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Abstract
Computational models used in the estimation of thermodynamic quantities of large chemical
systems often require approximate energy models that rely on parameterization and cancellation of
errors to yield agreement with experimental measurements. In this work, we show how energy
function errors propagate when computing statistical mechanics-derived thermodynamic
quantities. Assuming that each microstate included in a statistical ensemble has a measurable
amount of error in its calculated energy, we derive low-order expressions for the propagation of
these errors in free energy, average energy, and entropy. Through gedanken experiments we show
the expected behavior of these error propagation formulas on hypothetical energy surfaces. For
very large microstate energy errors, these low-order formulas disagree with estimates from Monte
Carlo simulations of error propagation. Hence, such simulations of error propagation may be
required when using poor potential energy functions. Propagated systematic errors predicted by
these methods can be removed from computed quantities, while propagated random errors yield
uncertainty estimates. Importantly, we find that end-point free energy methods maximize random
errors and that local sampling of potential energy wells decreases random error significantly.
Hence, end-point methods should be avoided in energy computations and should be replaced by
methods that incorporate local sampling. The techniques described herein will be used in future
work involving the calculation of free energies of biomolecular processes, where error corrections
are expected to yield improved agreement with experiment.

Introduction
Modern chemical research benefits from the use of computer simulations, which can provide
molecular or atomic–level insights into chemical processes using any of the myriad of
available theoretical models. Each of these models comes with its own set of advantages and
disadvantages. For example, quantum chemical methods such as coupled-cluster theory are
able to model energies and spectra of small systems to within experimental error bars1, but
such energy models are not easily extendable to large systems due to their high
computational demand. Meanwhile, simpler force field models are able to simulate the
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classical dynamics of hundreds of thousands of atoms for timescales approaching the
millisecond range2, but rely on heavily parameterized energy functions and error
cancellation to make useful predictions. Of course there are many other energy models with
varying levels of computational cost and reliability (density functional theory, perturbation
theory, semiempirical quantum methods, polarizable force fields, empirical score functions,
etc.) that can be used to solve chemical or biological problems.

Generally, a computational study in chemistry requires a cost vs. accuracy analysis at the
outset to find the optimum theoretical model for a target system, usually based on
documented computational results on similar chemical systems. Even after careful selection
of an appropriate energy model, errors are still expected to affect computational results. In
order to improve our ability to handle these modeling errors, we recently have been
investigating general methods for on-the-fly estimation and correction of errors that are
introduced in energy calculations, particularly for large biomolecular systems. We have
developed a chemical fragment-based method for estimating and correcting modeling errors
for proteins3 and protein-ligand complexes4, and we have shown how errors in end-point
(also called single-point: calculations performed on a single static molecular structure)
energies grow with system size.5 Notably, our previous work has been focused on such end-
point score functions (e.g. molecular docking and scoring), where energetic contributions
are assumed to be dominated by single global minimum microstate energies. In contrast,
here we examine how modeling errors are propagated in ensemble-based energetic
quantities. Specifically, we develop a statistical mechanical scheme to analyze modeling
errors and investigate their effects on ensemble quantities based on error propagation
techniques and gedanken experiments. We first investigate the effects of first-order error
propagation in order to understand simple error propagation behavior. Secondly, since first-
order error propagation is expected to be reliable only in small error regimes, we also
explore higher-order error propagation and Monte Carlo methods to establish practical error
estimation procedures. Finally, we demonstrate how an error-handling protocol might be
used when predicting free energies of a simulated molecular system. The present study
provides a framework for error analysis of simulated statistical ensembles, which will be
applied to future molecular simulation results. It should be noted that in the present context,
“errors” are intrinsic energy modeling errors, which are introduced by approximations in
energy models instead of “statistical sampling errors”, which should eventually disappear
with increased sampling.

