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Abstract

The system for colorimetry adopted by the Commission Internationale de l’Eclairage (CIE) in 1931, along with its subsequent
improvements, represents a family of light mixture models that has served well for many decades for stimulus specification
and reproduction when highly controlled color standards are important. Still, with regard to color appearance many
perceptual and cognitive factors are known to contribute to color similarity, and, in general, to all cognitive judgments of
color. Using experimentally obtained odd-one-out triad similarity judgments from 52 observers, we demonstrate that CIE-
based models can explain a good portion (but not all) of the color similarity data. Color difference quantified by CIELAB DE
explained behavior at levels of 81% (across all colors), 79% (across red colors), and 66% (across blue colors). We show that
the unexplained variation cannot be ascribed to inter- or intra-individual variations among the observers, and points to the
presence of additional factors shared by the majority of responders. Based on this, we create a quantitative model of a
lexicographic semiorder type, which shows how different perceptual and cognitive influences can trade-off when making
color similarity judgments. We show that by incorporating additional influences related to categorical and lightness and
saturation factors, the model explains more of the triad similarity behavior, namely, 91% (all colors), 90% (reds), and 87%
(blues). We conclude that distance in a CIE model is but the first of several layers in a hierarchy of higher-order cognitive
influences that shape color triad choices. We further discuss additional mitigating influences outside the scope of CIE
modeling, which can be incorporated in this framework, including well-known influences from language, stimulus set
effects, and color preference bias. We also discuss universal and cultural aspects of the model as well as non-uniformity of
the color space with respect to different cultural biases.
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Introduction

Humans constantly experience environmental color and inter-

act with color appearance in everyday life. Because the perceptual

processing of color arose as an adaptation through biological and

cultural evolution, scientific analyses of human color processing

must involve many factors, including physical properties of color

stimuli, the processing of physical reflectance features by the

human visual system, and higher-order cognitive processing of

color in human visual cortex. On the other hand, modern

scientific study of human interactions with color stimuli grew

largely out of early engineering and technological applications

where color specification and reproduction in industry are of

crucial importance. As a result, a key emphasis in the early days of

developing photograph and display technology was to provide

methods to precisely define color appearance, and to do so in ways

that were adequate for reproducing color across different formats

(for example, to make sure that the exact appearance of the yellow

of Kodak film packaging is maintained in all its marketed forms).

A consequence of this applied emphasis was the founding of the

international authority on light, illumination and color, established

in 1913, known as the Commission Internationale de l’Eclairage (or CIE)

which led to a 1922 report on colorimetry by the Optical Society

of America, and subsequently the formalization of the CIE 1931

XYZ color specification and the 1931 CIE 2-degree standard

observer color space and human color matching functions, as well

as a series of subsequent standard observer color space refinements

[1,2].

Given its originally intended use, it is amazing that CIE systems

have served so well as models of complex color appearance

computations. Still, it is well recognized that other perceptual and

cognitive factors also contribute to color similarity, and, in general,

to all cognitive judgments of color. We know, for example, that

individual variation in visual processing features result in

nonuniform color perception across observers [3,4] and that those

CIE models most widely used in the color perception literature

(i.e., CIELAB and CIELUV) are not entirely perceptually uniform

and they do not take into consideration many factors contributing

to individual differences in color perception [5,6]. Although

perceptually uniform spacing has not been forthcoming, CIELAB

distances are still used in empirical investigations to choose stimuli

across color space that, for example, are quantified to appear

equal in perceptual qualities based on the CIELAB DE distance

metric. Moreover, cultural and linguistic biases can significantly

alter color similarity judgments [7,8]. Thus, various cognitive

factors must be involved in color similarity judgments, but aside

from technical extensions of CIELAB (e.g., [9,10]) there is no clear

principled approach for incorporating these factors into the

existing modeling framework given by the CIE. The present

paper attempts to address this challenge by incorporating cognitive
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modeling features to extend the potential of CIE systems as the

basis for color similarity relations.

In this paper we investigate whether CIE models are a good

predictor of human choice behavior in color similarity judgments.

