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Abstract
Sub-Saharan Africa has been identified as the part of the world with the greatest human genetic
diversity. This high level of diversity causes difficulties for genome-wide association (GWA)
studies in African populations—for example, by reducing the accuracy of genotype imputation in
African populations compared to non-African populations. Here, we investigate haplotype
variation and imputation in Africa, using 253 unrelated individuals from 15 Sub-Saharan African
populations. We identify the populations that provide the greatest potential for serving as
reference panels for imputing genotypes in the remaining groups. Considering reference panels
comprising samples of recent African descent in Phase 3 of the HapMap Project, we identify
mixtures of reference groups that produce the maximal imputation accuracy in each of the
sampled populations. We find that optimal HapMap mixtures and maximal imputation accuracies
identified in detailed tests of imputation procedures can instead be predicted by using simple
summary statistics that measure relationships between the pattern of genetic variation in a target
population and the patterns in potential reference panels. Our results provide an empirical basis for
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facilitating the selection of reference panels in GWA studies of diverse human populations,
especially those of African ancestry. Genet. Epidemiol. 35:766–780, 2011.
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Introduction
Africa has consistently been identified as the part of the world where the level of human
genetic variation is greatest [e.g., Bowcock et al., 1994; Stephens et al., 2001;
Ramachandran et al., 2005; Tishkoff et al., 2009], and genomic studies have also confirmed
that African populations have the lowest levels of linkage disequilibrium [LD; Reich et al.,
2001; Tishkoff and Kidd, 2004; Conrad et al., 2006; Jakobsson et al., 2008]. The high
diversity and low LD in Africa in turn influence the design and analysis of genome-wide
association (GWA) studies in African populations [Rosenberg et al., 2010; Teo et al., 2010].

Recent strategies for finding causal variants that underlie common diseases have been based
on LD, or the nonrandom association of variants at separate genetic loci. Because of shared
inheritance of single-nucleotide polymorphism (SNP) variants at neighboring sites, an
association detected between disease status and genotypes at a marker can indicate the
presence of a nearby disease-susceptibility locus. Thus, highly informative “tag SNPs” that
show considerable LD with other SNPs in the genome have been used as markers for finding
disease associations.

The general utility of the tag-SNP approach is partly determined by the portability of tag
SNPs, the extent to which tag SNPs chosen based on haplotypic patterns in a reference
population perform in identifying disease genes in study populations whose patterns of
haplotype variation differ from those of reference populations. Tag-SNP portability has been
shown to be affected primarily by the level of LD in the study population, with genetic
similarity of the reference and study populations playing a less critical but still important
role [Conrad et al., 2006]. Thus, for populations that have relatively low levels of LD and
that are genetically different from standard reference groups—a class of populations that
include much of Sub-Saharan Africa—the tag-SNP approach is less effective than for other
populations.

Improved designs for GWA studies have recently used LD patterns to impute genetic
variants that have not been genotyped in the study sample but that have been genotyped in a
reference panel. Imputation of unknown variants, followed by testing of these variants for
disease association, has been shown to improve the genomic coverage and statistical power
of GWA studies [e.g., Marchini et al., 2007; Servin and Stephens, 2007; Li et al., 2009].
Investigations of genotype imputation in worldwide populations, however, suggest that
imputation accuracy is low in most African populations, again owing largely to low levels of
LD and high levels of genetic diversity [Huang et al., 2009a; Teo et al., 2010]. This
decreased imputation accuracy in turn can substantially inflate the sample size required for
maintaining power in imputation-based GWA studies in African populations [Huang et al.,
2009b].

Despite the reduced tag-SNP portability and imputation accuracy in African populations,
data on patterns of haplotype variation in Africa and their applications to the design of GWA
studies are relatively scarce. In this study, we extend the characterization of African
haplotype diversity and LD to a total of 15 Sub-Saharan African populations, and we
perform an investigation of imputation in African populations. The combination of high
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levels of genetic variation, low levels of LD, and large numbers of private haplotypes in
African populations makes imputation of untyped markers particularly challenging in
Africans. We examine a variety of imputation designs in African populations, and by
considering summary statistics on patterns of haplotype variation, we demonstrate a close
relationship between maximal imputation accuracy and statistics that measure different
forms of genetic similarity between samples from a target African population and those
available in reference panels.

Results
Data

We considered a dataset of 1,107 individuals from 63 populations worldwide, including 15
Sub-Saharan African populations. Each individual was genotyped for 2,810 SNPs spread
across 36 genomic regions: 16 on chromosome 21, 16 on other autosomes, and 4 on the
nonpseudoautosomal part of the X chromosome. Each region was designed to contain a core
of 60 SNPs genotyped at high density, with 12 SNPs at lower density extending in each
direction away from the core. This set of genomic regions was originally chosen to represent
the range of recombination rates and gene densities present in the human genome, and most
SNPs were selected among those discovered in multiethnic panels [Conrad et al., 2006]. The
dataset subsumes the dataset of Pemberton et al. [2008] on 957 individuals from 55
populations (see Materials And Methods), and the 150 newly genotyped individuals (Table
I) represent eight Sub-Saharan African populations chosen to provide a geographically and
genetically diverse subset among the samples of Tishkoff et al. [2009]. Our investigations
focus primarily on the 15 Sub-Saharan African populations.

For some analyses of imputation in study populations on the basis of external reference
panels, the 1,107 individuals were augmented with 901 unrelated individuals from 11
populations in release 2 of Phase 3 of the International Haplotype Map Project [International
HapMap 3 Consortium, 2010], representing a subset of the collection of 1,117 unrelated
individuals in HapMap Phase 3 release 3 that was described by Pemberton et al. [2010]. In
these HapMap individuals, 517 markers were considered, all of which were located on
chromosome 21 and typed in both the 63 study populations and the 11 HapMap populations.
The HapMap Phase 3 data contain four groups with significant recent African ancestry:
ASW (African Americans from the southwest of the USA), LWK (Luhya from Webuye,
Kenya), MKK (Maasai from Kinyawa, Kenya), and YRI (Yoruba from Ibadan, Nigeria). We
constructed all 24−1 = 15 possible mixtures of one or more among the four HapMap groups,
and considered each of these panels as reference data for imputation in the 15 Sub-Saharan
African target populations.

