Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jan 4;69(Pt 2):o161–o162. doi: 10.1107/S1600536812051471

(1SR,3RS,3aSR,6aRS)-Methyl 5-methyl-4,6-dioxo-3-[2-(trifluoro­meth­yl)phen­yl]octa­hydro­pyrrolo­[3,4-c]pyrrole-1-carboxyl­ate

Konstantin V Kudryavtsev a,b,*, Polina M Ivantcova a, Andrei V Churakov c
PMCID: PMC3569227  PMID: 23424450

Abstract

In the title compound, C16H15F3N2O4, the relative stereochemistry of the four stereogenic C atoms has been determined. The carb­oxy­methyl and 2-(trifluoro­meth­yl)­phenyl substituents of the pyrrolidine cycle have a cis mutual arrangement. The five-membered saturated aza­cycle adopts an envelope conformation with the N atom occupying the flap position. In the crystal, adjacent mol­ecules are combined in centrosymmetric dimers by two weak N—H⋯O hydrogen bonds.

Related literature  

For general background to the chemistry affording bicyclic pyrrolo­[3,4-c]pyrrole-based scaffolds and structural determination, see: Kudryavtsev & Irkha (2005); Kudryavtsev (2008); Kudryavtsev & Zagulyaeva (2008); Kudryavtsev et al. (2011).graphic file with name e-69-0o161-scheme1.jpg

Experimental  

Crystal data  

  • C16H15F3N2O4

  • M r = 356.30

  • Orthorhombic, Inline graphic

  • a = 11.6168 (4) Å

  • b = 12.7385 (5) Å

  • c = 21.2429 (8) Å

  • V = 3143.5 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 150 K

  • 0.35 × 0.30 × 0.25 mm

Data collection  

  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.955, T max = 0.968

  • 28987 measured reflections

  • 4585 independent reflections

  • 3698 reflections with I > 2σ(I)

  • R int = 0.032

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.115

  • S = 1.05

  • 4585 reflections

  • 286 parameters

  • All H-atom parameters refined

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.36 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812051471/ff2094sup1.cif

e-69-0o161-sup1.cif (23.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812051471/ff2094Isup2.hkl

e-69-0o161-Isup2.hkl (224.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812051471/ff2094Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.884 (15) 2.363 (15) 3.1738 (13) 152.5 (13)

Symmetry code: (i) Inline graphic.

Acknowledgments

This study was partially supported by the Russian Foundation for Basic Research (project Nos 11-03-00630_a, 11-03-91375-ST_a and 12-03-92005-NNS_a).

supplementary crystallographic information

Comment

The core of the title compound is formed by two fused pyrrolidine cycles. It was effectively synthesized by the three-component approach developed by the authors (Fig. 1). Combination of molecular sieves and triethyamine represents an efficient reagent for performing three-component interaction of benzaldehyde, glycine ester and dipolarophile. The product X-ray structure determination indicates that cycloaddition step proceeds as endo-process (Fig. 2). Tetrasubstituted pyrrolidine cycle adopts envelope conformation with N1 atom occupying flap position. Amine atom N1 has trigonal pyramidal environment with the sum of valent angles equal to 329.0 °. Hydrogen atom H1 lies in axial position (relative to the mean plane of five-membered ring). As expected, dioxopyrrolidine cycle is planar within 0.0354 (7) Å.

In the crystal, the adjacent molecules are combined in centrosymmetric dimers by two weak N—H···O hydrogen bonds (Fig. 3). The same dimers were previously observed in the structure of (1SR,3RS,3aSR,6aRS-methyl 5-methyl-4,6-dioxo-3-phenyloctahydropyrrolo [3,4-c]pyrrole-1-carboxylate (Kudryavtsev & Zagulyaeva, 2008).