First Order Error Analysis
In this work, we examine the canonical ensemble (constant N, V, T), in which the Helmholtz
free energy, A (Eq. 1), is the key quantity of interest. This quantity depends on the reservoir
temperature T (represented via β = (kbT)−1 where kb is the Boltzmann constant), and
partition function Q which sums over the microstates of the ensemble (Eq. 2).

(1)

(2)

A general function f of several independent variables, f(x1, x2 … xN), has an uncertainty that
can be estimated as:
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(3)

where δxi are uncertainties in the input variables.6 Equation 3 is derived from a sum of
truncated Taylor series of f in each independent variable xi. We truncate at the first power of
δxi to yield the simplest (first-order) model of error propagation. Similar expressions have
been used in the past for the sensitivity analysis of force field parameters.7 In the case of
systematic errors, the inequality becomes an equality and the absolute value is dropped. If
the errors δxi are random and uncorrelated, then the first-order propagated error in the
function f can be estimated by the Pythagorean sum:

(4)

We have proposed previously3–4 that single-point energies of large systems contain both
systematic and random errors. Our approach to the estimation of single-point energy errors
is as follows: 1) Identify and classify each distinct molecular interaction present (e.g.
hydrogen bond or van der Waals contact), 2) Estimate the individual fragment-based errors
with a probability density function constructed with a reference database of molecular
fragment interactions, 3) Propagate the errors as:

(5)

(6)

where the summations run over all interaction types k in the reference database, Nk is the
number of detected interactions of type k, and μk and σ2

k represent the mean error per
interaction for interaction type k and variance about the mean error for interaction type k in
the database. Interaction types can be as coarsely defined as van der Waals and polar
contacts or as specific as classifying individual amino-acid side chain interactions. The
method assumes additivity (independence) of fragment interaction energies8 and that the
probability density function describing modeling errors for each interaction class is a normal
distribution with known parameters. Here, “random errors” should be interpreted as a
measure of uncertainty in our error estimate for a given fragment interaction. They are
inversely proportional to the precision of an energy model in predicting fragment-based
interaction energies. Thus if an example protein containing 50 hydrogen bonds and 40
distinct van der Waals contacts is modeled with an energy function with intrinsic modeling
errors of 0.50 ±1.0 kcal/mol (note: here 0.50 kcal/mol is the value of the systematic error
and 1.0 kcal/mol is the value of the random error) for hydrogen bonds and −0.20 ±1.0 kcal/
mol for van der Waals contacts, we would evaluate the energy with the model and estimate
an error of 17 ±9.5 kcal/mol. Rather than simply reporting the calculated energy, one would
correct systematic errors by subtracting 17 kcal/mol from the calculated energy, and report
an error bar with magnitude 9.5 kcal/mol. It could then be said that the “true” energy (from
the energy model serving as a reference) has about a 68% chance (1σ) of lying within this
9.5 kcal/mol window.
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If the energies Ei of each microstate i in a statistical ensemble contain systematic and
random error components as estimated by Eq. 5–6, we can propagate them over the entire
ensemble using error propagation formulas. By applying Eq. 3–4 to the free energy A we
obtain the following first-order expression:

(7)

or

(8)

where Pi is the normalized weight of the microstate i. Thus the systematic error in A is the
Boltzmann-weighted average of the systematic error of each microstate, and the random
error in A is the Pythagorean sum of the weighted random errors from each microstate. If we
suppose (as a thought experiment) that our ensemble consists of one dominant microstate
(e.g., a stable folded protein, or a docked ligand pose), then Po ≈ 1 and we find the
seemingly obvious result

(9)

which indicates that the total error in the free energy is determined by the error contained in
the single dominant microstate. Thus endpoint energy methods commonly used in docking
and protein structure predictions, which consider only one microstate at a time, will always
yield the full value of the error contained in the single microstate considered.