Haplotype Variation
We assessed several aspects of haplotype variation, including “haplotype flow,” private
haplotypes, LD, and haplotype sharing between sampled populations and HapMap reference
populations. These various computations are used later in explaining the outcomes of
genotype-imputation experiments.

Haplotype Flow
Using the sample-size-corrected z-statistic of Conrad et al. [2006], we computed pairwise
haplotype sharing between major geographic regions—Sub-Saharan Africa, the Middle East
(and North Africa), Europe, Central/South Asia, Oceania, and the Americas. For a fixed
haplotype length, this statistic measures the fraction of haplotypes in a sample of specified
size from one population that are also found in a second population. It can be viewed either
as a measure of “outward haplotype flow” for the second population, quantifying the extent
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to which this population could have contributed haplotypes to the first population, or
alternatively, as a measure of “inward haplotype flow” for the first population.

As was observed by Conrad et al. [2006], the outward haplotype flow from Sub-Saharan
Africa (henceforth sometimes abbreviated to “Africa”) to each of the other regions exceeds
the corresponding inward haplotype flow (Fig. 1). Haplotype sharing between regions is
lower when comparing Africa to other regions than when comparing most pairs of non-
African regions. Consistently across haplotype lengths, haplotype sharing between Africa
and other regions is greater when the full set of 15 African populations is used than when
using the seven previously sampled African populations alone. It is possible that the newly
sampled populations, most of which were sampled in East Africa, represent the groups that
migrated out of Africa more closely than do the previously sampled groups, thereby
producing increased haplotype sharing with non-Africans. Indeed, some of these
populations, including Beja, Borana, and Fulani, have been observed to partially cluster with
Middle Eastern populations in analyses of population structure [Tishkoff et al., 2009].

Private haplotypes
For each geographic region, we computed the number of private haplotypes found only in
that region. Our computations used a rarefaction approach [Kalinowski, 2004; Conrad et al.,
2006] to adjust for differences in sample sizes across regions. We observe much larger
numbers of private haplotypes in Africa than in non-African regions (Fig. 2A), consistent
with greater levels of diversity and lower LD in Africa. For example, in a sample of 54
chromosomes, for haplotypes of length 25 kb, we find on average 7.35 private haplotypes in
Africa, whereas we only find on average 1.71 private haplotypes in the Middle East, and
even fewer in the other regions. Within Africa, the greatest numbers of private haplotypes
are found in hunter-gatherer populations, such as the San, Biaka Pygmy, and Mbuti Pygmy
groups (Fig. 2B). These three populations do not stand out in other aspects of diversity,
however, as they do not have particularly large numbers of distinct haplotypes (Fig. S1) or
high haplotype heterozygosity (Fig. S2).

Linkage disequilibrium
LD, as measured by mean r2 values for SNP pairs in physical distance bins, declines with
increasing physical distance between SNPs for all 63 populations (Fig. 3). African
populations have the lowest levels of LD, followed by populations from the Middle East,
Central/South Asia, Europe, East Asia, Oceania, and the Americas. For example, for SNPs
with minor allele frequency 0.05 or greater, mean r2 across African populations, when
calculated for all SNP pairs in bins of width 6 kb, drops below 0.4 at a distance of 2.5 kb.
The corresponding distances at which mean r2 first drops below 0.4 are 5.2, 7.1, 9.6, 10.5,
19.2, and 33.3 kb for the populations of the Middle East, Central/South Asia, Europe, East
Asia, Oceania, and the Americas, respectively. Thus, considering a larger sample of Sub-
Saharan African populations than in most previous studies, we continue to find
comparatively low LD in African populations.

Haplotype sharing with the HapMap
Using a statistic that measures the extent to which the common haplotypes in one population
are also common in a second population, Conrad et al. [2006] found that the HapMap Phase
2 data capture common haplotypes relatively well in most groups, with the primary
exception of African populations. Employing this same statistic, an expanded dataset with
additional African populations, and the newer HapMap Phase 3 data, we continue to observe
that for African populations, levels of sharing for common 50 kb haplotypes (>10%
frequency) with HapMap Phase 3 are significantly lower than corresponding levels of
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sharing with HapMap Phase 3 for non-African populations (P<0.0001, one-sided Wilcoxon
rank-sum test).

Figure 4 shows the fraction of common haplotypes in individual populations that are also
common in the HapMap Phase 3 populations, demonstrating that the most similar HapMap
group for a population is generally found in the same or the closest geographic region.
Although common haplotypes of several African populations (San, Mbuti Pygmy, and Biaka
Pygmy) continue to have the greatest difference from those of the individual HapMap
populations, similarly to the observation of Conrad et al. [2006], they can generally be better
captured by pooled collections consisting of two or more HapMap Phase 3 populations than
by the HapMap populations individually (Fig. 5). In particular, testing the difference in
haplotype sharing for common 50 kb haplotypes in African populations with the
combination panels that achieve the maximal haplotype sharing (among the 15 combinations
of one or more HapMap Phase 3 populations of African descent) and with the HapMap
Phase 3 YRI panel, sharing is significantly greater with the combination panels than with the
YRI panel alone (P<0.0001, one-sided Wilcoxon signed-rank test).

Genotype Imputation
To understand the properties of genotype imputation in African populations, we considered
two designs, both using the software MACH [Li et al., 2006, 2010]. We first examined
imputation accuracy for all pairs among the 63 populations, with one population chosen as
the reference and another as the target. We next identified, for each of the 15 African
populations, the optimal reference panel from the HapMap.