Experimental

Triethylamine (0.340 ml, 2.41 mmol) was added to the stirred mixture of 2-(trifluoromethyl)benzaldehyde (200 mg, 1.15 mmol), N-methylmaleimide (130 mg, 1.15 mmol), glycine methyl ester hydrochloride (158 mg, 1.30 mmol) and 4 Å molecular sieves (200 mg) in toluene under argon atmosphere. Reaction mixture was stirred for 48 h. Volatiles were removed at reduced pressure. CH2Cl2 (50 ml) was added to the residue, resulted suspension was filtered through Celite, washed with saturated solution of NH4Cl (2 x 10 ml). Organic phase was dried over Na2SO4, concentrated and purified by column chromatography on silica gel 60 (particle size 0.040–0.063 mm) using CH2Cl2—MeOH (100:1) as eluent. Yield 168 mg (41%), colorless crystals, mp 183–185°C. 1H NMR (400 MHz, CDCl3): δ 2.61 (s, 3H, NCH3), 3.28 (t, 1H, H-3a, J 8.2), 3.40 (t, 1H, H-6a, J 7.3), 3.64 (s, 3H, OCH3), 3.95 (d, 1H, H-1, J 6.7), 4.59 (d, 1H, H-3, J 8.6), 7.20 (t, 1H, Ar, J 7.6), 7.30 (t, 1H, Ar, J 7.6), 7.61 (d, 1H, Ar, J 7.6). 13C NMR (100 MHz, CDCl3): δ 24.94, 47.31, 48.92, 52.26, 58.89, 61.04, 123.02, 125.89, 128.06, 128.23, 131.96, 135.74, 169.84, 174.30, 175.78. Found, %: C, 54.12; H, 4.27; N, 7.78. C16H15F3N2O4. Calculated, %: C, 53.94; H, 4.24; N, 7.86. The crystals were obtained by slow evaporation of the CDCl3 solution.

Refinement

All hydrogen atoms were located in a difference Fourier map and refined with isotropic thermal parameters.

Figures

Fig. 1.

Fig. 1.

Synthetic scheme.

Fig. 2.

Fig. 2.

The molecular structure of the title compound, showing the numbering scheme adopted. Displacement ellipsoids are shown at the 50% probability level.

Fig. 3.

Fig. 3.

Hydrogen-bonded dimers in the structure of the title compound. H-bonds are shown as dashed lines. [Symmetry code: (i) 1 - x, 2 - y, 1 - z.]

Crystal data

C16H15F3N2O4 F(000) = 1472
Mr = 356.30 Dx = 1.506 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 7037 reflections
a = 11.6168 (4) Å θ = 2.6–30.2°
b = 12.7385 (5) Å µ = 0.13 mm1
c = 21.2429 (8) Å T = 150 K
V = 3143.5 (2) Å3 Block, colourless
Z = 8 0.35 × 0.30 × 0.25 mm

Data collection

Bruker SMART APEXII diffractometer 4585 independent reflections
Radiation source: fine-focus sealed tube 3698 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.032
ω scans θmax = 30.0°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −16→16
Tmin = 0.955, Tmax = 0.968 k = −17→16
28987 measured reflections l = −29→29

