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Abstract

Classification studies are widely applied, e.g. in biomedical research to classify objects/patients into predefined groups.
The goal is to find a classification function/rule which assigns each object/patient to a unique group with the greatest
possible accuracy (classification error). Especially in gene expression experiments often a lot of variables (genes) are
measured for only few objects/patients. A suitable approach is the well-known method PLS-DA, which searches for a
transformation to a lower dimensional space. Resulting new components are linear combinations of the original
variables. An advancement of PLS-DA leads to PPLS-DA, introducing a so called ‘power parameter’, which is maximized
towards the correlation between the components and the group-membership. We introduce an extension of PPLS-DA
for optimizing this power parameter towards the final aim, namely towards a minimal classification error. We compare
this new extension with the original PPLS-DA and also with the ordinary PLS-DA using simulated and experimental
datasets. For the investigated data sets with weak linear dependency between features/variables, no improvement is
shown for PPLS-DA and for the extensions compared to PLS-DA. A very weak linear dependency, a low proportion of
differentially expressed genes for simulated data, does not lead to an improvement of PPLS-DA over PLS-DA, but our
extension shows a lower prediction error. On the contrary, for the data set with strong between-feature collinearity and
a low proportion of differentially expressed genes and a large total number of genes, the prediction error of PPLS-DA
and the extensions is clearly lower than for PLS-DA. Moreover we compare these prediction results with results of
support vector machines with linear kernel and linear discriminant analysis.
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Introduction

In discrimination studies, data sets are often handled having

high numbers of features but only few samples. Especially for gene

expression experiments, where thousands of genes are measured

and in comparison only few samples are used, dimension

reduction is advantageous as a pre-processing step before the

final classification step takes place. There exist a lot of feature

extraction methods for dimension reduction. One such method is

powered partial least squares discriminant analysis (PPLS-DA)

which is a specialized version of the well-known partial least

squares discriminant analysis (PLS-DA), which was first intro-

duced in chemometrics by Wold et al. [1] by using the PLS

regression [2] for classification purposes. Here the response

variable (Y) in the linear model is given in form of indicator

variables. Barker & Rayens [3] and Nocairi et al. [4] were the first

to formulate PLS-DA accurately. The aim is to reduce the

dimensions (number of features) by coordinate transformation to a

lower dimensional space. PPLS-DA was introduced by Liland and

Indahl in [5] to improve the calculation of the loading weights for

better separation of the groups by introducing a power parameter

analogously to powered partial least squares (PPLS) [6] and

maximizing the correlation between the data matrix and the group

memberships, analogous to Fisher’s canonical discriminant anal-

ysis (FCDA). The optimization criterion in PPLS-DA is therewith

not directly aimed at prediction, and therefore the original

algorithm does not necessarily yield the best components for class

prediction.

Former studies of Telaar et al. in [7] show similar prediction

errors (PEs) for PLS-DA and PPLS-DA for most of the analysed

data sets, and even lower error rates compared to other

classification methods e.g. random forest and support vector

machine. Therefore, we try to optimize the power parameter of

PPLS-DA towards class prediction in a training set, to see if the

prediction result for a test set can be improved. The power

parameter and the number of components are determined

according to the lowest prediction error of a linear discriminant

analysis (LDA) using the PPLS-DA components, taking a cross-

validation approach. Furthermore, we compare the results of

this extension and of PPLS-DA with the ordinary PLS-DA with

respect to prediction error (PE) for simulated data sets and five

publicly available experimental data sets. Finally the PPLS-DA

results of the simulated and experimental data sets are

compared to those of support vector machine (SVM) with

linear kernel and LDA with ten features selected according to

the t-test.
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Materials and Methods

Description of a Classification Problem
An n|p data matrix X with n objects and p features together

with a vector y~(y1, . . . ,yn)t of group memberships form the basis

of a classification problem. Here yi [G,i~1, . . . ,n is the group

label for object i which for example can be given in the form of

discrete variables or symbolics. The k-th column of the matrix X is

denoted by xk. We assume that each sample belongs to a unique

group g and each group has a sample size of ng and a prior

probability of group membership of pg. In total G different groups

exist and n~
PG

g~1 ng. In this article, we restrict ourselves to only

two different groups G~2. Our results can be extended to more

than two groups.