Imputation at untyped markers based on population samples
To examine the variation in imputation accuracy across potential reference populations, for
each of 63 × 63 population pairs consisting of a target population and a reference
population, we imputed missing genotypes at randomly selected hidden markers in the target
population on the basis of a small panel of individuals in the reference population, holding
reference panel size constant at six individuals. The panel size of six individuals corresponds
to the smallest sample size among all 63 populations, and therefore, it represents the largest
panel size that permits comparable evaluations of all pairs of distinct populations.

Considering all 63 × 63 imputations, we find that except for African target populations,
imputing missing genotypes in a target population on the basis of a reference population
from the same geographic region yields higher imputation accuracy than the mean of all
values in the 63 × 63 matrix of imputation accuracies (Fig. 6). By contrast, imputing missing
genotypes in African target groups using non-African reference groups yields imputation
accuracy lower than the mean, except in a few target populations (e.g., Beja, Iraqw, and
Sandawe with the Mozabite group as reference). Among all 779 pairs consisting of reference
and target populations from the same geographic region, we find that 30.4% of the
imputations appear in the top 10% of all 63 × 63 imputation accuracies, with values ranging
from 88.2 to 94.6%. On the other hand, among 720 pairs consisting of an African target
population and a non-African reference population, 36.7% appear in the bottom 10% of
imputation accuracies, with values ranging between 59.3 and 78.2%.

In this imputation experiment, we observe an asymmetry of imputation performance in
population pairs consisting of a reference population and a target population with different
geographic origins. That is, in many cases, imputation using one population as a reference
panel and a second population from a different geographic region as a target has
considerably higher or lower accuracy than in a scenario with the roles of the populations
reversed. This reference-target asymmetry is most pronounced in population pairs in which
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one population is African and the other is non-African; in 628 or 87.2% of 720 such pairs
(15 African × 48 non-African populations), imputation accuracy is lower when imputing
untyped markers in an African population on the basis of a non-African population than
when performing imputation in the reverse direction. For population pairs of non-African
descent from different geographic regions, we observe a similar reference-target asymmetry.
For instance, in 113 or 78.5% of 144 pairs containing a European and an East Asian
population (8 European × 18 East Asian populations), imputation accuracy is lower in the
European population than in the East Asian population on the basis of the other population
as reference data.

Evaluating the portability of a reference population for imputation in target populations
other than the reference population itself, we consider two metrics—the number of target
populations in which a reference population serves as either the best or second-best
reference panel, and the mean imputation accuracy across target populations in which
imputation is performed using the reference population. Using the first metric to identify
top-performing reference groups across the range of possible target populations, we find
Sengwer and Yoruba to be the most portable reference groups for imputation in African
populations. Sengwer is the best or second-best reference group in 6 of the 14 other African
samples, and Yoruba is the best or second-best panel in 5 of 14. Additionally, Sengwer and
Yoruba produce the highest mean imputation accuracy across the 14 remaining African
populations (86.0 and 85.8%, respectively).

Imputation at untyped markers based on the HapMap
To identify suitable HapMap reference panels for imputation in the 15 African populations,
in each population, we masked a fixed set of randomly selected markers and then imputed
missing genotypes at these markers on the basis of each of the 15 possible combinations of
the four HapMap panels of African descent.

For each African target population, Figure 7 reports the optimal reference panel chosen from
the 15 combinations of HapMap reference groups. All except one of the target populations
are most accurately imputed using a reference panel that contains individuals from new
HapMap Phase 3 samples of African ancestry (ASW, LWK, and MKK). The only exception
is Mandenka, for which the optimal reference panel consists solely of the HapMap YRI
population. The combined panel of all four HapMap populations of African descent is not
the optimal reference group in any of the 15 African populations, and it is the second-best
reference panel in only three of the 15 African groups (Kenyan Bantus, Fulani, and Mada).
Interestingly, several populations (Beja, Biaka Pygmy, Borana, Fulani, Mbuti Pygmy, and
Sandawe) have in their optimal reference panels the HapMap ASW admixed sample of
African Americans.

On the basis of reference panels consisting of mixtures of the HapMap Phase 3 populations,
the San, Mbuti Pygmy, and Biaka Pygmy populations continue to be the most poorly
imputed groups, as was previously observed with earlier reference panels from HapMap
Phase 2 [Huang et al., 2009a]. Yoruba remains the best-imputed population, with the
combination of the HapMap LWK and YRI populations as its optimal reference panel.
Although the size of the underlying optimal reference panels varies widely across the 15
target populations, from 80 individuals for the LWK panel to 284 individuals for the
combined panel containing the HapMap LWK, MKK, and YRI populations, maximal
imputation accuracy varies only moderately across the 15 African target populations. The
highest and lowest values differ by less than 7.0% among all 15 populations, and by less
than 2.0% for the 11 populations with highest maximal imputation accuracy.
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To evaluate the improvement in imputation accuracy in African populations resulting from
the addition of the ASW, LWK, and MKK samples to the HapMap Phase 3 data, for each
African population, we computed the difference between the maximal imputation accuracy
in the population using its optimal combination of reference panels and the imputation
accuracy in the population on the basis of the YRI reference panel. Averaged across African
populations, the increase in imputation accuracy is 1.3%, corresponding to a mean
percentage reduction of 11.1% in imputation error rates. Note, additionally, that the HapMap
Phase 3 YRI panel examined in our study contains 80% more unrelated individuals than the
HapMap Phase 2 YRI panel (108 rather than 60); this panel is thus likely to produce higher
imputation accuracy than the earlier panel. Consequently, as a measure of the improvement
in African imputation accuracy on the basis of HapMap Phase 3 compared to HapMap Phase
2, our estimate is likely to be conservative.