In a second scenario, suppose that the ensemble comprises several distinct contributing

microstates, but each contains the same error estimate (constant  and ). In this
case, the propagated error in free energy is

(10)

which yields the constant systematic error of the microstates, but a decreased random error
due to the scaling factor in the last term in Eq. 10, which must be less than one. It is worth
noting that the scaling factor, and thus the propagated random error, decreases with
increasing number of nearly isoenergetic microstates. Hence, by including additional
contributing microstates via a local sampling of the potential energy surface, the random
error in free energy estimation is naturally reduced, while the systematic error is unaffected.

As a numerical example, let us consider a hypothetical two-state protein (hereafter referred
to as M1) modeled with a force field containing 0.21 ±0.6 kcal/mol error per interaction for
van der Waals contacts and 0.41 ±2.29 kcal/mol error per interaction for hydrogen bonds
(this error profile is similar to what we have found for the generalized AMBER force field,
i.e., GAFF). Assume that state 1 comprises 50 van der Waals and 65 hydrogen bonding
interactions while state 2 comprises 60 and 70 of each, leading to overall microstate energy
calculation errors of 37.2 ±18.9 kcal/mol for state 1 and 41.3 ±19.7 kcal/mol for state 2. As
shown in Fig. 1, the first-order error propagation is strongly dependent on the energy gap
between the two states. Propagated systematic error is dominated by the error of the lower
energy microstate until the relative energies are within approximately |2| kcal/mol (assuming
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T=300K), where its value approaches the arithmetic mean of the two microstate systematic
error values. In contrast, propagated random error begins to decrease slowly at the |2| kcal/
mol region, and is minimized when the energies of the two states are equal.

To demonstrate the effect of random error reduction due to increasing number of included
microstates, we constructed a series of hypothetical ensembles (M2) in which the number of
microstates is incremented by one up to one thousand. The discrete microstates were
randomly selected from the potential energy surface, which was modeled as a Lennard-Jones
type function (Eq. 11) with parameters ε=5.0 and σ=1.0, as plotted in Fig. 2a. The minimum
of the potential well (x ≈ 1.12) was always included as a permanent global minimum
microstate, and the remaining microstates were randomly selected from the potential energy
surface. Each of the microstates was assigned zero systematic error and a random error of
1.0 kcal/mol. As shown in Fig. 2b, the first-order propagated random error in free energy is
1.0 kcal/mol when the ensemble contains a single microstate. When 10–20 microstates are
added, the error drops below 0.2 kcal/mol. When 50–60 microstates are included, the benefit
of increased local sampling begins to diminish as the propagated random error approaches
zero.

(11)

Similar analysis can be done for the macroscopic average energy E expressed by Eq. 12:

(12)

where first-order error propagation yields the formula: (see supporting information for our
derivation):

(13)

The values of propagated errors in average energy depend on (1) the probability (normalized
weight) of each microstate, (2) the energy value of each microstate, (3) and the average
energy itself. Returning to the M1 model system, we observed similar error propagation
behaviors for average energy as for free energy in the regions where the energy gap is large
or zero; however, near the |2| kcal/mol region, large “hills” of increased propagated errors
now appear. The effect is more significant in the systematic error, where the propagated
error value rises by about 8 kcal/mol. In addition, the width of the “funnel” representing
favorable random error cancellation is narrower for average energy than for free energy.

Similarly we can investigate the propagation of systematic and random errors in entropy
based on Gibb's entropy formula:

(14)

First-order error propagation in entropy yields the formula (see supporting information for
our derivation):
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(15)

Upon applying this formula to M1, we found that at large energy gaps, the propagation of
microstate systematic and random errors nears zero, and increases significantly as the energy
difference decreases, but to a much smaller magnitude than the individual microstate energy
errors (Fig. 4). As the energy gaps approach zero, so do the propagated errors in entropy, for
both error types. Interestingly, the first-order propagation of errors in entropy was
symmetric about isoenergetic points for both error types. Additionally, the “hills” of
increased propagated systematic error in energy and entropy should partially cancel when
combining the two terms to calculate free energy (via E-TS).