The group information can also be given in the form of a

dummy coded matrix Y as follows Y~(yig)i~1,...,n,g~1,2,yig equals

1 if sample i belongs to groups g, otherwise the entry equals 0,

i~1, . . . ,n and g~1,2. The goal is to determine a function

C : Rp?G which assigns to each object a unique group (x.y)

with the greatest possible accuracy [8]. In the following we assume

that X is centered. Therewith the empirical total covariance

matrix T is equal to XtX, and let B denote the empirical between

group sum of squares and cross-product matrix, which can be

formalized as B~XtSX with S~Y(YtY){1Yt [8].

Introduction of PLS-DA and PPLS
PLS-DA. Before we start with the detailed description of

PPLS-DA, we give a brief introduction to the roots of this method,

PLS-DA and PPLS. Let a [Rp be a vector of loadings with ata~1
and t [Rp a vector containing the mean values of the groups,

t~XtY(YtY){1. Nocairi et al. [4] showed that the dominant

eigenvector of B maximized the covariance between Xa and t in

the context of classification. Therefore this eigenvector should be

used for the determination of the loading weights vector which was

also recommended by Barker & Rayens [3]. An enhanced version

of PLS-DA with inclusion of prior probabilities (pg ) in the

estimation of B is proposed by Indahl et al. [8]. In this version, the

importance of each group no longer depends on the empirical

prior probabilities. Therewith a direct opportunity is given to put

more weight on special groups for the calculation of the loading

weights. Moreover X is transformed to an n|2 matrix Z~XW0,

here W0~XtY
ffiffiffiffi
P
p

(YtY){1 and P~diag(fpg Dg~1,2g). There-

with a G|G eigenvalue problem (B [Rp|p) is reduced to a 2|2
eigenvalue problem (2 = number of groups), because only the

between-group covariance matrix according to Z is considered

(BP~nZtY(YtY){1P(YtY){1YtZ). Afterwards the eigenvalue

needs to be back transformed by W0.

PPLS. Now we are turning back to PLS regression, to explain

the introduction of the power parameter c in PLS regression. The

loading weights vector of PLS regression w~½w1, . . . ,wp�~
Xty

DDXtyDD
maximizes cov(Xw,y) and can be rewritten as.

w~k:½cov(y,x1), . . . ,cov(y,xp)�t

~k:sd(y)½corr(y,x1):sd(x1), . . . ,corr(y,xp):sd(xp)�t,

with a scaling constant k where cov, corr and sd denote

covariance, correlation and standard deviation, respectively.

Hence, the influence on the loading weights of the correlation

and standard deviation part is balanced. Dominating X-variance

which is irrelevant for prediction does not lead to optimal models,

therefore Indahl et al. [6] propose PPLS which allows the user to

control the importance of the correlation part and the standard

deviation part by a power parameter c as follows:

w(c)~k(c): s1
:Dcorr(x1,y)D

c
1{c:sd(x1)

1{c
c . . . ,sp

:Dcorr(xp,y)D
c

1{c:sd(xp)
1{c

c

� �t

:

Here sj denotes the sign of corr(xj,yg). The power parameter

c[½0,1� is determined such that the correlation is maximal:

arg max
c[(0,1)

corr(Xw(c),y). Also c equal to 0 and 1 is included in

the maximization problem by calculation correlation with a

loading weights vector which has only a non-zero entry (for c~0)

for the feature with the largest standard deviation and by

determining the correlation according to a loading weights vector

which has only a non-zero entry for the feature with the largest

correlation to y (c~1).