To further quantify contributions of individual HapMap Phase 3 panels of African ancestry
to imputation accuracy in the 15 African populations, for each HapMap panel of African
descent, we computed the difference in maximal imputation accuracy attainable in each of
the 15 populations using two optimal reference panels, one chosen from a full collection of
combination panels and the other chosen from a reduced collection. The full collection
consisted of all 24−1 = 15 combinations of the four HapMap Phase 3 panels, producing the
maximal imputation accuracies shown in Figure 10. The reduced collection, a subset of the
full collection, consisted of 23−1 = 7 combinations of the same panels of African descent,
excluding the panel whose contributions were under evaluation. A larger difference in
maximal imputation accuracy, examining the full and reduced collections, suggests a greater
impact of the HapMap panel under consideration, because of a greater difference in
imputation accuracy achieved with and without the panel. For each of the 15 African
populations, we ranked the four HapMap Phase 3 panels of African descent by the
difference in maximal imputation accuracy, finding that the HapMap ASW panel has the
greatest influence on maximal imputation accuracy only in Fulani, a group that has been
suggested to have had recent gene flow both with Sub-Saharan African and with Eurasian
populations [Scheinfeldt et al., 2010]. Considering the remaining 14 African populations,
exclusions of the HapMap MKK, LWK, and YRI panels produce the greatest impact in six,
five, and three populations, respectively. Among the target populations whose imputation
accuracies are most strongly influenced by a particular panel, the mean percentage
reductions in imputation error rates are 4.1, 10.4, and 8.3% for MKK, LWK, and YRI,
respectively (the percentage reduction in imputation error in Fulani when including the
ASW reference panel is 3.8%).

Relating Imputation To Haplotype Variation
The selection of optimal reference panels for imputation in target populations generally
requires an investigator either to have prior knowledge of the performance of candidate
panels in the target populations or to perform imputation experiments similar to the ones
described in the preceding section. However, prior knowledge might be unavailable for
unusual target populations, and imputation experiments can be computationally intensive.
Thus, for target populations that have not been the focus of previous imputation studies, the
ability to predict the optimal reference panel among a collection of candidate panels on the
basis of simple genotypic and haplotypic variation statistics computed for the target and
each of its candidate reference groups can serve as an attractive approach to the selection of
reference panels.

To provide a basis for predicting properties of imputation from statistics on variation
patterns, we examined the dependence of imputation-accuracy results (Fig. 7) on our
analysis of haplotype variation in the 15 African populations. Both imputation accuracy and
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haplotype variation were investigated using the same set of 517 markers that overlapped
between our study populations and the HapMap Phase 3 populations. We considered three
haplotype-variation statistics from the Haplotype Variation section (haplotype sharing for a
target population with a reference population, number of private haplotypes in the target
population, and level of LD in the target population), as well as Fst between target and
reference populations, as possible predictors of imputation accuracy in a target population
on the basis of a reference population. Haplotype sharing and Fst are reasonable predictors
because they measure genetic similarity and distance between a target group and a reference
group. The number of private haplotypes provides a measure of the distinctiveness of a
target population and thus might be expected to be inversely related to imputation accuracy.
Finally, the level of LD as measured by r2 is a reasonable predictor because the strength of
correlation among nearby SNPs on a target haplotype underlies our ability to impute
genotypes at an untyped SNP using genotype information at a nearby typed SNP.

For the 15 African target populations, with missing genotypes imputed based on their
respective optimal HapMap mixtures, Figure 8 displays the relationships of imputation
accuracy with four summary statistics—the number of private haplotypes of length 50 kb,
the level of LD at 50 kb, the haplotype sharing for target populations with their optimal
reference groups using a window size of 50 kb, and Fst between the target and reference
populations. Haplotype sharing for a target population with a reference population, as well
as Fst between a target population and a reference population, each produce a strong
relationship with imputation accuracy in the target (with Pearson correlation coefficient r =
0.79 and P = 0.0004 between imputation accuracy and haplotype sharing, and r = −0.86 and
P<0.0001 between imputation accuracy and Fst). The relationship between imputation
accuracy and the number of private haplotypes is weaker (r = −0.66, P<0.0070), and the
relationship between imputation accuracy and the level of LD is not statistically significant
(r = 0.15, P = 0.6044).

Statistics on genetic similarity between an African target population and a HapMap
reference group can in some cases be used for identifying the optimal reference panel for
imputation in the target. Each plot in Figure 9 shows the imputation accuracies in a given
target population on the basis of each of the 15 HapMap mixture panels, sorted on the x-axis
according to the haplotype-sharing statistic. In 4 of the 15 target populations, the optimal
HapMap mixture, as shown in Figure 7, is indeed the mixture with the highest haplotype
sharing; in most target populations, use of the mixture with the highest haplotype sharing
leads to a relatively small decrease in imputation accuracy compared to use of the optimal
mixture. For each target population, we computed the difference in accuracy between the
imputation performed using the mixture with the highest value of the haplotype-sharing
statistic and the imputation performed using the optimal HapMap mixture. The mean loss of
imputation accuracy across the 15 African target populations in this case is 0.0038,
corresponding to a mean percentage increase of 4.2% in imputation error.

Similarly, each plot in Figure 10 shows the imputation accuracies in a target population on
the basis of the 15 HapMap mixture panels, sorted instead on the x-axis according to Fst.
The optimal HapMap mixture is the mixture with the lowest Fst in only 3 of the 15 target
populations. However, in many of the remaining target populations, the imputation accuracy
obtained using the mixture with the lowest Fst is only very slightly lower than the imputation
accuracy obtained using the optimal mixture. The mean loss in imputation accuracy from
use of the lowest-Fst mixture rather than the optimal mixture is 0.0013, corresponding to a
mean percentage increase of 1.3% in imputation error. This small difference in imputation
accuracy suggests that genetic similarity between target and reference populations plays a
central role in predicting imputation accuracy in the target population, and that similarity
statistics can be used to guide the selection of suitable reference populations.

Huang et al. Page 8

Genet Epidemiol. Author manuscript; available in PMC 2013 February 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Discussion
Genotype imputation has played an increasingly important role in the analysis of human
genetic variation and genotype-phenotype association, and the continuing growth of
genomic resources facilitates the expansion of imputation studies into new populations. We
have found that the availability of additional HapMap Phase 3 populations of African
descent increases the accuracy of genotype imputation in Sub-Saharan African populations,
improving the prospects for GWA studies in these groups. Focusing on populations from
Sub-Saharan Africa, we have presented a detailed investigation of haplotype diversity and
genotype imputation, recommending the use of haplotype-sharing measures and Fst between
a target population and candidate reference populations as guiding criteria for selecting
reference panels for imputation in the target population.

We characterized the level of genetic similarity between populations by the magnitude of
their haplotype sharing. Examining the patterns of haplotype sharing at a regional level, we
confirmed earlier observations of asymmetry between African and non-African populations
in haplotype sharing, as reflected in the greater “outward” than “inward” haplotype flow
from Africa to other geographic regions [Conrad et al., 2006]. This asymmetry in haplotype
sharing (Fig.1) provides a partial explanation for a corresponding reference-target
asymmetry in imputation performance for Africans and non-Africans (Fig. 6). In particular,
the net outward haplotype flow from Africa to other geographic regions implies that for a
non-African haplotype targeted for imputation on the basis of an African reference
population, the probability of finding the same haplotype inherited by descent in the
reference population is greater than the probability of finding an African haplotype targeted
for imputation in a non-African reference population. An increased probability of finding
reference chromosomal stretches inherited by descent for a non-African target haplotype in
turn produces an increased probability of correctly inferring missing genotypes of the non-
African target on the basis of African reference haplotypes, compared to the probability of
correctly inferring missing genotypes of an African target on the basis of non-African
reference haplotypes. Following the same argument, we can attribute much of the
asymmetry in imputation performance between collections of populations from different
geographic regions to the asymmetry in haplotype sharing for the populations involved.

The accuracy with which genotypes can be imputed in a target population, although
positively correlated with haplotype sharing and the Fst statistic with the reference panel, is
not solely determined by either of these measures of genetic similarity between target and
reference populations. For example, considering the 15 African populations, the Mandenka
population had the highest maximal haplotype-sharing fraction across the 15 possible
mixtures of the HapMap Phase 3 populations of African descent (Fig. 5). Among the 15
African target populations, however, the Mandenka population had less than the median
maximal imputation accuracy on the basis of the optimal reference panel chosen among the
15 HapMap mixtures. Future theoretical work will be important for clarifying the
determinants of imputation accuracy; in the absence of such work, further investigation of
empirical approaches, some inspired by population-genetic theory, can continue to provide
improvements to imputation in novel target populations [e.g., Egyud et al., 2009; Huang et
al., 2009a; Li et al., 2010; Paşaniuc et al., 2010; Shriner et al., 2010].

Although our dataset in 63 worldwide populations enables us to investigate factors affecting
accuracy of genotype imputation in diverse populations, especially in Sub-Saharan Africans,
the relatively small numbers of markers and sample sizes do limit the scope of our study.
For example, because of the small size of the marker set, the fraction of the markers that we
chose to impute in our experiments was less than that typically used in GWA applications,
for which larger fractions of the dataset are imputed rather than genotyped. This small size

Huang et al. Page 9

Genet Epidemiol. Author manuscript; available in PMC 2013 February 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



of the marker set had the additional consequence that in our imputation experiment
involving the HapMap, for each of the 15 African target populations, imputation accuracies
resulting from use of the top choices of reference panels did not differ substantially, thereby
limiting our ability to provide clear support for particular mixtures of HapMap panels (Fig.
7). Further, for our 63 × 63 imputation experiment involving data only from the 63
populations, we relied on phased haplotypes, and relatively small sample sizes might have
limited phasing accuracy; because phasing accuracy is lowest in populations with lower LD
[Conrad et al., 2006], phasing errors could have contributed to the elevated imputation error
rates in African target populations (Fig. 6). We also note that while the MACH software that
we studied is among the most commonly used imputation programs, other methods such as
BEAGLE [Browning and Browning, 2007, 2009] and IMPUTE [Marchini et al., 2007;
Howie et al., 2009] are frequently employed. While the numerical results of the imputation
experiments would likely vary with our methodological choices, however, our primary goal
has been to examine the way in which imputation accuracies relate to each other across
different reference and target populations, with a focus on Sub-Saharan Africa, and we do
not expect that these general patterns would be substantially affected by changes to the
imputation software, marker sets, or sample sizes. The limitations of our imputation
experiments will become easier to address as large-scale African population-genetic datasets
proliferate, from such sources as genomic studies of human evolution [e.g., Bryc et al.,
2010; Henn et al., 2011] and GWA studies in African and African-American populations
[e.g., Adeyemo et al., 2009; Jallow et al., 2009; Teo et al., 2010].

Materials And Methods
Data

SNP data—We supplemented the worldwide set of 957 individuals studied by Pemberton
et al. [2008], which itself updated the dataset of Conrad et al. [2006] on 927 individuals
from 53 populations, with data on eight additional African populations. Among 160 African
individuals genotyped initially, four were discarded as a result of poor genotyping quality.
For each pair among the remaining 156 individuals, the fractions of SNPs at which the pair
shared 0, 1, and 2 identical alleles were calculated. The computation used all SNPs at which
genotyping was attempted, and it identified two pairs of duplicate samples and five pairs of
close relatives, two of which shared one individual. This shared individual was removed
from both pairs, and from each of the five remaining pairs, the individual with the greater
amount of missing data was removed. Research and ethics approvals and permits were
secured prior to sample collection, as detailed by Tishkoff et al. [2009]. Written informed
consent was obtained on-site from all participants, and the institutional review boards of the
University of Maryland at College Park and the University of Pennsylvania approved the
study.

Genotyping was attempted for the African individuals at 3,024 SNPs spread across 36
genomic regions, simultaneously with genotyping of the 30 Indian samples that formed the
focus of the work of Pemberton et al. [2008]. The preparation of the final dataset for this
study appears in Pemberton et al. [2008], who incorporated the African samples in
producing a final dataset of 2,810 SNPs, but then omitted these samples in data analysis.
Our final dataset, considering all 1,107 individuals and 2,810 SNPs, has a missing data rate
of 0.11% (0.38% in the 150 newly sampled African individuals). Among the 2,810 SNPs,
1,272 are located on chromosome 21. To investigate genotype imputation in our study
samples, we focused on this subset, which has a missing data rate of 0.10% (0.36% in the
150 newly sampled African individuals). Haplotype phasing utilized fastPHASE 1.0[Scheet
and Stephens, 2006], following the same approach as in Conrad et al. [2006], and it was
completed by Pemberton et al. [2008].
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HapMap data—For some analyses, we incorporated additional reference individuals for
genotype imputation. The reference data consisted of 901 unrelated individuals in release 2
of HapMap Phase 3 [International HapMap 3 Consortium, 2010]. We used a dataset in
which phased genotypes in these individuals were available at 1,361,534 autosomal SNPs.
Of these SNPs, 18,943 were on chromosome 21, among which 517 were also available in
the 1,107 study individuals. For imputation designs involving HapMap individuals as
reference data, we assessed imputation accuracy at a subset of the 517 SNPs by using the
unphased genotypes at the 1,272 SNPs from the study sample and the phased genotypes at
the 18,943 chromosome 21 SNPs in the HapMap Phase 3 data. For imputations that instead
used populations in the study sample as reference data, we evaluated imputation accuracy at
a subset of the 1,272 SNPs, using unphased data for target samples and phased data for
reference samples at those SNPs.

Statistical Analyses Of Haplotype Variation
Haplotype windows

We computed haplotype summary statistics using haplotypes defined by “core” SNPs in
genomic windows of size w base pairs. In the set of SNPs genotyped, core SNPs are SNPs
that lie within a more densely genotyped region with a mean spacing of ∼1.5 kb between
consecutive SNPs (noncore SNPs lie in regions flanking each core,with a mean spacing of
∼10 kb). For each SNP in a “core” region, a haplotype locus is specified by the set of allelic
states at all SNPs located in the half-open window [a,a + w), where a denotes the position of
the SNP under consideration and a + w denotes the position along the chromosome w base
pairs away from the position a. All SNPs defining a haplotype locus are required to lie
completely within a core region. Furthermore, identical haplotypes must have the same
variants for all SNPs with positions in [a,a + w). For each value of the window size w, we
present summary statistics averaged across all haplotype loci of size w. For instance, for a
given population, haplotype heterozygosity was computed for each haplotype locus and was
then averaged across haplotype loci.

Unless otherwise noted, summary statistics on haplotype variation were calculated twice in
our study. We first computed the statistics using all 1,800 core SNPs outside X-
chromosomal regions [numbered 23–26 in Table SM.2 of Conrad et al., 2006] for the
characterization of haplotype variation in the study populations (Figs. 1–3). The collection
of 1,800 SNPs was identical to that used by Pemberton et al. [2008]. For the investigation of
the relationship between haplotype variation and imputation performance (Figs.4,5,8–10),
we repeated the computation using the set of 517 SNPs that overlapped between the study
samples and the HapMap Phase 3 data so that results on haplotype variation and on
imputation accuracy used the same underlying set of SNPs. Finally, we computed pairwise
Fst between each of 15 African target populations and each of 15 mixtures of HapMap Phase
3 panels of African ancestry, using the set of 517 SNPs and eq. 5.3 of Weir [1996]. All
haplotype summary statistics, as well as Fst, were computed using phased datasets.

Numbers of distinct haplotypes and private haplotypes
To adjust for sample-size differences across populations and geographic regions, following
Conrad et al. [2006], we used a rarefaction approach for estimating the numbers of distinct
haplotypes and private haplotypes. For each of these two statistics, in a sample of size N,
this approach chooses a value g≤N and it obtains the statistic by averaging the expected
value of the statistic across all possible subsamples of size g from the original sample of size
N. This method enables a correction for differing sample sizes across populations, as the
same value of the subsample size g can be used in evaluating a statistic in each population.
For all population-level computations of the two statistics, we used g = 12, which
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corresponds to the smallest sample size among the 63 populations. For all computations
involving geographic regions, we used g = 54, as the smallest sample size among the seven
geographic regions equaled 54 chromosomes.

Haplotype sharing
To compute the fraction of distinct haplotypes shared between two populations, j and j′, we
used the z-statistic of Conrad et al. [2006]. For each haplotype locus, we first computed the
numbers of distinct haplotypes and the numbers of private haplotypes for each of the two
populations, where private haplotypes for population j refer to those not found in population
j′. This computation used rarefaction with g = 54 when comparing geographic regions and g
= 12 when comparing populations.

The expected number of distinct haplotypes found in a sample of size g from population j
that will also be found in a sample of size g from population j′ is then equal to the difference
between the expected number of distinct haplotypes in population j and the expected number
of private haplotypes in population j. Thus, the z-statistic of Conrad et al. [2006] is an
estimator of the fraction of distinct haplotypes observed in a sample of size g from
population j that will also be observed in a sample of size g from population j′.

Linkage disequilibrium
We measured LD by the correlation coefficient, r2, between all pairs of SNPs with minor
allele frequency greater than or equal to some cutoff value, c, where c∈[0,1). For each
population, we computed the mean r2 and the mean distance between pairs of SNPs for all
SNP pairs within bins of size b; a bin centered on distance xcontains all pairs of distinct
SNPs in the interval (x−b/2,x + b/2]. We tested the sensitivity of r2 values to various choices
of c (0, 0.05, and 0.1) and b (1, 3, 6, and 10 kb), and we found that the choices of c and b
had relatively little effect on the observed LD patterns.

Haplotype sharing with the HapMap
Using the statistic [Conrad et al., 2006], for each population, we computed the fraction of
haplotypes common in a population that were also common in each of the 11 HapMap Phase
3 populations and in the 15 combinations of one or more HapMap Phase 3 groups of African
descent. This statistic evaluates the number of distinct haplotypes that are common in each
of a pair of populations, as a fraction of the number of distinct haplotypes common in the
population from the pair designated as the “donor.” We used g = 12 in rarefaction-based
evaluations of the number of distinct haplotypes, and the set of 517 SNPs that overlapped
with the HapMap Phase 3 data was used for computations of. Estimates of were generally
insensitive to the choice of cutoff used for defining “common” haplotypes (haplotype
frequency >0.01, >0.05, or >0.1). The statistic was obtained by averaging across haplotype
loci within each of the genomic core regions, and it was then averaged across genomic
regions.

Genotype-Imputation Experiments
Imputation at untyped markers based on population samples

We examined how well missing genotypes in each population can be imputed using other
population samples as reference panels. For each population in which imputation was
performed, we masked the same set of 77 SNPs on chromosome 21, randomly chosen
among the 517 markers that overlapped between our samples and the HapMap Phase 3
populations. We then estimated genotypes at these markers using the software MACH [Li et
al., 2006, 2010]. MACH settings were identical to those used in imputations of untyped
markers in Huang et al. [2009a] except that we dropped two options, “interimInterval,”
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which outputs intermediate results, and “mask,” which masks a specified proportion of
genotypes (as opposed to masking the genotypes of specific markers in all individuals). For
improved genotype estimates, we also increased “rounds,” the number of rounds for the
Markov sampler, from 20 to 50. The median minor allele frequency of the 77 hidden SNPs
ranges from 0.1957 to 0.2895 across the 15 African populations, and from 0.1875 to 0.3036
across 61 of the populations (the median minor allele frequency is lower in the Surui and
Pima populations).

In each target population, imputation was performed 62 times, each time based on a subset
of the unmasked, phased data from one of the remaining populations as a reference group.
The target data of a population consisted of unphased genotype data in all individuals
available from that population. For all target populations, we used the same reference data,
consisting of haplotypes of six individuals randomly selected from a reference population.

Additionally, we imputed each population on the basis of itself. For each population, we
split its data into two nonoverlapping sets and used one set to impute the other. For 61 of 63
groups, we used the same reference sets of six individuals described above. For two
population samples of size six individuals (San and Tuscan), we randomly selected five
instead of six individuals and created the reference set using the unmasked, phased genotype
data of these individuals. We then used unphased genotype data for individuals not sampled
for inclusion in the reference set to form the target set for the evaluation of imputation
accuracy. Thus, for imputation in a target population with sample size n using reference data
from the same population, for 61 populations, the target set consisted of n−6 individuals that
were not in the reference set, and for the remaining two populations, it contained the unique
individual that was not in the reference set.

Finally, to summarize imputation performance in each population, we estimated allelic
imputation accuracy using eq. (1) of Huang et al. [2009b], which employs MACH-estimated
genotype posterior probabilities and averages them across SNPs and across individuals in
the target population sample. Imputation error is then defined as one minus imputation
accuracy. We averaged imputation accuracy across 10 replicates of our imputation
experiment, each time using one of ten randomly selected sets of reference individuals (the
mean across the replicates is plotted in Fig. 6).

We note that except in three African populations (Iraqw, Sengwer, and Borana) that have
slightly elevated native missing data rates of 0.42, 0.67, and 0.71%, the other 60 populations
have similarly low rates of natively missing data, ranging between 0.01 and 0.29% across
the 1,272 markers on chromosome 21 (“natively missing data” refer to data missing prior to
our intentional masking of SNPs in the experimental design; all natively missing data rates
were computed using unphased subsets of our final dataset).

Imputation at untyped markers based on Hapmap populations
We next evaluated the use of HapMap Phase 3 populations as reference data and identified
optimal reference panels for imputing missing genotypes in the various African populations.
The same collection of 77 SNPs (∼15% of 517 overlapping SNPs between the HapMap data
and our data) masked in the previous experiment was masked, and the unphased genotypes
of these hidden SNPs were estimated using identical MACH settings to those in the previous
section, except that we modified the “seed” option to change the initial random seed used by
MACH from its default value of 123456. The values plotted in Figure 7 were obtained as
means across 10 replicates, with the replicates having varying random seeds for the MACH
runs. We considered as reference data combinations of HapMap Phase 3 groups of African
descent, pooling phased genotypes of unrelated individuals from the four populations with
significant recent African ancestry (40 ASW, 80 LWK, 96 MKK, and 108 YRI individuals).
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In total, 24−1 = 15 possible combinations were considered. Because we combined the panels
with their original sizes, the 15 combination panels varied in size. Imputation accuracy was
assessed in the same manner as in the previous experiment.