Notably, the above first-order error propagation analysis is only practically reliable when
microstate modeling errors are small. However, effects such as the random error reduction
behavior observed here also occur at higher orders as demonstrated in the following section.

Beyond First Order
In order to establish more practical error analysis methods, which can be generally applied
to even large microstate modeling error magnitudes, we have extended our error propagation
analysis to higher-order schemes. Two strategies were employed. First, we continued the
Taylor series expansion-based approach, where analytical forms for second (Eq. 16) and
fourth (Eq. 17) order error propagation were derived by assuming independent microstate
energies and considering only up to the second moments of the error probability density
functions.9 Second, we conducted Monte Carlo (MC) error simulations, in which errors were
randomly drawn from a Gaussian probability density function centered at a given systematic
error with a standard deviation equal to the given random error. The simulated errors were
then added to the given energies and free energy was computed 107 times to ensure
convergence. The resulting shift in sample mean and standard deviation were used to
represent propagated systematic and random error in the free energy.

(16)

(17)

We first examined a two-state system where the two microstates have zero intrinsic
systematic error but 1.0 kcal/mol of random error. The error estimation results are
summarized in Table 1 and Fig. 5. We observed that, although the individual microstates
contained no systematic errors, the microstate random errors lead to a propagated systematic
error in the computed free energy. The first-order error analysis completely neglects this
effect, yet here it yields a random free energy error estimate closest to the MC estimate.
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Systematic free energy errors nearly converge at fourth order, but random errors seem to
converge more slowly. The MC estimates validate the previous observation that random
errors are diminished as the two microstates are more equally weighted in the ensemble.

In Fig. 5, we see how increasing levels of truncation begin to converge toward MC results
for small error magnitudes. However, the magnitudes of microstate energy errors for
sizeable proteins and common force fields are usually much larger. To investigate the
behavior of larger microstate energy errors, we re-visited model system M1. As introduced
earlier, this system includes two microstates with sizeable microstate energy errors of 37.1
±18.9 and 41.3 ±19.7 kcal/mol respectively. As shown in Figure 6, the MC error
propagation results show very different behavior than predicted by first-order formulas. For
instance, contrary to the prediction from the first-order analysis, the propagated systematic
errors (Fig. 6a) are lower in magnitude than both of the microstate energy systematic errors,
even at high energy gaps. The propagated random errors (Fig. 6b) also fall below the
microstate random errors but to a lesser extent than what is predicted by first-order analysis
(compare to Fig. 1b). In Table 2, the MC estimates at the isoenergetic point are compared
with the corresponding low-order error propagation formulas. It is clear that low-order error
analysis is not sufficient to estimate propagated errors when microstate energy errors are
large. Thus for large microstate energy errors, the MC method should be employed.

The discrepancy between low-order formulas and MC estimates led us to revisit the
“random error reduction” behavior as observed in the context of first-order analysis. To
examine the generality of this effect, we again examined the model system M2 described by
the Lennard-Jones surface of Eq. 11. As detailed earlier, each microstate sampled in the
ensembles of increasing size included no systematic error but 1.0 kcal/mol random error.
From the MC results (Fig. 7), we found that random errors indeed follow similar error
reduction behavior (compare with Fig. 2b). However, systematic errors are simultaneously
introduced. This general “random error reduction” behavior reconfirms the notion that
ensemble quantities have less random modeling errors in comparison with single global
minimum microstate energies, and therefore should be preferred as energetic score
functions, provided that systematic errors are estimated and removed.