PPLS-DA: Optimization of the Power Parameter
According to Correlation

PPLS-DA is designed to deliver components which are optimal

for discriminating the cases coded in Y. This optimality can be

understood in terms of a correlation approach. Nocairi et al.

showed in [4], that correlation is determined by the so called

Rayleigh quotient.

r2(Xa,t)~
atBa

atTa
: ð1Þ

Here the correlation is measured by the squared coefficient of

correlation r2. Maximization of the correlation is therewith

equivalent to maximization of the Rayleigh quotient.

arg max
a[Rp

atBa

atTa
: ð2Þ

The well known solution of the maximization problem (2) is the

dominant eigenvector amax of T{1B. This is exactly the approach

of Fishers̀s canonical discriminant analysis (FCDA) for determin-

ing the vector of loadings.

For PPLS-DA, Liland and Indahl combine in [5] the

approaches of FCDA and PPLS and further include, like in [8],

prior probabilities pg for each group g in the calculation of T and

B. The data matrix X is transformed with W0(g) to the n|G
matrix Z(c)~XW0(c), where W0(c) contains the possible

candidate loading weights vectors as columns.

wg(c)~Kg,c
:vg,c, ð3Þ

with

vg,c~ s1
:Dcorr(x1,yg)D

c
1{c(x1)

1{c
c . . . ,sp

:Dcorr(xp,yg)D
c

1{c(xp)
1{c

c

h it

,

Kg~nsd(y):
ffiffiffiffiffi
pg
p

=ng, g~1, . . . ,G and c [ (0,1).

The power parameter c enables the focus on features which

have a high correlation to yg or on features which have a high

standard deviation. For the transformed matrix Z(c) the between

group sum of squares and cross-product matrix including prior

probabilities can be calculated as follows

BP(c)~nZ(c)tY(YtY){1P(YtY){1YtZ(c) and the total variance
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matrix is obtained as TP(c)~nZ(c)tVPZ(c) with

P~diag(fp1,p2g) and VP~diag(fvi Dvi~npg=ng,i~1, . . . ,ng)
[5]. VP is an n|n diagonal matrix where the non-zero entry

belonging to sample i is the ratio of the prior probability of the

group to which i belongs and the corresponding group size times

the number of samples n.

The maximization problem of PPLS-DA is as follows.

arg max
c[½0,1�

atBP(c)a

atTP(c)a
: ð4Þ

For c~0 the feature(s) with the highest standard deviation are

tested and for c~1 the feature(s) with the highest correlation to the

group membership vector are checked separately. We denote the

solution of the optimization problem (4) by cmax. To avoid singular

matrices TP(c) and to get a numerically more stable solution,

Liland and Indahl [5] substitute the maximization problem (4) by

the maximization problem arg max
c[½0,1�

cca(Z(c),Y), where cca

denotes the canonical correlation. In [9] the authors showed that

these procedures lead to equal results.

For each component, cmax is determined by maximization of the

canonical correlation:

cmax~arg max
c[½0,1�

cca(Z(c),Y): ð5Þ

In the algorithm of PPLS-DA in the R package pls, the R

function optimize is used to search for the maximum. For this

purpose, the whole training set is used to find cmax. Transforming

X into an n|g data matrix Z(c), the maximization problem

depends on the number of groups and number of samples. It does

not depend on the usually much higher number of features. The

final loading weight vector is then w~W0(cmax)acmax
. For a

detailed description of PPLS-DA we refer to [5].

In our experience with PPLS-DA, we have observed that

optimization of cmax does not always lead to the lowest possible

prediction error available through other choices of c.