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: difference Fourier map
wR(F2) = 0.115 All H-atom parameters refined
S = 1.05 w = 1/[σ2(Fo2) + (0.0599P)2 + 0.958P] where P = (Fo2 + 2Fc2)/3
4585 reflections (Δ/σ)max = 0.001
286 parameters Δρmax = 0.41 e Å3
0 restraints Δρmin = −0.36 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.37232 (8) 0.96741 (8) 0.58121 (4) 0.01832 (19)
N2 0.43578 (9) 0.80090 (8) 0.70073 (5) 0.0223 (2)
O1 0.59707 (8) 0.90401 (9) 0.70207 (5) 0.0323 (2)
O2 0.25210 (8) 0.73656 (7) 0.69180 (4) 0.0293 (2)
O3 0.60527 (8) 1.01872 (8) 0.56746 (4) 0.0261 (2)
O4 0.59604 (7) 1.12962 (7) 0.64969 (4) 0.0265 (2)
F1 0.02339 (7) 0.95536 (7) 0.66222 (4) 0.0360 (2)
F2 0.01291 (10) 1.04045 (8) 0.57563 (5) 0.0519 (3)
F3 −0.11317 (8) 0.92265 (11) 0.59782 (7) 0.0708 (4)
C1 0.49344 (10) 0.89519 (10) 0.69792 (5) 0.0218 (2)
C2 0.40611 (10) 0.98226 (9) 0.68818 (5) 0.0187 (2)
C3 0.42693 (10) 1.03976 (9) 0.62520 (5) 0.0182 (2)
C4 0.25821 (9) 0.94880 (9) 0.60901 (5) 0.0180 (2)
C5 0.29053 (9) 0.92447 (9) 0.67894 (5) 0.0187 (2)
C6 0.31822 (10) 0.80982 (9) 0.69077 (5) 0.0206 (2)
C7 0.49500 (13) 0.70166 (11) 0.71063 (7) 0.0309 (3)
C8 0.55262 (10) 1.05870 (9) 0.60979 (5) 0.0197 (2)
C9 0.71865 (12) 1.14732 (14) 0.64520 (7) 0.0352 (3)
C10 −0.00083 (11) 0.94442 (12) 0.60086 (7) 0.0342 (3)
C11 0.19231 (9) 0.86470 (9) 0.57357 (5) 0.0182 (2)
C12 0.25319 (10) 0.78516 (10) 0.54317 (6) 0.0238 (2)
C13 0.19746 (11) 0.70890 (10) 0.50777 (6) 0.0246 (2)
C14 0.07863 (11) 0.70963 (10) 0.50236 (6) 0.0241 (2)
C15 0.01667 (11) 0.78587 (10) 0.53409 (6) 0.0265 (3)
C16 0.07221 (10) 0.86314 (10) 0.56912 (6) 0.0224 (2)
H4 0.2122 (13) 1.0153 (12) 0.6103 (7) 0.023 (4)*
H14 0.0394 (13) 0.6570 (12) 0.4770 (7) 0.024 (4)*
H5 0.2277 (12) 0.9465 (11) 0.7074 (7) 0.018 (3)*
H1 0.3693 (12) 0.9935 (12) 0.5427 (7) 0.021 (4)*
H3 0.3902 (13) 1.1102 (12) 0.6286 (7) 0.025 (4)*
H15 −0.0638 (14) 0.7870 (13) 0.5322 (8) 0.034 (4)*
H2 0.4071 (13) 1.0292 (13) 0.7231 (7) 0.028 (4)*
H12 0.3371 (15) 0.7847 (13) 0.5480 (8) 0.034 (4)*
H13 0.2416 (14) 0.6568 (13) 0.4868 (8) 0.032 (4)*
H73 0.5522 (17) 0.7131 (15) 0.7416 (10) 0.051 (5)*