A Simulated Example
To demonstrate a possible error-handling protocol based on the observations of this work,
we built a model system (M3) resembling various states of a small protein undergoing
folding. The model ensemble comprised 5 (macro)states, each represented by 100
microstates. Such a dataset might arise from a clustering of snapshots from molecular
dynamics simulations as done in the development of Markov models of protein folding, for
example as seen in Bowman et al..10 In this model system, the 5 states have their average
energies randomly selected from a uniform distribution in the range (−100, 0) kcal/mol.
Each component microstate was assigned a “true” energy randomly selected from a normal
distribution centered at the corresponding state average energy with a standard deviation of
3.0 kcal/mol. In addition, each state was given a random average number of hydrogen
bonds, selected from a uniform distribution in the range (25, 55). The number of hydrogen
bonds of each microstate was then randomly selected from a normal distribution centered on
the average value of the corresponding state with a standard deviation of 1. The same
procedure was employed to assign van der Waals contacts, with the states randomly
assigned in the range of (40, 80) and microstate deviations selected from a normal
distribution with a standard deviation of 2. The energy function is assumed to contain errors
of 0.21 ±0.60 for van der Waals contacts and 0.41 ±2.29 for hydrogen bonds. These
parameters lead to a set of “measured” microstate energies that are shifted from their “true”
values based on the propagated microstate energy errors.
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We now aim to compute free energy differences between the 5 states given the set of
erroneous microstate energies. The procedure is illustrated in Fig. 8. The first step in an
error-handling free energy computation would be to analyze each microstate for its
intramolecular interactions. The microstate contact counts are displayed in Fig. 8a, which
highlights the similarity of molecular contacts within each of the five states. In step two, by
following our fragment-based error propagation procedure, we calculate the systematic and
random errors of the microstate energies, which are shown in Fig. 8b. In the third step, the
energies of all microstates are corrected by removing systematic errors. The resulting sets of
corrected microstate energies and associated error bars are displayed in Fig. 8c. Finally,
independent MC error simulations are conducted for each of the 5 states. These simulations
give rise to the final estimates of the free energies of all five states along with their
associated uncertainties. The black dots and the black error bars in Fig. 8d show the final
estimated free energy values and the corresponding random errors when all 500 microstates
are sampled. For example, the free energy of state 3 is estimated to be −110.5 ±6.97 and the
free energy of state 5 is −102.6 ±7.24. The free energy difference between these two states is
calculated to be 7.86 ±10.1. Here, the uncertainty of the free energy difference is evaluated
as the Pythagorean sum of the error bars of the two states. In this model system, we also
observe the random error reduction effect. We analyzed the ensemble results with the
number of the sampled microstates per state equal to 1, 25, 50, 75, and 100. As shown in
Fig. 8d, if only one microstate is sampled for each state, the error bars are very large, but
when more than 25 microstates are included, the error bars are significantly reduced.

Unfortunately, MC error propagation is unable to estimate the introduction of systematic
shifts in free energy due to microstate random errors. Systematic shifts in free energy
estimations depend on both the magnitudes of microstate random errors and the distribution
of calculated microstate energies. In this instance these shifts in free energy had a range of
magnitudes from 0.25 to 4.5 kcal/mol, which suggests that these systematic errors would not
cancel completely when taking free energy differences. Furthermore, low-order systematic
error formulas failed to estimate these shifts (See Table 3). For this reason, it is important to
be attentive to the magnitudes of the final propagated error bars, since they give a direct
value of random uncertainty and a rough indication of the presence systematic shifts.

Conclusions
This work serves as an extension of our previously proposed methods3–4 for estimating
microstate energy errors by describing their propagation when statistical mechanical
variables such as free energy are estimated. The main benefits of such an analysis are that
(1) estimated systematic errors can be corrected, and (2) random errors can provide
uncertainty estimates when simulation results are reported. Interestingly, we found that
propagated random errors in computed free energies can be reduced by increasing the local
sampling of potential energy surfaces. This suggests that, analogous to the enthalpy-entropy
compensation effect, there exist correlated interplays between energy modeling errors and
state sampling. As errors in an energy model are introduced, one can take advantage of state
sampling to minimize the associated errors in free energy estimations. We also observed the
effect of partial systematic error cancelation between energy and entropy in free energy
(Figures. 1, 3, and 4) through the presence of the “hills” of propagated error in energy which
are diminished when entropy and its associated error are subtracted to produce free energy
and its associated error.

