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SUMMARY

Chromium (Cr3*) supplementation facilitate normal protein, fat and carbohydrate metabolism, and
is widely used by public in many countries. This study examined the effect of chromium niacinate
(Cr-N) or chromium picolinate (Cr-P) supplementation on lipid peroxidation (LP), TNF-a, IL-6,
CRP, glycosylated hemoglobin (HbA1), cholesterol and triglycerides (TG) in diabetic rats.
Diabetes (D) was induced in Sprague Dawley rats by streptozotocin (STZ) (ip, 65 mg/kg BW).
Control buffer, Cr-N or Cr-P (400 ug Cr/Kg BW) was administered by gavages daily for 7 wks.
Blood was collected by heart puncture using light anesthesia. Diabetes caused a significant
increase in blood levels of TNF-a, IL-6, glucose, HbA1, cholesterol, TG and LP. Compared with
D, Cr-N supplementation lowered the blood levels of TNF-a (p=0.04), IL-6 (p=0.02), CRP
(p=0.02) LP (p=0.01), HbA; (p=0.02), TG (p=0.04) and cholesterol (p=0.04). Compared with D,
Cr-P supplementation showed a decrease in TNF-a (p=0.02), IL-6 (p=0.02) and LP (p=0.01).
Chromium niacinate lowers blood levels of pro-inflammatory cytokines (TNF-a, IL-6, CRP),
oxidative stress and lipids levels in diabetic rats, and appears to be more effective form of Cr3*-
supplementation. This study suggests that Cr3*-supplementation can lower risk of vascular
inflammation in diabetes.
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INTRODUCTION

Vascular inflammation and cardiovascular disease (CVD) are the leading causes of
morbidity and mortality in the diabetic population and remain major public health issues.
The pro-inflammatory cytokines tumor necrosis factor-alpha (TNF-a) and interleukin-6
(IL-6) and oxidative stress are widely recognized markers of vascular inflammation (1-6).
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The levels of these cytokines and oxidative stress are elevated in the blood of many diabetic
patients (2, 7-10). An increase in circulating levels of TNF-a and IL-6 is known to decrease
insulin sensitivity and increase vascular inflammation and the development of CVD (2-6,
11, 12). Previous studies with diabetic patients and diabetic animals have reported decreased
blood glucose, decreased blood cholesterol and triglyceride or decreased insulin
requirements after Cr3*-supplementation (13-36). It has been proposed that chromium
supplementation increases a chromium-containing oligopeptide present in insulin-sensitive
cells that binds to the insulin receptor, markedly increasing the activity of the insulin-
stimulated tyrosine kinase and phosphorylation of insulin receptor substrate-1 and glucose
transporter GLUT4 (37-40).

The molecular mechanism by which chromium supplementation may increase insulin
sensitivity and lower vascular inflammation in diabetes is not known. Previous studies
demonstrate that chromium supplementation inhibits the increase in TNF-a and oxidative
stress levels in cultured monocytes exposed to high glucose levels (41, 42). The inhibitory
effect of chromium on TNF-a secretion in monocytes has also been observed in HyO5-
treated monocytes and appears to be associated with the antioxidative effect of chromium
(41). However, no previous study has examined the effect of trivalent chromium
supplementation on the blood levels of TNF-a, IL-6 and CRP in diabetic patients or in
animal models of diabetes.

The present study examined the hypothesis that trivalent chromium supplementation lowers
pro-inflammatory cytokines and oxidative stress levels in diabetes. To examine this
hypothesis, we studied the effect of chromium and placebo supplementation in a
streptozotocin-treated diabetic rat model. We determined the effect of supplementation with
commercially available forms of chromium, chromium niacinate (Cr-N) and chromium
picolinate (Cr-P) on blood levels of TNF-a,, IL-6, CRP, glycosylated hemoglobin, total
cholesterol, triglycerides, and oxidative stress in diabetic rats. We also examined the effects
of chromium and placebo on liver function markers and red cell indices in the blood of
diabetic rats.