H72 0.5263 (16) 0.6773 (15) 0.6724 (10) 0.048 (5)*
H93 0.7376 (17) 1.2026 (16) 0.6754 (9) 0.053 (5)*
H71 0.4386 (16) 0.6518 (15) 0.7264 (9) 0.043 (5)*
H92 0.7571 (18) 1.0823 (17) 0.6561 (9) 0.052 (6)*
H91 0.7395 (18) 1.1612 (16) 0.6019 (10) 0.057 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0192 (4) 0.0201 (5) 0.0156 (4) −0.0034 (3) −0.0001 (3) −0.0012 (3)
N2 0.0226 (5) 0.0219 (5) 0.0223 (4) −0.0002 (4) −0.0016 (4) 0.0028 (4)
O1 0.0209 (4) 0.0408 (6) 0.0351 (5) −0.0038 (4) −0.0069 (4) 0.0116 (4)
O2 0.0306 (5) 0.0260 (5) 0.0313 (4) −0.0092 (4) −0.0024 (4) 0.0040 (4)
O3 0.0235 (4) 0.0328 (5) 0.0219 (4) −0.0027 (4) 0.0024 (3) −0.0044 (3)
O4 0.0226 (4) 0.0287 (5) 0.0282 (4) −0.0085 (4) 0.0013 (3) −0.0080 (4)
F1 0.0303 (4) 0.0427 (5) 0.0349 (4) 0.0047 (3) 0.0050 (3) −0.0139 (4)
F2 0.0706 (7) 0.0358 (5) 0.0493 (6) 0.0292 (5) −0.0191 (5) −0.0091 (4)
F3 0.0184 (4) 0.0833 (8) 0.1107 (10) 0.0122 (5) −0.0119 (5) −0.0622 (8)
C1 0.0222 (5) 0.0272 (6) 0.0162 (5) −0.0026 (4) −0.0030 (4) 0.0019 (4)
C2 0.0199 (5) 0.0206 (5) 0.0157 (4) −0.0035 (4) 0.0002 (4) −0.0033 (4)
C3 0.0191 (5) 0.0176 (5) 0.0178 (4) −0.0020 (4) −0.0002 (4) −0.0017 (4)
C4 0.0169 (5) 0.0184 (5) 0.0185 (5) −0.0004 (4) 0.0001 (4) −0.0024 (4)
C5 0.0172 (5) 0.0215 (5) 0.0174 (4) −0.0020 (4) 0.0016 (4) −0.0021 (4)
C6 0.0223 (5) 0.0235 (6) 0.0161 (5) −0.0027 (4) 0.0010 (4) 0.0000 (4)
C7 0.0309 (7) 0.0268 (7) 0.0352 (7) 0.0057 (5) −0.0003 (5) 0.0065 (5)
C8 0.0207 (5) 0.0195 (5) 0.0189 (5) −0.0022 (4) −0.0014 (4) 0.0009 (4)
C9 0.0232 (6) 0.0457 (9) 0.0367 (7) −0.0127 (6) 0.0005 (5) −0.0083 (6)
C10 0.0202 (6) 0.0376 (8) 0.0448 (8) 0.0082 (5) −0.0101 (5) −0.0172 (6)
C11 0.0182 (5) 0.0191 (5) 0.0174 (5) −0.0019 (4) −0.0003 (4) −0.0009 (4)
C12 0.0186 (5) 0.0255 (6) 0.0274 (5) −0.0036 (4) 0.0050 (4) −0.0062 (4)
C13 0.0254 (6) 0.0226 (6) 0.0257 (5) −0.0034 (5) 0.0065 (4) −0.0061 (4)
C14 0.0262 (6) 0.0228 (6) 0.0231 (5) −0.0045 (5) −0.0024 (4) −0.0039 (4)
C15 0.0198 (5) 0.0290 (6) 0.0307 (6) 0.0000 (5) −0.0065 (5) −0.0059 (5)
C16 0.0185 (5) 0.0234 (6) 0.0254 (5) 0.0036 (4) −0.0044 (4) −0.0048 (4)