PPLS-DA: Optimizing the Power Parameter c with Respect
to Prediction

To improve prediction errors in classification tasks using PPLS-

DA, we aim at optimizing the power parameter c with respect to

prediction error of LDA. For this, we propose a cross-validation

approach, to avoid overfitting. Therefore, we separate in a first

step the data into a training and a test set which are disjunct. We

now call these sets outer training set and outer test set. Using only

the outer training set to optimize the c{value, we use the outer

test set to evaluate the computed classification function. In a next

step we split the outer training set randomly in Ninner different

inner training and inner test sets. Because unbalanced data have

influence on the estimated classifier, we down-sample the majority

group objects to get equal numbers of objects in both groups for

the outer training set. Here, the proportion of 0.7 of the smallest

group size determines the size of the outer training set for each

group. The remaining objects build the outer test set. For the

optimization step, we take into account equidistant fixed c{values

in [0,1] with step size nc, resulting in a sequence of c{values for

the optimization c1~0,c2, . . . ,c 1
nc

z1~1. For example for a choice

of nc~0:1, we consider 11 c{values, 0,0:1,0:2 . . . ,0:9,1.

We calculate the prediction error (PE), the proportion of

wrongly classified samples of a test set, as a measure for good

classification. In Figure 1 a rough overview of our proposed

extension is given. In this paper, all cross-validation procedures

consist of random samples of the corresponding data sets to the

proportions of 0.7 (training set) and 0.3 (test set). For example, a

cross-validation with 10 repeats, repeats the sampling 10 times.

Utilizing the statistical software R, we use the function cppls (of the

R-package pls) for PPLS-DA and the function lda (of the R-

package MASS). Furthermore, we use the default setting for the

priors in the lda function, using the proportions of the groups

which are equal in our cases.

We propose an extension for optimizing both, c and the number

of components to be used as input for the LDA. The optimization

of the c-value depends on the parameters Ninner and nc.

In our extension all components are used to optimize the

c{value minimizing PE. The number of components and the

power parameter are optimized in one procedure. Therewith all

components have the same c{value.

In the optimization, for each fixed c{value (ci,i~1 . . . ,
1

nc
z1)

the optimal number of components of PPLS-DA is determined as

follows (see Figure 2): For the Ninner different inner test sets, the PE

for one up to five components Cj, j~1, . . . ,5 is calculated, all

using the same ci resulting in a matrix (PEs,Cj)s,j ,

s~1, . . . Ninner,j~1, . . . ,5. Then the average inner PE is calcu-

lated for each component. Therewith we select for each ci the

smallest mean PE over the Ninner-test sets with a corresponding

optimal number of components (ci). We search for the minimal PE

leading to copt with the optimal number of components copt. For

these copt components and the power parameter copt, we calculate

the corresponding loading weights vectors on the outer training

set, and we finally determine the PE of the outer test set.

R Functions Used
(P)PLS-DA implementations. For PPLS-DA, we used the

R-function cppls of the R-package pls. We implemented an R-

code for PLS-DA based on [8]. The optimal number of

components was determined by a cross-validation on the outer

training set for PLS-DA, PPLS-DA with cmax and our described

extensions of PPLS-DA. For this step, we restricted the maximal

number of components to five. The segments of the cross-

validation are randomly chosen at the proportion of 0.7 and 0.3 of

the data set. We repeat this procedure 10 times.

Further Classification Methods
SVM. The classification method SVM with a linear kernel

searching for a linear hyperplane for the separation of the data is

considered for comparison. For this purpose the R package e1071

[10] is applied and the parameter C for the linear kernel is tuned

within the interval ½2{5,24� using the R-function tune.svm with a

cross-validation of 10 steps. The interval for tuning is chosen

according to the suggestion of Dettling & Buehlmann [11].

t-LDA. Additionally an LDA is performed using ten features

which are filtered based on the outer training set according to a

ranking list based on the lowest p-value of the t-test. For the t-test

we use the R-package stats.

The same segments of the outer training and outer test set are

used across all tested methods for fair comparison.

Data
We investigate simulated data and five publicly available

experimental data sets. After preprocessing (like mentioned in

the description of the experimental data sets), all experimental

Extension of PPLS-DA
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data are on the log-scale of gene expression as for the simulated

data.

For detailed description of the covariance structure of our data,

we use two measures analogous to Sæbø et al. in [12]. The

condition index, first used in [13], and the absolute value of the

covariances between the principal components of X and the

response vector as used in [12]. The condition index kj~
ffiffiffiffiffiffiffiffiffiffiffi
l1=lj

p
,

j~1, . . . ,p is used as a measure for variable dependence, with lk

being the kth eigenvalue of cov(X). It can be assumed that

l1§l2§ � � �§lp. The increase of the first five condition indexes

(k1,k2,k3,k4,k5) reflects the collinearity of the features. A rapid

increase means, the features have a strong linear dependence, a

weak increase implies a weak dependence. If we now consider the

principal components, like in [12], the relevance of a component is

measured by means of the absolute value of the covariances

(Dcov(zj,y)D) between the principal component zj~Xej and the class

vector y. Here yi equals 1 if sample i belongs to group g~1,

otherwise yi equals -1, i~1, . . . ,n. The eigenvector belonging to

the kth largest eigenvalue is denoted by ej . Helland and Almøy

[14] infer, that data sets with relevant components, which have

small eigenvalues, are difficult to predict. The condition index is

plotted for the first five largest eigenvalues (scaled to the first

eigenvalue) in Figure 3. Figure 4 shows the first 50 largest scaled

eigenvalues and the corresponding scaled covariances between zj

and y for all experimental data sets and a simulated data set (case

3) investigated.

Simulated data sets. Gene expression data are simulated as

normally distributed data, considering the log scale of microarray

intensities after normalization: xij~N(mj ,s
2
bzs2

t ),i~1 . . . ,n and

j~1, . . . ,p. Here s2
b denotes the biological variance which we

chose equal to 0.04, and s2
t represents the technical variance

which we chose in different proportions of the biological variance.

Studying a two-class classification objective, we simulate 60

samples per class for the whole data set and p~1000 genes

partitioned in an informative part and non-informative part for the

classification. For the test set, 30 single samples per class are

randomly chosen. The remaining 30 single samples per class

constitute the training set. The non-informative part of the data

matrix which shows no differences between the two classes,

consists of normally distributed random variables with mean

mg~8 and biological variance s2
b~0:04, as well as different cases

of technical variance s2
t . The informative part contains ten

differentially expressed genes (DEGs) with a mean class difference

D [7]. We take 5 cases into account. For case 1, 2 and 3, for each

DEGs, D is chosen according to the uniform distribution from the

interval ½0:1,0:5�. Case 1 has a technical variance of zero, case 2 of

one-quarter of the biological variance (s2
t ~

1

4
s2

b), and case 3 is

simulated with a technical variance of the same size as the

biological variance (s2
t ~s2

b). The ten DEGs of case 4 have a mean

class difference of D~0:2 and s2
t ~

1

4
s2

b. The simulated data of

case 5 also have the high noise level (s2
t ~

1

4
s2

b), but a higher mean

class difference with D~0:5.

We illustrate the data structure for the simulated data on the

example of case 3. The condition indexes are 1.00, 1.01, 1.04,

1.05, 1.06. The increase is the weakest for all data sets considered

(Figure 3), and therewith the genes are only weakly linear

dependent, which is also shown by Figure 4F. This is similar for

Figure 1. Rough overview of the proposed extension of PPLS-DA.
doi:10.1371/journal.pone.0055267.g001
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all simulated data cases. Furthermore, the proportion of DEGs is

very low with 1% for all cases.
Experimental data sets. Additionally, we considered five

publicly available experimental microarray gene expression data

sets which are summarized in Table 1 containing information

about the group size, number of genes, proportion of differentially

expressed genes and original publication. For the determination of

the number of differentially expressed genes (NDEGs) we use a t-test

(from the R-package stats) and an FDR correction [15] (R-package

qvalue). We count all genes with a q-value below 0.05. In the

following the five data sets are described:

The Leukemia data were downloaded from the Whitehead

Institute website. We merge the training set and the test set to get a

higher sample size and sample from these to get new proportions

0.7 and 0.3 for the training and test set. The R code for data

preprocessing from http://svitsrv25.epfl.ch/R-doc/library/

multtest/doc/golub.R is used which is according to [16]. The

data set consists of two groups, 25 patients with acute myeloid

leukemia and 47 patients with acute lymphoblastic leukemia and

3571 genes.

The condition indexes show a weak increase for this data set

(1.00, 1.31, 1.49, 1.537, 1.83). This and the plot of the eigenvalues

(Figure 4A) lead to the assumption of a weak linear dependency

between the genes. The more relevant components have the

largest eigenvalues (Figure 4A). Therefore we can expect good

prediction performance of this data set. This data set has the

highest proportion of DEGs (40.46%, Table 1).

The Lymphoma data set was downloaded from the website

http://www.broadinstitute.org/mpr/lymphoma/. The data are

GC-RMA normalized. Two groups are considered, 58 patients

with diffuse large B-cell lymphomas and 19 patients with B-cell

lymphoma, follicular lymphoma. Only genes with a non-zero

variance are used in our analysis, which leads to 7129 genes.

The between-variable dependencies are comparable to the

Leukemia data set (condition indexes: 1.00, 1.10, 1.40, 1.50, 1.84).

The covariance structure (Figure 4B) is also comparable to those of

the Leukemia data set and the total number of DEGs is a little bit

higher than for the Leukemia data set, but the proportion on the

total number of genes is clearly lower (24.3%, Table 1).

The Breast Cancer data set consists of normalized and filtered

data, downloaded from http://homes.dsi. unimi.it/,valenti/

DATA/MICROARRAY-DATA/R-code/Do-Veer-data.R. The

normalization was performed according to [17]. In this data set,

only the two groups with the highest sample size are included: 34

patients with distant metastases within 5 years and 44 patients

without, after at least 5 years. The total number of genes is 4997.

We found again a weak increase in the condition indexes for the

first five eigenvalues (1.00, 1.42, 1.77, 1.90 and 1.91), but slightly

faster than for the Leukemia and Lymphoma data set (Figure 3).

The eigenvalue plot (Figure 4C) illustrates also a weak linear

dependence between the features. The proportion of DEGs is the

lowest for all experimental data sets (1.08%, Table 1).

The Prostate 1 data set contains 52 tumor and 50 non-tumor

cases and was downloaded from http://stat.ethz.ch/̃dettling/

bagboost.html. The preprocessing is described in [18] and the final

data set contains 6033 genes.

This data set shows a rapid increase of the condition index from

k1 to k5 (1.00, 2.96, 3.24, 5.046, 5.397), describing a strong linear

dependency of the genes (Figure 3). This property is also indicated

Figure 2. Extension of PPLS-DA - for stepsize nª~0:1 and Ninner~50. The power parameter is denoted by c, the prediction error (number of
wrongly classified samples of the inner test set) is abbreviated with PE. c varied in 11 steps (c1~0,c2~0:1, . . . ,c11~1). Cj, j = 1, . . . ,5 is short for the jth
component. The function min(f) takes the minimum of function f . The cross-validation procedures consist of random samples of the outer training
set to the proportions of 0.7 (training set) and 0.3 (test set). The cross-validation steps are conform to sampling with replacement. The optimal c-value
and the optimal number of components are determined after 50 repeats.
doi:10.1371/journal.pone.0055267.g002
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by the plot of the eigenvectors (Figure 4D). This data set also has a

high proportion of DEGs (32.26%, Table 1).

We downloaded the Prostate 2 data set, which was already

normalized, from http://bioinformatics. mdanderson.org/Tail-

Rank/. A description of the normalization can be found at http://

bioinformatics.mda nderson.org/TailRank/tolstoy-new.pdf. In

this data set, only the two groups with 41 patients with normal

prostate tissue and the 62 patients with primary tumors are in

included.

The condition index shows a rapid increase (1.00, 1.71, 2.10,

2.56, 2.93) for the first five eigenvalues (Figure 3), but more

moderate than for the Prostate 1 data set. Figure 4E shows that

also relevant components have small eigenvalues, which indicates

low prediction performance. The proportion of DEGs is very low

(1.4%, Table 1) and similar to those of the Breast Cancer data set,

but the total number of genes is the largest (42129) for all

experimental data sets.

Results

Results for the simulated data are based on 100 repeated

simulations, and for the experimental data 100 different outer

training and outer test sets are sampled. We present mean PE

values of the outer test sets and the corresponding 95% confidence

intervals. At first, we describe and compare the results of PPLS-

DA using copt with PPLS-DA using cmax, followed by the

comparison between PLS-DA, PPLS-DA using c~0:5, t-LDA

and SVM.

We calculate confidence intervals for PE as follows: let z be the

vector with 100 estimates of prediction errors. The upper bound of

the confidence interval is then calculated as

u(z)~mean(z)z1:96(z)=
ffiffiffiffiffiffiffiffi
100
p

. The lower bound is calculated

likewise. If these confidence intervals overlap, we report no

significant differences, if they are disjunct, the corresponding PEs

are reported as significantly different.

Results for the Simulated Data
PE results. At first we study the dependency of c optimiza-

tion on the step size nc, and on the number of internal cross-

validation steps Ninner. We calculate the mean PE results for

Ninner~5,10,20,30,40,50,60,70,80 and nc~0:05 or 0:1. Because

the corresponding 95% confidence intervals overlap for all

different parameter choices for fix Ninner (Figure S1), we show

all further results for Ninner~50 and nc~0:1.

Figure 5 illustrates the mean PE results and corresponding 95%

confidence intervals for the simulated data and Table 2 summa-

rizes the average number of components used for PLS-DA, PPLS-

DA using cmax, copt and c~0:5.

For all considered cases, PPLS-DA using copt shows a

significantly smaller PE than PPLS-DA using cmax. Especially for

DEGs with D [ ½0:1,0:5�, the PE of PPLS-DA with copt is only one-

tenth of the PE for the PPLS-DA with cmax in the case without

noise, one-fifth for a minor noise level (s2
t ~

1

4
s2

b) and still one-

third for a high noise level with s2
t ~s2

b.

Figure 3. Condition index for the first five eigenvalues. The condition index kj~
ffiffiffiffiffiffiffiffiffiffiffi
l1=lj

p
, j~1, . . . ,p (p number of features) is used as a

measure for variable dependence, with lj eigenvalue of cov(X). It can be assumed that l1§l2§ � � �§lp . The increase of the first five condition
indexes (k1,k2,k3,k4,k5) reflects the collinearity of the features. A rapid increase means, the features are strong linear dependent, a weak increase
implies a weak dependence.
doi:10.1371/journal.pone.0055267.g003
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Figure 4. Plot of the first 50 largest eigenvalues ek of cov(X) (bars) and of the absolute covariance between zk and y (dots) for the

experimental data sets and for case 3 for the simulated data. The eigenvalues ek , k~1, . . . ,50 are scaled corresponding to the largest
eigenvalue, also the absolute values of the covariance between the principal component zk~Xek, k~1, . . . ,50 and the response vector y, here yi

equals 1 if sample i belongs to group g~1, otherwise yi equals 21.
doi:10.1371/journal.pone.0055267.g004

Table 1. Overview of the experimental data sets.

name number of samples number of genes NDEGs
a NDEGs in % original publication

Leukemia 47/25 3571 1445 40.46 [19]