RESEARCH DESIGN AND METHODS

All the procedures followed were in accordance with the ethical standards of the institution
and that approval was obtained from the animal welfare committee of the institution. Male
Sprague Dawley rats were purchased at 49-52 days of age (200-220 gm) from Harlan
(Indianapolis, IN) and allowed 2 days for environmental and trainer handling acclimation.
The rats were weighed then fasted overnight before intraperitoneal injection of 65 mg/kg
streptozotocin in citrate buffer (pH=4.5). Control rats were injected with citrate buffer alone
to serve as a normal control group # 1. The rats were tested for hyperglycemia by measuring
their blood glucose concentration at 3 and 7 days following the streptozotocin injections.
Blood for the blood glucose was obtained via tail incision and measured using an advantage
Accu-chek glucometer (Boehringer Mannheim Corp., Indianapolis, IN). The rats that
became hyperglycemic (blood glucose>300 mg/dl) were randomly divided into 3 groups
(n=6): group #2: diabetic controls; group # 3: 400 ug Cr (Cr-N)/kg body weight; group #4:
400 pg Cr (CrP)/kg body weight. Each rat was supplemented the appropriate dose of
chromium daily for 7 weeks by oral gavage using 20G feeding needles (Popper and Sons,
New Hyde Park, NY). The diabetic controls were supplemented with a 0.03M NaOH buffer.
Chromium niacinate (ChromeMate, lot #0410013) was obtained from InterHealth
Nutraceutical (Benicia, CA) and chromium picolinate (Chromax, lot #00225720) was
obtained from Nutrition 21 (Purchase, NY). Chromium niacinate (Cr-N) or Chromium
Picolinate (Cr-P) was mixed in 0.03M NaOH buffer. Chromium niacinate and chromium
picolinate were obtained pure and each group of rats had same dose chromium
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supplementation and was calculated based on the molecular weight and chromium content
supplied on the label by the manufacturer. Weight and blood glucose concentrations were
monitored weekly. The chromium supplementation dose was adjusted every week according
to any change in body weight to maintain similar chromium dose per Kg BW of rat over the
entire period of study for each group. The rats were maintained under standard housing
conditions at 22 = 2°C with 12:12-h light/dark cycles with a standard 8640 lab chow diet
(Harlan, Indianapolis, IN). At the end of 7 weeks the rats were fasted overnight then
euthanized for analysis by exposure to halothane (2-bromo-2-chloro-1,1,1-trifluoroethane).
Blood was collected via heart puncture with a 19% gauge needle into EDTA vacutainer
tubes. Plasma was isolated after centrifuging blood in a cold centrifuge at 1500 rpm for 10
minutes.

Cytokines assay

TNF-a, IL-6, and CRP levels in the plasma were determined by the sandwich ELISA
method using a commercially available kit from Pierce-Endogen (Rockford, IL). All
appropriate controls and standards as specified by the manufacturer’s kit were used; the data
are expressed as pg per ml plasma. In the cytokine assay, control samples were analyzed
each time to check the variation from plate to plate on different days of analyses.

Lipid peroxidation

Oxidative stress was determined by measuring malondialdehyde (an end product of lipid
peroxidation) by its reaction with thiobarbituric acid (43, 44). For this purpose, 0.2 ml
plasma were suspended in 0.8 ml phosphate-buffered saline and 0.025 ml butylated
hydroxytoluene (88 mg/10 ml absolute alcohol). Thirty percent trichloroacetic acid (0.5 ml)
was then added. The tubes were vortexed and allowed to stand on ice for at least 2 hours,
then centrifuged at 2000 rpm for 15 min. For each sample, 1 ml supernatant was transferred
to a new tube. To each of these was added 0.25 ml 1% TBA in 0.05 N NaOH. The tubes
were then mixed and kept in a boiling water bath for 15 min. The concentration of the
MDA-TBA complex was assessed using HPLC after its separation with ion exclusion and a
reverse-phase Shodex KC-811 column (Waters) with the UV/Vis detector set at 532nm (43,
44).