Geometric parameters (Å, º)

N1—C3 1.4578 (14) C4—C5 1.5633 (15)
N1—C4 1.4704 (14) C4—H4 1.002 (15)
N1—H1 0.884 (15) C5—C6 1.5164 (17)
N2—C1 1.3766 (16) C5—H5 0.988 (14)
N2—C6 1.3866 (15) C7—H73 0.95 (2)
N2—C7 1.4545 (16) C7—H72 0.94 (2)
O1—C1 1.2124 (14) C7—H71 0.972 (19)
O2—C6 1.2089 (15) C9—H93 0.98 (2)
O3—C8 1.2008 (14) C9—H92 0.97 (2)
O4—C8 1.3375 (14) C9—H91 0.97 (2)
O4—C9 1.4451 (15) C10—C16 1.4990 (17)
F1—C10 1.3406 (17) C11—C12 1.3942 (16)
F2—C10 1.3452 (19) C11—C16 1.3984 (15)
F3—C10 1.3357 (16) C12—C13 1.3886 (16)
C1—C2 1.5173 (17) C12—H12 0.980 (17)
C2—C5 1.5437 (15) C13—C14 1.3852 (17)
C2—C3 1.5444 (15) C13—H13 0.950 (17)
C2—H2 0.953 (16) C14—C15 1.3842 (18)
C3—C8 1.5157 (16) C14—H14 0.973 (15)
C3—H3 0.997 (16) C15—C16 1.3923 (17)
C4—C11 1.5168 (15) C15—H15 0.936 (17)
C3—N1—C4 103.70 (8) N2—C7—H72 110.1 (12)
C3—N1—H1 112.0 (10) H73—C7—H72 112.3 (16)
C4—N1—H1 113.3 (9) N2—C7—H71 107.4 (11)
C1—N2—C6 113.64 (10) H73—C7—H71 109.5 (16)
C1—N2—C7 122.31 (11) H72—C7—H71 110.0 (16)
C6—N2—C7 124.00 (11) O3—C8—O4 124.67 (11)
C8—O4—C9 115.80 (10) O3—C8—C3 125.80 (10)
O1—C1—N2 124.12 (12) O4—C8—C3 109.51 (9)
O1—C1—C2 127.31 (11) O4—C9—H93 106.9 (12)
N2—C1—C2 108.57 (10) O4—C9—H92 107.7 (12)
C1—C2—C5 104.50 (9) H93—C9—H92 110.8 (17)
C1—C2—C3 111.11 (9) O4—C9—H91 109.7 (12)
C5—C2—C3 104.61 (9) H93—C9—H91 115.8 (17)
C1—C2—H2 110.2 (10) H92—C9—H91 105.6 (17)
C5—C2—H2 114.1 (10) F3—C10—F1 105.89 (13)
C3—C2—H2 112.0 (10) F3—C10—F2 106.58 (12)
N1—C3—C8 112.42 (9) F1—C10—F2 105.55 (11)
N1—C3—C2 100.80 (9) F3—C10—C16 112.82 (11)
C8—C3—C2 114.43 (9) F1—C10—C16 112.98 (11)
N1—C3—H3 115.4 (9) F2—C10—C16 112.44 (13)
C8—C3—H3 106.6 (9) C12—C11—C16 117.67 (10)
C2—C3—H3 107.3 (9) C12—C11—C4 119.15 (10)
N1—C4—C11 111.69 (9) C16—C11—C4 123.17 (10)
N1—C4—C5 101.36 (8) C13—C12—C11 121.52 (11)
C11—C4—C5 116.93 (9) C13—C12—H12 121.0 (10)
N1—C4—H4 110.8 (9) C11—C12—H12 117.4 (10)
C11—C4—H4 109.9 (9) C14—C13—C12 120.32 (11)
C5—C4—H4 105.7 (8) C14—C13—H13 120.2 (10)
C6—C5—C2 104.70 (9) C12—C13—H13 119.4 (10)
C6—C5—C4 113.54 (9) C15—C14—C13 118.85 (11)
C2—C5—C4 103.61 (9) C15—C14—H14 120.6 (9)
C6—C5—H5 109.2 (8) C13—C14—H14 120.5 (9)
C2—C5—H5 115.4 (8) C14—C15—C16 121.01 (11)
C4—C5—H5 110.4 (8) C14—C15—H15 120.6 (10)
O2—C6—N2 124.03 (11) C16—C15—H15 118.4 (10)
O2—C6—C5 127.72 (11) C15—C16—C11 120.57 (11)
N2—C6—C5 108.25 (9) C15—C16—C10 117.79 (11)
N2—C7—H73 107.4 (12) C11—C16—C10 121.63 (11)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O3i 0.884 (15) 2.363 (15) 3.1738 (13) 152.5 (13)

Symmetry code: (i) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FF2094).

References

  1. Bruker (2008). APEX2, SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Kudryavtsev, K. V. (2008). Russ. Chem. Bull. 57, 2364–2372.
  3. Kudryavtsev, K. V., Churakov, A. V. & Dogan, O. (2011). Acta Cryst. E67, o3186. [DOI] [PMC free article] [PubMed]
  4. Kudryavtsev, K. V. & Irkha, V. V. (2005). Molecules, 10, 755–761. [DOI] [PMC free article] [PubMed]
  5. Kudryavtsev, K. V. & Zagulyaeva, A. A. (2008). Russ. J. Org. Chem. 44, 378–387.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812051471/ff2094sup1.cif

e-69-0o161-sup1.cif (23.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812051471/ff2094Isup2.hkl

e-69-0o161-Isup2.hkl (224.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812051471/ff2094Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES