses were
completed during 2009.

Participant and Monitoring Characteristics

Participants’ average age was 44.0 £ 13.0 years with no significant differences by gender.
Twenty-seven percent of the sample was non-white and about twice as many women as men
were African-American or black (Table 2). Overall, participants were well educated.
Women tended to live in areas with higher intersection density, land use mix, and density, as
compared to men (Table 2). Alternatively, the vegetation index was slightly higher for men
than women. None of these gender differences were statistically significant.

Forty-nine percent of 148 participants (/= 72) had 4 valid monitoring days, 22 % (= 32)
had 3 days, 17 % (/7= 25) had 2 days, and 13 % (/7= 19) had 1 valid day. The average
number of monitoring days was 3.1 £ 1.1; average monitor wearing time was 14.4 + 1.6 hrs/
d, and mean ct/min/d was 492.3 + 198.1. The average number of daily monitoring minutes
within the 1 km and 50 m home buffers was 201.8 + 198.4 and 194.7 + 199.1 min,
respectively. Among a subset of participants with work addresses (/= 80), mean minutes in
the 1 km and 50 m work buffers were 134.9 + 130.9 and 52.9 + 103.2, respectively. Mean
monitoring minutes in the 1 km and 50 m work buffers were lower on weekend days (28.1 +
84.3 and 9.4 + 70.1, respectively) and substantially higher on weekdays (268.5 + 234.0 and
108.0 + 172.9, respectively).

Moderate and Vigorous Physical Activity by Location

The median distance from home to locations where minutes of moderate-vigorous physical
activity took place was 1855 m (mean = 7413.5 + 17438.8 m). Table 3 displays results for
moderate and vigorous intensity physical activity at all locations and within home and work
buffers. Moderate-vigorous intensity physical activity averaged 61 minutes per day. On
average participants accumulated 6 minutes of moderate-vigorous intensity physical activity
per day within their 50 m home buffer and 14 minutes within the 1 km home buffer. The
corresponding proportion of daily monitoring time within the 1 km home and work buffers
of moderate to vigorous intensity was 11.6% and 8.2%, respectively. There were no
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significant differences between men and women in either mean minutes of activity or the
proportion of time that was moderate or vigorous intensity in both home and work buffers.

Associations between Built Environment and Location-based Physical Activity

Associations between the five built environment variables within the 1 km home buffers and
total moderate-vigorous physical activity (i.e., physical activity irrespective of location)
were non-significant (Table 4). However, higher levels of intersection density, land use mix,
residential population density, and residential housing unit density were associated with
higher levels of moderate-vigorous physical activity within the 1 km home buffer. The
vegetation index was inversely associated with moderate-vigorous physical activity within
this buffer. The amount of variance in location-based moderate-vigorous physical activity
explained by the five separate adjusted regression models ranged between 11.4% and 13.6%.
The variance explained by the built environment variables alone (i.e., unadjusted models)
ranged between 4.7% and 8.2%. Interactions between gender and race/ethnicity and each
built environment variable were examined (models not shown). Significant interactions were
found between gender and intersection density and between race/ethnicity and residential
population density. In stratified models, intersection density was positively related to
moderate-vigorous activity within women’s home buffers, but not for men. Additionally,
residential population density was positively associated with location-based activity for
whites, but not for non-whites.

Unadjusted models predicting activity within work buffers indicated intersection density
was inversely associated, while residential population and housing unit density were
positively associated with moderate-vigorous physical activity (Table 5). In adjusted
models, only residential population density and housing unit density remained statistically
significant.

Discussion

Using a novel method of combining accelerometer and GPS data, the authors found
associations between built environment variables within 1 km home buffers and location-
based moderate-vigorous physical activity, but no associations between these variables and
total moderate-vigorous physical activity. In adjusted analyses, only residential population
density and housing unit density within a 1 km work buffer were related to moderate-
vigorous physical activity occurring within that area.

This is one of the first studies to simultaneously monitor free-living adults with
accelerometers and GPS devices, objectively quantify what is referred to as “location-based
physical activity,” and examine relationships between objective measures of the built
environment and location-based activity outcomes. Also, though recent studies have
examined relationships between the built environment and walking to work,28 there do not
appear to be any previous attempts to characterize the built environment within a buffer
around work and examine effects on physical activity within that buffer.

Previous studies examining associations between GIS-derived built environment measures
and physical activity measured with accelerometers provide the most appropriate basis of
comparison for the present study. Only one other published study has simultaneously
monitored free-living adults with accelerometers and GPS devices and examined these data
in relation to the built environment.” Although investigators were limited by a small sample
size (~30), they also found no associations between objective built environment variables
and total moderate-vigorous physical activity. Also, consistent with the current study,
Rodriguez and colleagues found that compared to adults who performed a majority of their
physical activity outside their neighborhood, adults performing most of their activity within
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their neighborhood lived in areas with higher density, street connectivity, and land use mix.”
In a study of adults from metropolitan Atlanta, investigators found that an objective measure
of walkability, comprised of land use mix, net residential density, and intersection density,
was positively associated with moderate physical activity assessed with accelerometers.®
This is consistent with findings in this study for location-based physical activity. However,
contrary to the Atlanta study, there was no relationship between built environment variables
and moderate-vigorous physical activity accumulated at all locations. Also, each built
environment variable examined in the current study appears to have explained more
variance in location-based physical activity than the previous study found for total moderate
activity. Indirectly this supports the proposition that researchers may see stronger effects of
built environment variables when physical activity outcomes are spatially linked to specific
physical contexts.

The results from this study generally support the notion that higher levels of land use mix,
street connectivity, and density are related to higher levels of physical activity.
Alternatively, the finding that landscape greenness within 1 km home buffers was inversely
associated with physical activity appears inconsistent with recent studies in adults and
youth,24:25.29.30 which have found positive effects of greenness on outcomes such as trail
traffic and body mass index. The presumed link is both perceptual and pragmatic; green
landscapes may be visually appealing and greenness can be indicative of spaces conducive
to outdoor physical activity (e.g., parks, greenway trails, and sports fields). In the present
study the vegetation index within home buffers showed strong negative correlations with the
other four built environment variables, ranging from —0.70 to —0.83. Therefore, in buffers
with higher levels of street connectivity, land use mix, and density, greenness was lower.
The relative influence of vegetation index on activity may vary across different contexts and
may take a subordinate role to connectivity and density in more developed areas. Further
research is needed to determine the interactive effects of greenness and other built
environment variables.

In addition to providing a more explicit link between physical activity outcomes and built
environment exposures, another potential contribution of this study is the quantification of
moderate-vigorous physical activity in different physical contexts that included home and
work buffers. For example, it was found that on average, more moderate-vigorous physical
activity occurred outside of home and work buffers than occurred within these areas (66.7 £
25.2% and 81.9 + 24.0%, respectively). This finding suggests the need for more careful
consideration of spatial context in future studies of built environment and physical activity,
including the need for more dynamic models of spatial context beyond home and work
environments.

Several limitations should be addressed in future research. The GPS data processing
decisions were challenging and need further testing and refinement. For example, it is not
clear whether missing GPS data represented someone not wearing the device (i.e., non-
compliant) or someone inside a building where signals were lost. Missing GPS data were
prospectively imputed using the last available coordinates; the validity of this approach
needs further assessment. An integrated GPS-accelerometer device could help to identify the
causes for missing GPS data. For example, missing GPS data combined with the presence of
accelerometer activity counts could indicate physical activity occuring indoors or in a
location with poor reception. A clear determination of time indoors could not be made in
this study. Therefore, 50 m buffers were created as a proxy measure for time indoors.
Improved GPS instrumentation, geographic data layers, and processing procedures may
allow for a more definitive determination of time indoors. The possibility of a Hawthorne
effect from wearing the GPS unit cannot be ruled out, since the units weighed about a pound
and were stored in a small backpack. However, no participants indicated that wearing the
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devices affected their activity patterns. A key limitation of this study was the fact that the
sample was selected from highly educated, regular trail users in one state, who had physical
activity levels that were higher than the general U.S. adult population.18 Therefore, the
results are likely not generalizable to the population at-large. Finally, the cross-sectional
design precludes making causal inferences about effects of the built environment on
location-based physical activity.

Simultaneous accelerometer and GPS monitoring has the potential to yield new insights into
the dynamic nature of the relationships between the built environment and physical activity
behaviors. This monitoring approach allows activity to be objectively quantified in different
physical contexts and thus provides a more explicit link between physical activity outcomes
and built environment exposures. Eventually, evidence obtained from studies employing
combined accelerometer/GPS assessments may be used to inform the development of more
effective physical activity interventions that utilize environmental and policy-level strategies
and target specific behavior settings.32
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Figure 1.
GPS unit with receiver on shoulder strap.
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Location-based physical activity for participant over 4 days (A) with inset showing activity
around home (B)
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Table 1

Operational definitions for built environment variables within 1 km home and work network buffers

Built environment  Specific variable

Operational definition and data sour ce(s)

domain

Street connectivity  Intersection density (intersections
per km)

Land use mix Land use mix

Density Residential population density

Density Housing unit density

Greenness Vegetation index

Number of intersections within network buffer divided by total street segment
length (km) within buffer. Intersections and street segment lengths obtained from
ESRI Street Map 2005 Data.

Land use data from MA GIS 1999 aerial photography (36 categories collapsed
into 5 categories) — measure of evenness of uses across 5 categories

Number of persons estimated within network buffer from 2000 Census divided
by area of residential land use within buffer (sq km)

Number of housing units estimated within network buffer from 2000 Census
divided by area of residential land use within buffer (sq km)

Average Normalized Difference Vegetation Index (NDVI) within buffer using
Landsat satellite image from 9/27/2000

Am J Prev Med. Author manuscript; available in PMC 2013 February 10.



1duasnuey Joyiny vd-HIN 1duasnue Joyiny vd-HIN

wduosnue Joyiny vd-HIN

Troped et al.

Table 2

Demographic and built environment characteristics for study participants (n = 1489

All Men Women
% (n) % (n) % (n)
Race
White 73.5 (108) 78.6 (55) 68.8 (53)
African-American/Black 19.7 (29) 14.3 (10) 24.7 (19)
Other 6.8 (10) 7.4 (5) 6.5 (5)
Hispanic or Latino
Yes 1.4 (2) 0.0 (0) 2.6 (2)
No 98.6 (144) 100.0 (70) 97.4 (74)
Educational level
Some college or less 19.1 (28) 21.4 (15) 16.9 (13)
Undergraduate degree 38.1 (56) 34.3 (24) 41.6 (32)
Some graduate school or above 42.9 (63) 44.3 (31) 42.6 (32)
Built environment Mean (SD), Mean (SD), Mean (SD),
Median Median Median

Intersection density

Land use mix

Residential population density
Residential housing unit density

Vegetation index

5.25 (1.50), 5.48
052 (0.23), 0.54
9205.0 (9134.6), 7800.6
4156.6 (4764.7), 3251.8
0.25 (0.14), 0.23

5.08 (1.52), 5.34
0.49 (0.22), 0.52
7836.8 (7222.6), 5998.3
3452.1 (3784.7), 2437.9
0.27 (0.14), 0.25

5.40 (1.47), 5.55
0.55 (0.24), 0.59
10463.8 (10486.1), 9024.9
4804.7 (5460.8), 3640.0
0.23 (0.14), 0.21

a . . . . .
Total sample size; sample sizes for each variable vary slightly due to missing data
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Page 15

Associations between built environment variables and location-based moderate-vigorous physical activity
within 1 km home buffers&?

Built environment

Total moderate-

L ocation-based moder ate-vigor ous

variables vigorousPA, all  PA within 1 km
locations home buffer
Intersection density (connectivity) Estimate  0.01788 0.43372
SE 0.03969 0.11866
Pr>|t| 0.6531 0.0004
Adj. Rz 0.0126 0.1136
Land use mix Estimate  0.03436 3.01284
SE 0.24916 0.76308
Pr>|t|  0.8905 0.0001
Adj. RZ  -0.0041 0.1293
Residential population density Estimate  0.00000139 0.00006987
SE 0.00000623 0.00001925
Pr>|t|] 0.8241 0.0004
Adj. R? -0.0039 0.1152
Residential housing unit density Estimate  0.00000606 0.00014096
SE 0.00001168 0.00003583
Pr>|t| 0.6046 0.0001
Adj. R? -0.0023 0.1287
Vegetation index Estimate -0.24911 -5.37040
SE 0.43639 1.28832
Pr>|t|  0.5690 <0.0001
Adj. Rz 0.0135 0.1363

aAII models adjusted for age, gender, race/ethnicity, and education.

bSampIe size for each model ranged from 142 to 146. Adj. = adjusted
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Associations between built environment variables and location-based moderate-vigorous physical activity

within 1 km work buffers?

Built environment variables Unadjusted  Adjusted
models modelsP
Intersection density Estimate  -0.0205 -0.0140
SE 0.0215 0.0221
Pr>|t| <0.0001 0.5270
Land use mix Estimate  0.00004032  0.00003167
SE 0.00004609  0.00004659
Pr>|t| 0.3817 0.4966
Residential population density Estimate  0.00000236  0.00000395
SE 0.00000106  0.00000112
Pr>|t| 0.0264 0.0004
Residential housing unit density ~ Estimate  0.00000488  0.00000783
SE 0.0000212 0.00000227
Pr>|t| 0.0215 0.0006
Vegetation index Estimate  0.0185 -0.2969
SE 0.2533 0.2637
Pr>|t| 0.9417 0.2601

aSampIe size for each model ranged from 75 to 77.

bAdjusted for age, gender, race/ethnicity, and education.
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