Measurement of glycosylated hemoglobin (HbA;) and glucose

The human erythrocyte is freely permeable to glucose, and within each erythrocyte,
glycosylated hemoglobin is formed continuously from hemoglobin A at a rate dependent on
the ambient glucose concentration. Glycosylated hemoglobin was determined using Glyco-
Tek Affinity column kits and reagents (cat # 5351) purchased from Helena Laboratories
(Beaumont, Texas). Glucose levels were determined using glucose oxidase by Accu-check
Advantage glucometer (Boehringer Manheim Corporation, Indianapolis, IN).

Liver function tests, blood cell count and blood chemistry profile

A portion of blood from rats in each group was sent to the clinical laboratory of LSUHSC-
Shreveport (located in the same building) for clinical tests to determine liver function, red
blood cell counts, and chemistry profiles (triglycerides; total- , LDL- and HDL- cholesterol;
glucose).

All chemicals were purchased from Sigma Chemical Co. (St. Louis, MO) unless otherwise
mentioned. Data were analyzed statistically using unpaired Student’s ’t’ tests between
different groups using Sigma Plot statistical software (Jandel Scientific, San Rafael, CA). A
p value of less than 0.05 was considered significant.
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Figures 1-4 illustrate the effect of diabetes and chromium niacinate and chromium
picolinate supplementation on TNF-a (Figure 1), IL-6 (Figure 2), CRP (Figure 3) and lipid
peroxidation (Figure 4) levels in the blood of diabetic rats. There was a significant increase
in TNF-a, IL-6 and lipid peroxidation levels in blood of diabetic rats compared with that of
control rats. However, this was prevented in diabetic rats supplemented with chromium
niacinate and chromium picolinate. This suggests that chromium supplementation can lower
circulating level of markers of vascular inflammation in diabetes. The blood levels of CRP
were not elevated in diabetic rats compared with those of controls (Figure 3). However,
while chromium niacinate supplementation significantly lowered the CRP level in diabetic
rats (Figure 3), this effect was not observed in diabetic rats supplemented with chromium
picolinate.

The effect of chromium niacinate and chromium picolinate supplementation on glycated
hemoglobin and blood glucose levels is shown in Figures 5 and 6. Figure 5 shows that there
was a modest but significant decrease in glycated hemoglobin level in chromium niacinate
supplemented compared with placebo supplemented diabetic rats. Chromium picolinate
supplementation did not have any effect on the glycated hemoglobin levels of diabetic rats.
Neither chromium niacinate nor chromium picolinate had any significant effect on blood
glucose levels in diabetic rats (Figure 6).

Table I shows that neither form of chromium affected hemoglobin, hematocrit or RBC
counts in diabetic rats, which rules out any role of altered red cell survival on lower
glycosylated hemoglobin levels in chromium niacinate supplemented diabetic rats.

Figures 7-10 illustrate the plasma lipid levels in control, diabetic and Cr-N, and Cr-P-treated
diabetic rats. Figure 7 shows that chromium niacinate had a significant effect on lowering of
triglyceride levels in diabetic rats. Chromium picolinate also lowered TG levels in diabetic
rats, but the decrease was not statistically significant. Similarly, diabetic rats supplemented
with chromium niacinate showed significant decreases in total cholesterol (Figure 8) and
total cholesterol/HDL ratio (Figure 10), as well as elevated levels of HDL cholesterol
(Figure 9). However, the effect of chromium picolinate was not statistically significant,
which suggests that chromium niacinate is more effective in reducing cholesterol and
triglyceride levels in this animal model of diabetes.

Table Il gives data on body weight, alanine aminotraferase (ALT), alkaline phosphatase
(AP), aspartate aminotransferase (AST), and total and conjugated bilirubin levels in the
blood of control, diabetic, and chromium niacinate or chromium picolinate supplemented
diabetic rats. The data show that neither chromium niacinate nor chromium picolinate
supplementation seems to cause any toxicity as assessed by liver function tests. Similarly,
body weight did not change between different diabetic rats groups.

DISCUSSION

Trivalent chromium is an essential nutrient required for glucose and lipid metabolism (13-
16). Epidemiological studies suggest an inverse association between chromium levels in
toenails and the risk of myocardial infarction in the general population (45). The Health
Professionals Follow-up Study has found lower levels of toenail chromium among men with
diabetes and CVD compared with those of healthy control subjects (46). Concentrations of
chromium in the blood, lenses and toenails are lower in diabetes compared with those of the
normal population (14, 16, 46). These studies indicate that sub clinical chromium deficiency
may be a contributor to insulin resistance and CVD, particularly in aging and diabetic
populations (46). A number of studies both in diabetic animals and diabetic patients report
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that chromium supplementation may be beneficial, as evidenced by decreased blood
glucose, glycosylated hemoglobin and cholesterol values or decreased insulin requirements
after chromium supplementation (13-38, 47, 48). However, clinical trials of chromium
supplementation in diabetes have not been definitive. More studies are needed to fully assess
the mechanism of action and the efficacy of Cr3* supplementation as an adjuvant therapy for
diabetic patients. No studies exist in the literature on the effect of chromium on any of the
pro-inflammatory cytokines in diabetic patients or in experimental models of diabetes.

TNF-a is predominantly produced in macrophages. TNF-a affects intracellular insulin
signaling in fat, skeletal muscle, endothelial cells, and other insulin-responsive tissues by
inhibiting kinase activities in the insulin-signaling pathway (4). The possible involvement of
TNF-a in insulin resistance has been suggested in a number of studies (4, 49). TNF-a has
been shown to increase plasma TG and concentrations of very low density lipoproteins (50),
as well as lipolysis in mouse, rat and human fat cells (51). TNF-a reduces insulin stimulated
receptor tyrosine kinase activity at low concentrations and can also decrease the expression
of the insulin receptor IRS-1 and Glut-4 at higher concentrations as well as increases the
phosphorylation of serine 307 in IRS-1, thus impairing its ability to bind to the insulin
receptor and initiate down stream signaling (4). Circulating IL-6 levels are also increased in
insulin resistant states such as obesity, impaired glucose tolerance, and type 1 and 2 diabetes
(1, 3, 6-9). Thus, TNF-a, IL-6 and CRP play an important role in insulin resistance and the
vascular inflammation process through its multiple actions (11, 12, 52-54).

This study demonstrates that diabetic rats have elevated blood levels of TNF-a and IL-6,
similar to those observed in diabetic patients. The effect of diabetes on elevated TNF-a and
IL-6 levels was abolished in diabetic rats maintained on daily supplementation with
chromium niacinate or chromium picolinate but not in those maintained on placebo
supplementation. This is a novel finding. Diabetic rats supplemented with chromium
niacinate also had modest but significantly lower glycated hemoglobin levels. This suggests
an overall improvement in glycemia in Cr3*-supplemented diabetic rats compared with
diabetic rats not supplemented with Cr3*. The improvement in blood glucose levels was not
significant in Cr3*-supplemented rats compared with placebo-supplemented diabetic rats.
The glycated hemoglobin reflects mean glucose concentration over the preceeding 1-2
months, in contrast one time glucose level may be influenced by anesthesia or stress of
bleeding at the time of sacrifice, which may have led to why glycated hemoglobin values are
significantly lower but not fasting glucose in Cr3*-N group compared with D group. There
were no differences between the blood levels of hemoglobin or the RBC counts or
hematocrits in diabetic rats receiving placebo or chromium niacinate supplementation,
which suggests that lower glycated hemoglobin levels in chromium niacinate-s upplemented
rats is not due to any change in life span of RBC.

This study also demonstrates that chromium niacinate supplementation lowered total
cholesterol and triglyceride levels, and improved HDL to total cholesterol ratio in diabetic
rats. The effect of chromium niacinate in lowering the cholesterol and triglyceride levels
was more pronounced than that of chromium picolinate. TNF-a has been shown to increase
plasma TG and concentrations of very low density lipoproteins (51, 53) This suggests that
improvements in blood cholesterol and triglyceride levels could be due to reduced glycemia
or/and TNF-a levels in chromium niacinate supplemented diabetic rats. Our study shows
that, compared with chromium picolinate, chromium niacinate was more effective at
lowering triglycerides, total cholesterol, and ratio of total to HDL cholesterol. An effect of
supplementation of chromium chloride or chromium picolinate on lowering of blood
cholesterol and triglycerides has been reported in previous studies (14, 16-19, 21). The
present finding that Cr3*-N decreases ratio of total to HDL-cholestrol in STZ-treated
diabetic rats is consistent with a previous study in obese type 2 diabetic mice (34), which
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suggests that Cr3*-N supplementation can increase good cholesterol in diabetes. Chromium
niacinate is a complex of chromium and essential B-vitamin niacin, whereas chromium
picolinate is a complex of Cr3* bound to picolinic acid. Both these compounds of Cr3* are
commercially available, widely consumed and are considered to be better absorbed than
chromium chloride (16). We do not know whether better absorption of chromium niacinate
compared with chromium picolinate contribute to its greater efficacy in diabetic rats. It is
also not known whether Cr3*-N and Cr3*-P have difference in stability or have different
metabolic pathway in the body. Niacin supplementation by itself has been shown to lower
blood cholesterol and triglycerides (55, 56). However, those studies used grams or
milligrams doses of niacin, which is much higher dose than the dose of niacin in chromium-
niacinate being used in this study. Consistent with previous reports (16), there was no
change in liver function tests in chromium niacinate or chromium picolinate supplemented
compared with placebo supplemented diabetic rats, which suggests that neither chromium
niacinate nor chromium picolinate supplementation led to any toxicity in this study. A recent
report suggest that Cr-P supplementation lower the blood levels of ALT and AST in STZ-
treated diabetic rats (23). The data in the present study on ALT and AST values in STZ-
treated diabetic rats showed large variation and did not show any differences among the
different diabetic rats groups.

This study also found that elevated lipid peroxidation levels in the blood of diabetic rats
were abolished in diabetic rats supplemented with chromium picolinate and chromium
niacinate. The streptozotocin treated diabetic rat is a model of type 1 diabetes and is
associated with elevated levels of both hyperglycemia and ketosis. High blood levels of
glucose and the ketone body acetoacetate can result in excessive oxygen radical production,
which can lead to increased oxidative stress in diabetes (57-65). Oxidative stress can also
influence the expression of multiple genes in vascular cells, including signaling molecules
such as PKC, NFkB and ERK (66); overexpression of these genes stimulates the secretion of
pro-inflammatory cytokines. Oxidative stress plays a key role in the regulatory pathway that
progresses from elevated glucose to monocyte and endothelial cell activation in the
enhanced vascular inflammation of diabetes (65, 66).

Our study demonstrates that chromium supplementation results in a significant inhibition of
oxidative stress and pro-inflammatory cytokines in diabetic rats. The precise mechanism by
which chromium inhibits pro-inflammatory cytokines is not known. The inhibitory effect of
chromium on pro-inflammatory cytokine inhibition may be mediated partly by oxidative
stress pathways (62, 66). Whether or not Cr3* supplementation prevents the overexpression
of regulatory genes in vascular cells, including signaling molecules such as PKC, NFkB and
ERK, thereby preventing vascular inflammation in diabetes, is not known and needs to be
investigated. Nevertheless, inhibition of circulating levels of TNF-a and IL-6 can explain
the observed lowering of blood triglyceride and total cholesterol levels, potentially mediated
at least in part by the increased glucose sensitivity and glucose metabolism in chromium
niacinate-supplemented diabetic rats. C-reactive protein (CRP) is another known marker of
vascular inflammation (52). Studies in literature have reported both no change (67) and an
increase (68) in CRP levels in STZ-treated diabetic rats in comparison to normal rats. The
present study did not observe an increase in blood levels of CRP in STZ-treated diabetic
rats. However, chromium niacinate compared with placebo supplementation significantly
lowered the CRP levels in diabetic rats.