Relating Imputation To Haplotype Variation
To explore the relationship between imputation accuracy and summary statistics on
genotypic and haplotypic variation, we investigated the correlation between maximal
imputation accuracy in the 15 African populations on the basis of the optimal panel chosen
among the 15 HapMap combinations and each of several summary statistics: number of
private haplotypes, LD as measured by r2, haplotype sharing as measured by the fraction of
common haplotypes also found in the optimal panel among the 15 choices, and Fst between
a target population and its corresponding optimal mixture of the HapMap Phase 3 panels.
The number of private haplotypes and the fraction of common haplotypes shared with the
HapMap were computed using a window size of 50 b. Values of r2 were determined using 6
b bins, and Fst was computed for individual SNPs and then averaged across SNPs.
Imputation and haplotype-variation results were obtained using the same underlying set of
517 SNPs that overlapped between the HapMap data and our study samples. We computed
the Pearson correlation coefficients between imputation accuracy and each of the four
statistics.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Schematic world map of haplotype variation. (A) Haplotype sharing on the basis of the data
from Pemberton et al. [2008]. (B) Haplotype sharing after including eight newly sampled
African populations. The mean number of haplotypes per genomic core region in a sample
size of 54 chromosomes is written for each geographic region. Links entering a geographic
region indicate the percentages of distinct haplotypes from the geographic region found in
other regions and are drawn proportionately in width. For example, in part A, on average
10% of haplotypes observed in Europe are found in Africa (18% in part B), whereas 6% of
African haplotypes are found in Europe (10% in part B). The links can be viewed as a
description of haplotype “flow”: for example, 10% (18%) gives a measurement of the
proportion of distinct European haplotypes that could have come from Africa (without
mutation or recombination), and 6% (10%) gives the proportion of African haplotypes that
could have come from Europe. We used 1,800 core SNPs to generate the figure.
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Figure 2.
Numbers of private haplotypes. (A) The number of private haplotypes in each geographic
region as a function of haplotype length. Sample sizes were adjusted to represent 54
chromosomes from each geographic region. (B) The number of private haplotypes in each
African population as a function of haplotype length. Sample sizes were adjusted to
represent 12 chromosomes from each population. Error bars represent the standard error of
the mean across haplotype-loci.
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Figure 3.
Linkage disequilibrium (LD) vs. physical distance. r2 was calculated for each pair of SNPs
with minor allele frequency greater than or equal to 0.05. The mean r2 within a bin is plotted
as a function of the mean of the distance between pairs of SNPs within the bin. The bin size
was 6 kb. Lines for individual populations are color-coded by geographic region.
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Figure 4.
The fraction of common haplotypes in individual populations that are also common in the
HapMap. For each plot we used haplotypes based on the 517 SNPs that overlap between
HapMap Phase 3 and our autosomal core regions on chromosome 21. We first averaged over
all haplotype-loci within each core region and then averaged across the core regions for
windows of a given length. Each curve shows the fraction of the common haplotypes of a
population (with >10% frequency) that are also common in a HapMap sample. The lower
right plot shows for each population the maximal sharing across the 11 HapMap samples,
determined separately at each window size.
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Figure 5.
The fraction of common haplotypes in African populations that are also common in the
HapMap. For each plot we used haplotypes based on the 517 SNPs that overlap between
HapMap Phase 3 and our autosomal core regions on chromosome 21. We first averaged over
all haplotype-loci within each core region and then averaged across the core regions for
windows of a given length. Each curve shows the fraction of the common haplotypes of a
population (with >10% frequency) that are also common in a HapMap sample formed by
combining specific HapMap groups with recent African ancestry. Inside each plot that
corresponds to one of the 15 HapMap mixtures, we label target populations in which the
corresponding HapMap mixture served as the optimal reference panel among the 15 mixture
panels. For the last plot of maximal haplotype sharing across HapMap mixtures, we label the
populations with the highest and lowest maximal sharing fractions.
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Figure 6.
Imputation accuracy for inference of genotypes at hidden markers. For each target
population specified by the column label, we masked a set of markers and imputed
genotypes in the population using the reference population specified by the row label. Of
1,272 markers, 77, or ∼6%, were randomly chosen among a subset of 517 markers and
masked, and for each target, the same set was masked for imputation with each reference
population. The colors correspond to ten deciles of imputation accuracy across all
populations and all reference panels. For each population, the best and second-best reference
panels among 62 other populations are labeled 1 and 2, respectively. For convenience in
interpreting the figure, the horizontal and vertical blue lines separate results by geographic
region (from left to right and from bottom to top: Africa, Europe, Middle East, Central/
South Asia, East Asia, Oceania, and the Americas).
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Figure 7.
Imputation accuracy for inference of genotypes at hidden markers, based on 15 reference
panels consisting of combinations among four HapMap Phase 3 panels with recent African
ancestry. For each target population, the bar represents the maximal imputation accuracy
among the 15 choices, and it is colored according to the choice of optimal reference panel.
Each HapMap panel was used with its original size in the combination panels. In each
population, we masked the same 77, or ∼15%, of 517 markers as in Figure 6.
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Figure 8.
Imputation accuracy and statistics of genotypic and haplotypic variation. (A) Number of
private haplotypes, (B) LD as measured by r2, (C) fraction of common haplotypes also
common in the HapMap, and (D) Fst between a target population and its optimal HapMap
mixture. The imputation accuracy represents the maximal imputation accuracy using the
optimal panel among the 15 combinations of the HapMap panels of African descent
(identical numerical values as plotted in Figure 7). All computations used the set of 517
SNPs that overlapped with HapMap Phase 3. In parts A and C, a window size of 50 kb was
used; in part B, r2 was computed using a bin size of 6 kb; in part D, Fst was first computed
for individual SNPs and was then averaged across the 517 SNPs. The fraction of common
haplotypes also found in the HapMap and Fst were computed for target populations with
their respective optimal panels among the 15 choices. The Pearson correlation coefficients
are −0.66 (P = 0.0070) between imputation accuracy and number of private haplotypes, 0.15
(P = 0.6044) between imputation accuracy and r2, 0.79 (P = 0.0004) between imputation
accuracy and fraction of common haplotypes in a target population also found in the
HapMap, and −0.86 (P<0.0001) between imputation accuracy and Fst of a target population
with its optimal HapMap mixture.
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Figure 9.
Imputation accuracy and the fraction of common haplotypes that are also common in the
HapMap. For each target population, imputation accuracy using each of 15 HapMap mixture
reference panels is plotted as a function of haplotype sharing with the reference panel
(window size of 50 kb). The imputation accuracy for the optimal reference panel
corresponds to the maximal imputation accuracy plotted in Figure 7.
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Figure 10.
Imputation accuracy and Fst with HapMap mixtures. For each target population, imputation
accuracy using each of 15 HapMap mixture reference panels is plotted as a function of Fst
with the reference panel. The imputation accuracy for the optimal reference panel
corresponds to the maximal imputation accuracy plotted in Figure 7.
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Table I
Eight newly genotyped African populations incorporated in the study

Population Sampling location Language family Sample size

1. The Beja and Fulani samples are from the Tishkoff et al. [2009] Hadandawa Beja and Mbororo Fulani samples, respectively.

Beja Sudan Afroasiatic 20

Borana Kenya Afroasiatic 18

Fulani Cameroon Niger-Kordofanian 19

Hadza Tanzania Khoesan 18

Iraqw Tanzania Afroasiatic 18

Mada Cameroon Afroasiatic 19

Sandawe Tanzania Khoesan 20

Sengwer Kenya Nilo-Saharan 18
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