We use results from a color triad task. Color triad tasks require

observers to choose from three-color samples the singleton that

does not form a natural grouping, or ‘‘belong with’’, the other two

of samples provided. Such tasks have been used with the aim of

understanding biological, psychophysical and cognitive constraints

that guide the human responders in their choices [11,12,13]. Color

triad judgments provide an approach to bridge the gap between

color specification models (i.e., tristimulus light mixture and color

order systems) and the modeling of cognitive color relations. Using

color similarity choice data we discuss the appropriateness and

utility of a CIE-based approach when other forms of cognitive

influence are involved in color triad choice or other cognitive color

judgment data. We analyze triad data from subjects who provided

color similarity judgments both across color categories (i.e., reds,

yellows, greens, etc.) referred to below as ‘‘global colors’’, and

within color categories (i.e., judged similarity among samples of

red colors, or judged similarity among blue colors) referred to as

‘‘local red’’ and ‘‘local blue’’ color sets. Our findings support the

use of some features of CIE models as a cognitive color

appearance model when the model is extended to include

additional color space features that figure into the cognitive color

judgments. To illustrate, we increase the complexity of the model

used to predict respondents’ triad choice data, for example by

modeling influences of language-based categorical constraints

expected to influence color judgments, and further analyze the fit

to the triad choice behavior. Our results suggest that CIE distance

is but the first layer in a hierarchy of influences that shape triad

choices. Other mitigating influences come from language, stimulus

set effects, and color preference bias.

Results

Let us represent each color triad as a triangle in a three-

dimensional CIE space. The likelihood for a given stimulus in one

such triad to be chosen as an odd-one-out is, in the simplest null-

model, dictated by the geometry of the triangle [7,8]. The ‘‘null-

model’’ assumes this probability to be proportional to the inverse

of length of the opposing edge of the triangle (raised to a power, a).

For example, for a triangle of colors with vertices A, B, and C, the

probabilities for colors A, B and C to be chosen are given by

ProbA~
DDBCDD{a

S
, ProbB~

DDACDD{a

S
, ProbC~

DDABDD{a

S
, ð1Þ

where
P

~DDABDD{azDDBCDD{azDDACDD{ao. Applied to experi-

mental triad items, this model produces, for each color stimulus, its

probability to be chosen, which can be compared to the

empirically observed probabilities given by responders’ choices.

There are different ways this comparison can be implemented. We

can vary: (a) the method of distance measurement, using a DE

color difference index based on CIELAB, CIE94, or CIEDE2000

[2]; (b) the way the ‘‘winning’’ stimulus is chosen from the

multitude of responses, the majority or the consensus; (c) color

similarity relations can be based on choice data from all

participants, from participants grouped by their color vision

profile, or on data from individual observers. We varied all these

factors to obtain the most comprehensive picture of the validity of

the model (see Text S1). A convenient measure of the CIE model’s

performance is the number of mismatches that it produces

compared to the experimental observations, that is, the number of

triads where CIE distances predict a different odd-one-out

stimulus compared to that chosen by experimental participants.

For the CIELAB distance measure, the majority calculation of the

winning response and the full set of participants, the number of

mismatches is 13, 15, and 24 for the global, red, and blue

conditions respectively. That is, distances of the CIELAB model

alone can explain from about 66% (the blue condition) to 81% (the

global condition) of the data. Beyond color differences implied by

CIE distance, what are some of the other factors possibly

contributing to participants’ triad choice behavior?

There are three possible sources of variation that can contribute

to mismatches between the data and the CIE model. (1) Intra-

individual variation arises as a degree of test-retest inconsistencies of

the observers, which are random chance events, and can be a

reflection of individual behavior, such as sloppiness in completing

the test. (2) Inter-individual variation can reflect (a) inhomogeneities of

the observers, such as the presence of a small number of

dichromats, (b) individual cognitive factors such as personal color

preferences or linguistic influences relevant in subsets of partici-

pants. (3) Systematic variation, or patterns of deviation from the CIE

model that are frequent in a large portion of the participants,

which can arise from (a) inconsistencies in the CIE description of

perceptual space, or (b) systematic cognitive factors such as

variation in the assignment of shared color meaning or ‘‘conven-

tions’’. Inter- and intra-individual variations have previously been

quantified and compared [14,15]. The present model allows us to

naturally incorporate such variations and study their properties

(for example, the parameter a in equation (1) measures the amount

if intra-individual variation, see Text S1). The three types of

variation mentioned above behave differently as one varies the

number of participants considered. By taking subsets of the

responders we were able to show that the variation of type (1) or (2)

alone cannot explain the existing difference between the null-

model and the observed experimental results (see Text S1).

Therefore, we conclude that there must exist some systematic

source of difference between the null-model and the observations,

common to the majority of the participants.

In order to improve the null-model, we propose that in addition

to the distance considerations provided by the representation of

colors in CIE space, there are other perceptual-cognitive factors

that contribute to individual odd-one-out color similarity choices.

Some of these factors may be widely used (such as a warm-cool

distinction described below), whereas others may be more

dependent on pragmatic uses of color or even culturally specific

uses that vary across groups of individuals. As shown in analyses

that follow, such factors can trade-off perceptually salient features

for pragmatic features in a manner that resembles choice behavior

interpreted using lexicographic semi-order modeling [16], an analogy

that is detailed in the discussion section below.

One identifiable factor underlying choice behavior for color

similarity that goes beyond the CIE distance model is a factor we

refer to as ‘‘categorical considerations’’. Categorical considerations

permit the natural partitioning of the color stimuli studied into

subsets ‘A’ and ‘not A’. Such distinctions can be based on

idiosyncracies of individual perceptual salience [17,18], culturally

relevant color utility [7,19,20], environmental signaling, [21] or

any other feature on which a set of colors could be partitioned

[22]. For example, categorical considerations of color similarity

can be shaped by how color meaning is denoted by a society’s

color language. The cross-cultural color-naming literature has

proposed that color-triad choices are influenced by language

category biases. That is, beyond color-based similarity features of

stimuli, even in tasks that are strictly perceptual in nature odd-one-

out choices may be influenced by where in color space a

A Quantitative Theory of Human Color Choices
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participant’s color lexicon draws a categorical distinction

([23,24,25], but also see [26] for an alternative view).

Here categorical considerations are given a quantitative

implementation. We propose that the probability to be chosen

defined by equation (1) involves a correction factor based on

category differences. Consider the example of Figure 1(a–d), where

a triad is represented schematically as a triangle in a CIE space. In

the absence of categorical biases, stimulus A in this triad would be

the most likely choice. Next imagine there is a ‘‘partitioning’’ of

color space that separates the stimuli into different categories.

These categories are marked in Figure 1 by different background

shading. If stimulus C belongs to a different category compared to

the other two stimuli, there is a chance that C will become a more

likely choice than A (Figure 1(d)). Mathematically, this is expressed

by the formula

ProbC?
DDABDD{a

S
zW catdcat

C , ð2Þ

which contains an additive term that modifies the probability that

stimulus C is chosen. Probabilities of choosing the other two

stimuli, A and B, are modified similarly, and then the three

probability expressions are normalized such that they sum up to

one. In equation (2) dcat
C denotes the category indicator, which

informs us whether category considerations play a role in this

particular triad, for this stimulus C. In the example of Figure 1(d)

where stimulus C belongs to a different category from stimuli A

and B, we have dcat
C ~1. If however stimulus C belongs to the same

category as any other stimulus in the given triad, then we set

dcat
C ~0 for this triad. In particular, if all three stimuli belong to the

same category (Figure 1(a)), or if they belong to three different

categories (Figure 1(c)), then all three stimuli have their respective

dcat~0, and category considerations are not expected to influence

individual’s color similarity judgments. In the case depicted in

Figure 1(b), we have dcat
A ~1, that is, category considerations

strengthen the choice of stimulus A as the odd-one-out and

essentially do not modify the prediction of the original model (1).

In a given triad, only one stimulus can have a nonzero category

indicator. The weight coefficient, 0vW cat
v1, measures the

relative importance of category biases compared to distance biases.

In the present analyses categories are based on considerations of

hue and warm-cool biases (see Figure 2). In the two local

conditions, two categories were considered, as shown in Figure 2

by radial dashed lines in the a*b* plane of CIELAB (1976) space

[1]. The particular choice of the location of the dividing lines, as

well as the numerical value of parameter Wcat, was obtained as

part of the optimization problem (see Text S1). In the red

condition, the two categories that resulted in the best match of the

model with the observed data, empirically correspond to ‘‘orange-

red’’ and ‘‘burgundy-red’’ biases. In the blue category, we have

‘‘teal-blue’’ and ‘‘purple-blue’’ biases. In the case of the global

condition (Figure 2(a)) we find not two but three different

categories termed as ‘‘warm’’, ‘‘cool’’ and ‘‘brown’’. As an aside,

the emergence of a separate ‘‘brown’’ factor, or category, in these

data is not surprising since browns differ from other colored light

mixtures in that they exist as ‘‘relational colors’’ that are

experienced in the context of a brighter surrounding field, and

in CIELAB or CIELUV spaces correspond to ‘‘orange’’ color

space coordinates [1], implying that ‘‘brown’’ light mixtures are

absent from those models. Similarity judgments on ‘‘relational’’

colors like brown are possible in these data because surrounding

contrast was supplied by the gray background used in our triad

stimulus configuration [27].

When we apply this model to the data at hand, we observe that

the category correction helps improve the performance of the

model considerably, especially in the global and red conditions.

The least number of mismatches that this model produces is 8, 7

and 14 for the global, red, and blue conditions respectively, see

Table 1. We conclude that category constraints and distances are

not the whole picture, which is especially apparent in the blue

condition. Other factors must be at play.

In order to find the source of the remaining variation, we

explored the hypothesis that alternative dimensional differences

can influence participants’ choices. We notice a common pattern

Figure 1. The category (a–d) and lightness-saturation (e,f) biases in triad choices. (a–d): A triad (A,B,C) is represented as a triangle in a CIE
space. In the absence of categorical and other biases, stimulus A is the most likely choice. In the presence of categorical biases, the choice might shift.
Different categories are denoted by different background shades, and the most likely choice is marked by a star. (a) All stimuli belong to the same
category; A remains the most likely choice. (b) All three stimuli belong to different categories; the choice remains A.(c) Stimulus A belongs to a
different category than B and C; the choice remains A. (d) Stimulus C belongs to a different category from A and B; the choice might shift from A to C.
(e,f): The same triad projected into the lightness-saturation space (a schematic). (e) Stimulus A is the darkest and most saturated color; the choice
might shift from A to C. (f) Stimulus A is not simultaneously the darkest and most saturated color; the choice remains A
doi:10.1371/journal.pone.0055986.g001
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in many of the mismatches in the blue condition: the CIE

prediction of the odd-one-out stimulus corresponds to the color

with the lowest lightness coordinate and the highest saturation

coordinate compared to the other two stimuli in the triad, see

Figure 1(b). We make a hypothesis that people prefer not to choose

the darkest and the most saturated color as the odd-one-out.

This leads to the following correction to model (2):

ProbA?
DDBCDD{a

S
zW catdcat

A {W lsdls
A, ð3Þ

where the superscript ‘‘ls’’ refers to lightness-saturation bias, dls
A is

the lightness-saturation indicator, and 0vW ls
v1 is the weight

coefficient measuring the relative importance of the lightness-

saturation bias (determined by a fitting procedure, see Text S1). As

in equation (2), the other two probability values are modified

similarly, and then normalized to make sure that they sum up to 1.

In equation (3), the indicator dls
A~1 only if stimulus A is the

darkest and most saturated color of the three; it is zero otherwise,

see Figure 1(e, f). In the Figure, we presented a possible projection

of the triad ABC onto the lightness-saturation space. If, as in

Figure 1(e), stimulus A happens to be the darkest and the most

saturated color, then its lightness-saturated bias will be set to one,

and it may lead to a different choice of the odd-one-out color. In

other cases, such as the one illustrated in Figure 1(f), the lightness-

saturation bias of stimulus A will be zero. We fitted the model in

equation (3), and the best-fitting model reduces the number of

mismatches to 6, 7 and 9 for the global, red and blue conditions

respectively. Interestingly, in the global and red conditions,

lightness-saturation bias does not make much of a difference.

When applied together with the category bias, or alone (see the last

row of Table 1), it does not influence the number of mismatches

significantly. In the blue condition however it plays an important

role. When applied together with the category bias, it reduces the

number of mismatches from 14 to 9, and when applied without the

category bias, it reduces the number of mismatches from 24 to 11.

To summarize, the most comprehensive model (3) can explain

91% of the data for the global, 90% for the red, and 87% for the

blue condition.

Discussion

From the perspective of cognitive psychologists interested in

understanding human color experience, the CIE models are

perfect tools for empirical stimulus specification, but they are not

ideal as models of the many ways humans experience and interact

with color. Our results show that CIE color differences alone are

insufficient to describe color similarity when strong sources of

cognitive influence on color judgment are at play. This is because

CIE formalizations were not designed to predict a variety of

behavioral outcomes that arise from human color appearance

processing. The formal geometric properties of CIE space do not

very accurately predict human judgments of, for example, color

similarity, color preference or color difference in complex scenes.

The results presented here suggest that a family of models that use

CIE distances in conjunction with other known perceptual and

cognitive factors is a promising approach to using CIE formalisms

as a basis for the quantitative modeling of cognitive color relations.

The Hierarchical Nature of Our Model
The present results confirm the suggestion (e.g., [10]) that the

CIE formalization most frequently used to model observer’s

judgments of color similarity and difference, is but one, albeit

important, type of factor contributing to color choice behavior. To

illustrate this we used features of color similarity (represented by

distance in a ‘‘perceptually uniform’’ CIELAB model) as a

predictor of choices in color triad tasks. We found that odd-one-

out predictions based on CIELAB distances coincided with a good

portion of the empirical data, and that above and beyond this,

other plausible factors, dimensions and attributes were found to

contribute. When formally included in the model, these additional

factors were found to substantially improve the predictions of the

triad choice behavior.

Our model can be considered a hierarchical model in the

following sense. It includes the null model (the CIE distance

model), which most of the time comprises the largest contribution

Figure 2. Optimal category choices in the three experimental conditions, global (a), red (b) and blue (c). The 21 stimuli in each
condition are plotted on the a*b* plane (please note the scale difference among the three conditions). The color stimuli are presented by colored
dots that approximate the colors of the stimuli. The categories are separated by radial dashed lines.
doi:10.1371/journal.pone.0055986.g002

Table 1. The number of mismatches produced by different
models (equations (1), (2), and (3), as well as the null model
and lightness-saturation bias) for the global, red, and blue
conditions.

Global Red Blue

Null, eq.(1) 13 15 24

Null+category bias, eq.(2) 8 7 14

Null+category+ls bias, eq.(3) 6 7 9

Null+ls bias 12 15 11

doi:10.1371/journal.pone.0055986.t001
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to the choice probability. Other factors, although present, in the

majority of cases do not have enough weight to modify the

prediction given by the CIE distance model. In some cases,

however, the CIE prediction is ‘‘weak’’, which happens for

example in the case when the triad is a nearly equilateral triangle.

In this case, other linguistic or cognitive layers, such as category

criteria or lightness-saturation baises, become the major basis for

color similarity choices, and can determine the color choice

behavior. These findings and this hierarchical modeling approach

are related to lexicographic semi-order modeling of choice behavior

[16]. In [16] Tversky states:

‘‘… When faced with complex multidimensional alternatives … it is

extremely difficult to utilize properly all the available information.

Instead … people employ various approximation methods that enable

them to process the relevant information in making a decision. The

particular approximation scheme depends on the nature of the

alternatives, as well as on the ways they are presented … The

lexicographic semiorder is one such approximation … ’’ ([16], p. 46).