The recommended estimated adequate dietary intake range for Cr3* for adults is 50-200pg/
day (69). Human studies have mostly used 1000 pg Cr3* per day (15, 35, 36). Assuming an
average 70 kg body weight, this would relate to an intake of nearly 15 pg Cr3*/kg body
weight. The dose of chromium niacinate or chromium picolinate used in this study is 400 pg
Cr3*/kg body weight of rat. This chromium dose used in the present study is similar to that
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has been previously used by other investigators in chromium supplementation studies with
diabetic rats or mice (25, 28, 34). Thus, Cr3* supplementation dose used per body weight in
the present rat study is much higher than that has been used in human clinical trials. Whether
or not there are any differences in the absorption of Cr3* between humans and rats is not
known. The level of Cr3* supplementation dose in the present study can be considered
pharmacological in comparison to chromium supplementation dose used in literature for
human studies (15, 35, 36).

In conclusion, trivalent chromium supplementation has the potential to decrease cellular
oxidative stress, lower the blood levels of pro-inflammatory cytokines and lipids. The
evidence that chromium can inhibit markers of vascular inflammation needs to be explored
at the clinical level to see whether widely used supplements such as chromium picolinate or
chromium niacinate can lower levels of pro-inflammatory cytokines in the diabetic patient
population. If so, then chromium supplementation may be used as an adjuvant therapy for
reduction of vascular inflammation and CVD in diabetes.
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Effect of chromium niacinate and chromium picolinate supplementation on plasma TNF-a
levels in STZ-treated diabetic rats. Values are Mean+SE. C, control; D, diabetic, D+CrN:
Cr-N-treated D; D+Cr-P, Cr-P-treated diabetic rats. Rats were supplemented with control-
buffer, Cr-N (400 pg Cr/kg BW) or Cr-P (400 pg Cr/Kg BW) by gavages daily for 7 wks.
Differences between values marked * versus** (p<0.02), **versus# (p<0.04), **versus##
(p<0.04) are significant.
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Effect of chromium niacinate and chromium picolinate supplementation on plasma IL-6
levels in STZ-treated diabetic rats. Values are Mean+SE. C, control; D, diabetic, D+CrN:
Cr-N-treated D; D+Cr-P, Cr-P-treated diabetic rats. Rats were supplemented with control-
buffer, Cr-N (400 ug Cr/kg BW) or Cr-P (400 ug Cr/Kg BW) by gavages daily for 7 wks.
Differences between values marked * versus** (p<0.02), **versus# (p<0.02), **versus##
(p<0.02) are significant.
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Effect of chromium niacinate and chromium picolinate supplementation on plasma CRP
levels in STZ-treated diabetic rats. Values are MeanzSE; C, control; D, diabetic, D+CrN:
Cr-N-treated D; D+Cr-P, Cr-P-treated diabetic rats. Rats were supplemented with control-
buffer, Cr-N (400 ug Cr/kg BW) or Cr-P (400 ug Cr/Kg BW) by gavages daily for 7 wks.
Differences between values marked **versus# (p<0.02) are significant.
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Effect of chromium niacinate and chromium picolinate supplementation on plasma lipid
peroxidation levels in STZ-treated diabetic rats. Values are Mean£SE. C, control; D,
diabetic, D+CrN: Cr-N-treated D; D+Cr-P, Cr-P-treated diabetic rats. Rats were
supplemented with control-buffer, Cr-N (400 ug Cr/kg BW) or Cr-P (400 pg Cr/Kg BW) by
gavages daily for 7 wks. Differences between values marked * versus** (p<0.02), **versus#
(p<0.02), **versus## (p<0.02) are significant.
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Effect of chromium niacinate and chromium picolinate supplementation on blood HbA
levels in STZ-treated diabetic rats. Values are Mean=SE. C: control; D: diabetic; D+CrN,
Cr-N-treated D; D+Cr-P, Cr-P treated diabetic rats. Rats were supplemented with control-
buffer, Cr-N (400 pg Cr/kg BW) or Cr-P (400 pg Cr/Kg BW) by gavages daily for 7 wks.
Differences between values marked *versus** (p<0.001), and **versus# (p<0.05) are
significant.
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Figure 6.