The error propagation formulas derived in this work approximate the accumulation of
microstate energy errors by using truncated Taylor series. Higher orders of Taylor series
expansions could be utilized, but this is expected to yield more complicated error
propagation formulas than presented here. For very large microstate energy errors, Monte
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Carlo error estimation may be necessary to correctly estimate propagated random error
magnitudes. A second assumption made in this work is that microstate energies are
independent from one another, which may not be a valid approximation when sampling
along a molecular dynamics trajectory. Thus special care will need to be taken to ensure at
least quasi-independent state sampling in future applications. Further assessing the validity
of these approximations and the application of error propagation techniques to the
simulation of biomolecular systems will be addressed in future work.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
a) First-order propagated systematic error in free energy for M1, a model two-state system
with constant energy errors (δE1 and δE2) at different relative energies. At relative energies
greater than |2| kcal/mol the lower energy microstate dominates in the propagated error, but
at smaller relative energies the total systematic error approaches the arithmetic mean
systematic error of each microstate. b) First-order random error in free energy of the same
two-state system. Random error is decreased as the energies of the two microstates approach
one another.

Faver et al. Page 11

J Chem Theory Comput. Author manuscript; available in PMC 2013 October 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
a) Potential energy surface of a hypothetical system (M2) modeled as a Lennard-Jones
function. b) First-order propagated random error in free energy for the potential energy
surface diminishes with increasing numbers of microstates included in the statistical
ensemble.
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Figure 3.
Propagated error in the average energy for M1. a) The first-order propagated systematic
error dramatically increases then decreases as the energy difference narrows. b) The
propagated random error also increases slightly as the energy difference narrows, but then
reaches a global minimum when the microstate energies are equal.
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Figure 4.
a) Propagated systematic error in entropy (TS with T=300K) for M1. b) Propagated random
error in entropy for M1.

Faver et al. Page 14

J Chem Theory Comput. Author manuscript; available in PMC 2013 October 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
Error Propagation of two-state system with no systematic microstate energy errors and
random microstate energy errors of 1.0 kcal/mol. a) Propagated systematic errors at first
order (red), second order (green), fourth order (blue), and the Monte Carlo estimation
(black). b) Propagated random errors at the same levels of truncation.
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Figure 6.
Monte Carlo estimation of propagated errors in the free energy of M1, a hypothetical 2-state
protein system with large microstate energy errors. a) Propagated systematic error. b)
Propagated random error.
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Figure 7.
Monte Carlo estimation of free energy errors as a function of increased local sampling of the
example Lennard-Jones surface. As more states are sampled, each with its own 1.0 kcal/mol
random energy error, the propagated free energy random error is decreased, while
systematic error is introduced.
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Figure 8.
Results of an error-handling free energy computation on a simulated ensemble (M3). a) The
microstates are clustered into (macro)states yielding structures containing roughly the same
numbers of molecular contacts. b) An analysis of each microstate leads to systematic and
random errors in each microstate energy. c) Systematic microstate energy errors are
corrected, and each microstate now only has random error to be propagated. d) A Monte
Carlo error propagation within each state results in a free energy estimate along with random
error, which is reported with the calculated free energies. Note how the error bar magnitudes
decrease with increased local sampling (1, 25, 50, 75, and 100 samples were investigated).
Now free energy differences between macrostates have less error (due to the removal of
systematic errors) and include estimated uncertainties due to using imperfect energy
functions.
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Table 1

Propagated errors in free energy at different levels of truncation at the isoenergetic point for small microstate
energy errors.

1st order 2nd order 4th order MC results

Systematic Error 0 −0.420 −0.272 −0.293

Random Error 0.707 0.569 0.653 0.780
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Table 2

Propagated errors in free energy at different levels of truncation at the isoenergetic point for M1.

1st order 2nd order 4th order MC results

Systematic Error 39.23 −117.6 20480 28.60

Random Error 13.67 156.2 20440 15.94
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