Analogous to a lexicographic semi-order interpretation of these

results, we found that people initially compare CIE distances as a

first approximation to their triad choice decision. When the pair-

wise distances among the three items compared were different

enough, then people chose the most distant item of the triple as the

odd-one-out. However, if the distance-based choice becomes

ambiguous, then people could engage additional criteria in making

a choice. This is in the same spirit as the model of interpoint-

distance color category formation described previously [28,29].

Modeling color similarity judgments as a series of successive

approximations that contribute to choice outcomes is, we believe,

(i) a new and highly plausible approach to modeling the

perceptual-cognitive-pragmatic aspects of stimuli that naturally

play a role in color similarity judgments, and (ii) is an appropriate

and useful extension of the formalisms presented by lexicographic

semiorder modeling.

CIE as a Basis for Our Modeling Approach
It should be noted that in this paper we emphasize a modeling

approach that is based on the most widely used index of color

difference: CIELAB DE. We examined alternative models based

on other more recently introduced CIE color difference equations

(CIE94 and CIEDE2000, see Text S1) but these alternatives either

were not too different from that found with CIELAB DE, or they

did not produce much improvement (or decline) beyond that

shown with CIELAB (resembling trends seen when color

difference equations are compared in applications across a range

of datasets).

One way to improve the hierarchical cognitive modeling

approach introduced here may be to build on one of the more

complex parametric models of color appearance (i.e., CIECAM97,

CIECAM02, CIECAM02-UCS) that have been developed by CIE

scientists in the last decade. Although these more recent color

appearance models (CAMs) strive to advance color difference

estimation beyond CIELAB-based formulas, they remain under

active development and are not considered final models, as they

continue to evolve, and continue as topics of ongoing testing,

debate, and discussion [30].

Finally, the CAMs are dramatically more complex computa-

tionally, to the point of bordering on being impractical for some

applications. This is likely the reason they have not been embraced

widely as tools in the empirical research literatures that study

behaviors linked to cognitive and perceptual color relations. These

two reasons underlie our choice to emphasize and build on the

accepted, widely used, color difference index CIELAB DE.

However, once CAM development is finalized and vetted by

CIE experts, a potentially useful pursuit might be to generalize our

hierarchical approach by using a CAM as the starting point for

computing distances – this is entirely compatible with the aims of

the present paper, but is necessarily a task for future modeling

research.

The Color Space is Non-uniform with Respect to
Category and Lightness-saturation Biases

Our analyses show that different warm-cool category and

lightness-saturation emphases are found across global, red and

blue triad choices (Table 1). What is the reason for this difference?

One possibility is that such constructs may not be uniformly

appropriate, or equally relevant, across the entire color space. For

example, for some regions of color space, a categorical distinction

of warm-cool may be a useful or meaningful distinction to make

(e.g., [31,32]), and in other regions of the space, or for other

subsets of stimuli, it may be less useful. Variation in the

appropriateness of a given categorical distinction across color

space can be linked to a range of factors outside the domain of the

standard observer model that are likely to contribute to similarity

judgments of color. Because such factors can be cognitive, cultural,

linguistic, and so on, they are almost certainly beyond the scope of

CIE modeling alone, and therefore not easily addressed even by

further extending the latest, most advanced forms of CIE models.

Our suggested analogy to lexicographic semiorder modeling

within a hierarchy involving CIE modeling builds on CIE

advances and allows many more factors to be accounted for and

addressed.

Note that categorical considerations modeled here could

originate from any number of sources. They could arise from

normal biological bases [32] or less common biologically-based

deficiencies (e.g., color vision dichromacy); from culturally specific

factors [19,20]; from putative environmental or ecological salience

[33,34]; from social color utility (e.g., highly valued purple ink

used to dye royal cloth in ancient societies) ([35], chapter 62); or

from language-based marked/unmarked color relations [36]. In such

cases categorical considerations need not be applied uniformly

across the entire color space, and may only apply in subregions of

color space. The only feature required of the categorical

consideration as formalized here is that it provide a connected

set ‘A’/‘not A’ partition in the color space on which color similarity

judgments can be evaluated.