Effect of chromium niacinate and chromium picolinate supplementation on plasma glucose
levels in STZ-treated diabetic rats. Values are Mean=SE. C: control; D: diabetic; D+CrN,
Cr-N-treated D; D+Cr-P, Cr-P treated diabetic rats. Rats were supplemented with control-
buffer, Cr-N (400 pg Cr/kg BW) or Cr-P (400 pg Cr/Kg BW) by gavages daily for 7 wks.
Differences between values marked *versus** (p<0.01) are significant.
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Effect of chromium niacinate and chromium picolinate supplementation on t otal cholesterol
levels in blood of STZ-treated diabetic rats. Values are Mean+SE; C: control; D: diabetic, D
+CrN: Cr-N-treated D; D+Cr-P: Cr-P treated diabetic rats. Rats were supplemented with
control-buffer, Cr-N (400 pg Cr/kg BW) or Cr-P (400 pg Cr/Kg BW) by gavages daily for 7
wks. Differences between values marked * versus** (p<0.01), **versus# (p<0.04) are
significant.
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Figure 8.

Effect of chromium niacinate and chromium picolinate supplementation on triglycerides
levels in blood of STZ-treated diabetic rats. Values are Mean+SE; C: control; D: diabetic, D
+CrN: Cr-N-treated D; D+Cr-P: Cr-P treated diabetic rats. Rats were supplemented with
control-buffer, Cr-N (400 pg Cr/kg BW) or Cr-P (400 pg Cr/Kg BW) by gavages daily for 7
wks. Differences between values marked * versus** (p<0.01), and **versus# (p<0.04) are
significant.
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Effect of chromium niacinate and chromium picolinate supplementation on HDL cholesterol
levels in blood of STZ-treated diabetic rats. Values are Mean+SE; C: control; D: diabetic, D
+CrN: Cr-N-treated D; D+Cr-P: Cr-P treated diabetic rats. Rats were supplemented with
control-buffer, Cr-N (400 ug Cr/kg BW) or Cr-P (400 ug Cr/Kg BW) by gavages daily for 7
wks. Differences between values marked * versus** (p<0.001), **versus# (p<0.01) are
significant.
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Effect of chromium niacinate and chromium picolinate supplementation on total/HDL
cholesterol ratio in blood of STZ-treated diabetic rats. Values are Mean+SE. C: control; D:
diabetic, D+CrN: Cr-N-treated D; D+Cr-P: Cr-P treated diabetic rats. Rats were
supplemented with control-buffer, Cr-N (400 ug Cr/kg BW) or Cr-P (400 pg Cr/Kg BW) by
gavages daily for 7 wks. Differences between values marked **versus# (p<0.05) are
significant.
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Effect of Chromium Supplementation on Blood he moglobin, hematocrit and red blood cell counts in STZ-

treated Diabetic Rats

Table 1

Control Diabetic (D) | D+400ug/day | D+400ug/day
Cr-N Cr-P
N 6 6 5 5
RBC (105/uL) 8.27+0.40 8.23+0.41 8.30+£0.43 8.31+0.30
Hemoglobin (g/dL) | 15.81+0.31 15.03+0.72 15.18+0.80 15.17+0.43
Hematocrit (%) 44.59+2.34 | 43.92+2.29 43.17+2.61 44.94+1.26

Values are Mean+SE. There were no differences in values between different groups.
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Table Il

Effect of Chromium Supplementation on liver function tests in STZ-treated Diabetic Rats
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Control Diabetic (D) | D+ 400ug/day | D+ 400pg/day
CrN CrP
N 6 6 5 5
Body Weight (g) 368+14 157+11 159+14 163+15

Total Bilirubin (mg/dL) 0.37+0.03 0.37+0.07 0.30+0.06 0.32+0.05

Conjugated Bili rubin (mg/dL) 0.10+.001 0.13+0.03 0.13+0.03 0.10+0.00
AST (U/L) 187.67+£76.26 | 270.20+61.98 | 440.00+117.58 | 383.50+82.82
ALT (U/L) 63.67+3.60 222.83+93.51 | 222.50+34.66 220.75+60.27
AP (U/L) 14.83+2.75 41.33+3.80 61.25+25.56 52.60+14.91

Values are MeanzSE. There were no differences in values between D versus D+Cr-N or between D versus D+Cr-P groups. AST: aspartate

aminotransferase; ALT: alanine aminotransferase; AP: alkaline phosphatase.
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