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Abstract
We report the first synthesis of the C-terminally spermine-conjugated stapled peptide-based
inhibitors of the p53-Mdm2 interaction. Subsequent biological, biophysical and cellular uptake
assays with the spermine-conjugated stapled peptides revealed that spermine conjugation
minimally affects biological activity while significantly increases peptide helicity and cellular
uptake without apparent cytotoxicity.
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Peptide helices are found frequently at the interfaces of protein-protein interactions that
mediate all facets of cellular processes including cell cycle control and apoptosis.1 As a
result, there has been a growing interest recently aimed at translating these helical peptides
into biological therapies targeting the intracellular protein-protein interactions.2 Since short
peptides exhibit poor pharmaceutical properties, i.e., poor cell permeability and low
metabolic stability, numerous strategies have been developed to increase their proteolytic
stability as well as their cellular uptake. Among them, selective cross-linking of peptide
side-chains (also referred to as peptide ‘stapling’) via selective chemical reactions, e.g.,
disulfide bond formation,3 olefin cross metathesis,4 lactam formation,5 and 1,3-dipolar
cycloaddition reactions,6 has emerged to be one of the most promising approaches.7

Recently, we reported the discovery of a distance-matching cross-linker, 6,6′-
bisbromomethyl-[3,3′]bipyridine (Bpy), that reacts with a pair of cysteines located at i,i+7
positions of a short helical peptide, resulting in a significant enhancement in cell
permeability.8 While it is known that attachment of the positively charged groups to
peptides generally leads to enhanced cellular uptake, most studies in the literature have
focused on either direct fusion of polyarginine-like sequences9 such as TAT sequence or
substitution of arginines at strategically selected non-continuous sites on the peptides.10

Herein, we report the first synthesis of polyamine-conjugated, stapled peptides and the
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characterization of the effect of polyamine conjugation on peptide bioactivity, helicity, and
cell permeability.

Polyamines such as spermine are positively charged at the physiological pH, and have been
used through conjugation as an intracellular delivery aid for the lipophilic small-molecule
drugs11 as well as the negatively charged siRNA.12 However, the effect of polyamine
conjugation to synthetic peptides on cellular transport of peptides has not been reported.13

According to helical dipole model,14 placement of the positive-charged capping groups at
the carboxyl termini of short helical peptides leads to increased helicity due to the
favourable charge-dipole interactions.15 To probe whether this model is operative in the case
of short stapled peptides, we conjugated spermine at the C-terminus of a dicysteine-
containing peptide inhibitor of p53–Mdm2 interaction (sequence = LTFCHYWAQLCS),
which was used previously as a model in our peptide stapling studies.8 Scheme 1 shows a
representative synthesis of the spermine-conjugated, stapled peptide 4 in seven steps based
on a solid phase procedure. Briefly, spermine was first immobilized onto solid support by
treating 2-chlorotrityl chloride resin with excess amount of spermine in dichloromethane for
30 min. After extensive washing, selective protection of the secondary amines with Boc was
achieved by first masking the terminal primary amine with 2-acetyldimedone16 to form the
N-[1,(4,4-dimethyl-2,6-dioxocyclohexylidene)ethyl (Dde) derivative followed by treatment
with di-tert-butyl dicarbonate. The Dde-protecting group was selectively removed by
treating the resin with 2% hydrazine in DMF for 15 min. With the spermine-functionalized
resin in hand, standard Fmoc-based solid phase peptide synthesis was performed and the
linear cysteine-containing peptide was released from the resin after treatment with a TFA-
containing cleavage cocktail. After HPLC purification, the fully deprotected linear peptide
was incubated with 1.5 equiv of Bpy in a mixed acetonitrile/30 mM NH4HCO3 solution at
pH 8.5. HPLC analysis of the crude product indicated that the stapling reaction of the
spermine-conjugated peptide proceeded with greater than 95% conversion after 1.5 hours
(Figure S1). Using this route, we also prepared spermine-conjugated, D,L-dicysteine-stapled
peptide 8 because the D,L-dicysteine-stapled peptides have shown greater inhibitory activity
towards Mdm2 in our previous work.8

To gauge how spermine conjugation affects stapled peptide's biological activity, we
determined the inhibitory activities of the spermine-conjugated cross-linked peptides with
ELISA and compared them to other stapled peptides reported previously8 (Figure S2 and
Table 1). Interestingly, whereas substitution of two residues at solvent-exposed side of the
helix with arginines (His5→Arg and Gln9→Arg) led to addition of +2 charge accompanied
by substantial drop (6~20-fold) in inhibitory activity8 (compare 3 to 2; 7 to 6), spermine
conjugation resulted in addition of +3 charge and significantly smaller reduction in
inhibitory activity (compare 4 to 2; 8 to 6). Therefore, spermine conjugation appears to
provide a less disruptive route to the addition of net positive charge.

To examine how spermine conjugation affects cellular uptake, we synthesized the N-
terminal fluorescein-labeled, spermine conjugated, stapled peptides 4 and 8 (Fluo-4 and -8,
Table S1) and compared their uptake into HeLa cells as measured by fluorescence activated
cell sorting (FACS) to the previously reported fluorescein-labeled stapled peptides8 (Fluo-1–
3 and Fluo-5–7). As shown in Figure 1, peptide stapling significantly enhanced the cellular
uptake (compare Fluo-2–4 to -1; Fluo-6–8 to -5). Among the stapled peptides, peptides
carrying the positive charges (Fluo-3, -4, -7, and -8) showed significantly higher uptake than
the charge-neutral peptides (Fluo-2 and -6); the spermine-conjugated stapled peptides Fluo-4
and -8 exhibited the highest uptake, yielding 16- and 22-fold increase, respectively, over
their charge-neutral linear counterparts (compare Fluo-4 to -1; Fluo-8 to -5), indicating that
spermine conjugation acts in concert with peptide stapling to further enhance the cellular
uptake. The higher uptake observed for the spermine conjugated, stapled peptides Fluo-4
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and -8 relative to the arginine-substituted, stapled peptides Fluo-3 and -7 could also be
attributed to the localized positive charge at the C-termini of Fluo-4 and -8 versus the
dispersed positive charge in Fluo-3 and -7.

To probe structural changes induced by spermine conjugation, we determined the percent
helicity of all stapled peptides with far-UV CD measurement (Figure 2). While cysteine
cross-linking invariably led to modest increases in percent helicity (compare 2–4 to 1; 6–8
to 5), the spermine-conjugated stapled peptides showed additional 50% increases in percent
helicity than the arginine-substituted stapled peptides (compare 4 to 3; 8 to 7). This
enhancement in helicity is consistent with the helical dipole model15 in which the C-
terminally conjugated, positive-charged spermine stabilizes helical dipole by forming
additional hydrogen bonds with C-terminal unpaired carbonyl groups. A correlation between
percent helicity and cell permeability appears to exist as peptides with higher percent
helicity invariably exhibited higher cellular uptake.

To corroborate the FACS results on cellular uptake, a confocal fluorescent microscopy study
was performed. We found that while the positive-charged stapled peptides showed stronger
intracellular fluorescence than the charge-neutral ones, Fluo-3 and -7 treated cells produced
significant amount of cellular debris which was absent in Fluo-4 and -8 treated cells (Figure
S3). This difference in apparent cytotoxicity was verified by ATP assay. Cells treated with
the spermine-conjugated stapled peptides (4 and 8) were found to be completely viable
whereas cells treated with the arginine-substituted peptides 3 and 7 showed 50% and 30%
decrease in viability, respectively (Figure 3). The cytotoxicity of 3 and 7 could be attributed
to the non-specific cell membrane insertion activity of amphipathic arginine-containing
peptide helices with one side of the helix to be hydrophobic and the opposite side to be
cationic.17 In contrast, the devoid of cytotoxicity for the spermine-conjugated stapled
peptides could be attributed to their unique mode of helix stabilization. The possible
mechanism for uptake of the spermine-conjugated stapled peptides was then probed with a
fluorescence-based subcellular localization study (Figure 4). Fluo-4 showed a more diffusive
intracellular distribution, with some overlap with Alexa Fluor 586 labeled transferrin, a
fluorescent marker for the recycling endosomes (panel d in Figure 4), suggesting a possible
endosome-mediated transport process.

In summary, we have demonstrated a small-molecule approach in rendering stapled peptides
cationic through the C-terminal spermine conjugation. The attachment can be readily
integrated into the solid phase synthesis protocol and compatible with the peptide stapling
conditions. Compared to the arginine-substitution approach, spermine conjugation
minimally affected biological activity of the stapled peptides while significantly increased
peptide helicity. Together with peptide stapling, spermine conjugation acted in concert to
further enhance the cellular uptake of the bioactive peptides without apparent cytotoxicity
frequently associated with arginine substitution. Inasmuch as the cationic TAT peptide,[9a]

spermine conjugation should provide a simple, small-molecule strategy for intracellular
delivery of bioactive peptides and other biotherapeutics.
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Figure 1.
Flow cytometry analysis of HeLa cells after treatment with 10 μM fluorescein-conjugated
peptides, Fluo-1–8: (a) Representative histograms; (b) Bar graph showing the normalized
mean fluorescence. For simplicity, Fluo- prefixes were omitted in the stapled peptide
denotations.
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Figure 2.
CD spectra of the linear and Bpy-stapled peptides with or without spermine conjugation and
their calculated percent helicity values: The peptides were dissolved in 20% ACN/H2O for a
final concentration of 50 μM. The percent helicity was calculated based on the [θ]222 value.
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Figure 3.
Spermine conjugation increases cellular uptake of the stapled peptides without apparent
cytotoxicity analyzed by ATP assay. The CellTiter-Glo reagent (Promega) was used to
measure HeLa cell viability after treatment with 10 μM of the unstapled (1 and 5) or the
stapled peptides (2-4 and 6-8).
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Figure 4.
Confocal fluorescent microscopy of live HeLa cells after treatment with 10 μM of
fluorescein-conjugated 4 for 2 hr followed by incubation with 10 μg/mL Alexa Fluor 586
labeled transferrin for 30 min: (a) DIC channel; (b) FITC channel; (c) Fluor 585 channel; (c)
merged images of channels a-c.
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Scheme 1.
Representative synthesis of a spermine-conjugated stapled peptide 4 on solid support.
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Table 1
Sequence and Activity of Peptide-Based Inhibitors

a

peptide sequence
b charge IC50, nM

1 LTFCHYWAQLCS 0 57 ± 5

2
LTFC′HYWAQLC′S

c 0 35 ± 5

3 LTFC′RYWARLC′S +2 237 ± 16

4
LTFC′HYWAQLC′S-Sp

d +3 46 ± 6

5
LTFcHYWAQLCS

e 0 13 ± 1

6
LTFc′HYWAQLC′S

f 0 5 ± 1

7 LTFc′ RYWARLC′S +2 102 ± 8

8 LTFc′HYWAQLC′S-Sp +3 18 ± 2

a
ELISA assays were repeated three times to obtain average IC50 values and standard deviations.

b
For non-spermine containing peptides, the N-termini were acetylated and the C-termini were amidated. For spermine-conjugated peptides, the N-

termini were acetylated.

c
C′ denotes Bpy-linked cysteine.

d
Sp denotes spermine.

e
c denotes D-cysteine.

f
c′ denotes Bpy-linked D-cysteine.
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