If limited appropriateness of categorical considerations across

color space is possible, then it is not surprising that the present

data shows warm-cool category considerations improve the fit to

the data for global and red conditions, while they explain less of

the data for the case of the blue condition. Similarly, the criteria of

lightness and saturation seem to play a role in triad choice data for

the blue condition but not for the red condition or the global

condition. Such patterns are plausible because stimulus sets for the

three conditions were not sampled to be subjectively equal on all

possible dimensions. Thus, cognitive and perceptual salience may

be differently represented by samples comprising the three

stimulus sets (and it is clear that the global stimulus set already

dramatically differs in the hue dimension compared to the red or

blue stimulus sets).

Universal and Cultural Components of the Model
One advantage of CIE modeling that keeps formalizations

tractable is that a standard observer approach to color modeling is

used. This standard observer simplification does, however, limit

A Quantitative Theory of Human Color Choices
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the potential to address systematic variation in observer groups

that can be linked to, for example, shared knowledge about color,

which uniquely contributes to color similarity relations in

observers with specific linguistic or cultural affiliations. In these

cases where culturally relevant information is known, it would be

beneficial to include such information as a factor relevant in color

similarity judgments. Extending the modeling capabilities of the

CIE in this way is one aim of the present hierarchical modeling

approach.

This article considers data only from native-language speakers

of English. But it is certainly true that category influences on color

triad choices will differ for non-English speakers. For example, one

would expect variation in lightness-saturation influences on color

triad choices across ethnolinguistic groups [37]. Thus, what we

consider universal in this framework are the identifiable perceptual

and cognitively salient features of chosen triad stimuli (i.e., distance

in a color space captured by the null-model), and what is cultural

are the alternative approximations that additionally contribute to

triad choices (i.e., pragmatic, environmental, individual and other

culturally dependent factors captured by the additional layers in

our model). The universal-cultural contrast differs here from that

typically seen in the literature – that is, although the two forms of

influence arise from very different sources, they nevertheless can

both contribute to odd-one-out color similarity judgments.

Examples of how category influences can differ across language

groups are readily available. Russian has two distinct linguistic

categories (or two ‘‘basic color terms’’) for colors that English

denotes under the lexical category ‘‘blue’’ [7,8]. Similarly,

Hungarian has two basic terms for ‘‘red’’ colors (piros and vörös)

[38] and Hungarian speakers use category glosses for ‘‘light’’ and

‘‘dark’’ (világos and sötét, respectively) to modify basic color terms

much more frequently than that seen in native English color

naming. This suggests that there are differences of lightness

dimension salience between native-language Hungarian and

English color naming [39]. Almost the opposite scenario is found

in native-language Vietnamese speakers where one category term

(i.e., xanh) is used for denoting all ‘‘greens’’ and ‘‘blues’’ and the

linguistic differentiation of green appearances from blue appear-

ances is only achieved by modifying terms that specify which xanh

appearance is ‘‘green’’ (or xanh lá cây or ‘‘xanh like the leaves’’) and

which xanh is ‘‘blue’’ (or xanh nu’ó’c biê
¸
n or ‘‘xanh like the ocean’’)

[13].

Thus, linguistic and cultural factors could set which criteria are

most attended to in color similarity judgments compared across

cultures. Indeed, many forms of linguistic markedness could influence

which criteria color similarity is based on, and these would be

expected to vary across ethno-linguistic groups and might even

arise due to subgroups within a linguistic culture, such as color

experts (e.g., professional artists and designers) compared to

individuals in the same ethno-linguistic culture with little color

expertise.

Materials and Methods

Data from 52 native English speakers (32 female and 20 male)

are analyzed (see Text S1 for details). Participants were randomly

presented series of triad trials comprised of three precisely

rendered color stimuli. In a given triad trial participants must

identify which of the three items presented is most different from

the remaining two. Color appearance triads were judged

separately for the three color sets representing global, local red,

and local blue color conditions. Each condition included 21 stimuli

for a total of 70 triad judgments per condition. All experimental

methods, procedures and stimuli were reported previously [11].

All further details are provided in Text S1.

Supporting Information

Text S1 Methods.

(PDF)
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