Lymphoma 58/19 7129 1739 24.39 [20]

Breast cancer 44/34 4997 54 1.08 [17]

Prostate 1 50/52 6033 2393 35.26 [21]

Prostate 2 41/62 42129 595 1.40 [22]

aFor the determination of the number of differentially expressed genes (NDEGs) we use a t-test (from the R-package stats) and an FDR correction [15] (R-package qvalue).
We count all genes with a q-value below 0.05.
doi:10.1371/journal.pone.0055267.t001
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Considering the frequency distributions of copt-values (Figure S2

shows the corresponding histograms for case 3), the value with the

highest frequency for the optimal c-value (copt) determined in a

cross-validation approach is 0.8. This is in contrast to the values

for cmax, with 0.5 as highest frequency (Figures S2A and B, see

Supplementary Materials).

Different power parameters have large effects on the loading

weights, which can be seen in Figure 6, e.g. for the first component

for cmax and copt with Ninner = 50 and nc = 0.1 for case 3. The first

10 genes, which are simulated as differentially expressed, receive

the highest absolute loading weight values for all methods. For

copt, these loading weights of the informative genes are increasing

in absolute values, and especially the non-informative genes

receive loading weight values near to zero in comparison to the

loading weights induced by cmax.

Comparing our above findings of the PE with those of the PE of

PLS-DA and of PPLS-DA with c~0:5, PLS-DA shows an equal

PE to PPLS-DA using cmax or c~0:5, for all cases of the simulated

data. Therewith also PPLS-DA using c~0:5 shows a significantly

lower PE than PLS-DA. The number of components used for

PLS-DA is equal to the corresponding number of components

used for PPLS-DA using cmax or c~0:5. Hence overall, PPLS-DA

using copt uses in average the lowest number of components.

Now, we consider the results of the two methods, SVM and t-

LDA. For all simulated data cases, the method SVM shows the

largest PE for all simulated data cases. The method t-LDA does

not show a significant different PE to PPLS-DA using copt.

Results for the Experimental Data Sets
As for the simulated data, we choose Ninner~50 and nc~0:1.

In Figure 7 the mean PE results and the corresponding 95%

confidence intervals are shown for all five experimental data sets

for all considered methods. For PPLS-DA using cmax, copt and

c~0:5 and PLS-DA, the average number of of components are

shown in Table 3.

Leukemia data set: For this data set, we found no significant

differences in the PE of PPLS-DA using copt compared to PPLS-

DA using cmax (Figure 7A), and both methods use similar numbers

of components. The modal value of copt is 0.5, in comparison to

cmax with two accumulations one around 0.3 and the other around

0.8 (see Figure S3, see Supplementary Materials). Comparing the

above PE results to PLS-DA, then PLS-DA shows an equal PE

compared to all four extensions of PPLS-DA. The PE of PPLS-DA

using cmax is significantly larger than the PE of PPLS-DA with

c~0:5 and PLS-DA. PLS-DA uses also in average the lowest

number of components (2.0).

For PPLS-DA using copt we find a significantly lower PE than

for t-LDA, but for SVM the PE is similar to that of PPLS-DA

using copt.

Lymphoma data set: The PE of PPLS-DA using copt is

significantly lower than the PE of PPLS-DA using cmax

(Figure 7B). PPLS-DA using copt leads in average to 3.1

components and PPLS-DA using cmax to 2.9 components.

Considering PLS-DA, we find a significantly lower PE than for

PPLS-DA using cmax, which is equal to the PEs of PPLS-DA using

copt and c~0:5. PLS-DA used the smallest average number of

components (1.8), for PPLS-DA using cmax and c~0:5 we find

similar number of components in average 2.9 and 2.8.

The method t-LDA shows a significantly higher PE in

comparison to PPLS-DA using copt, and SVM an equal PE to

PPLS-DA using copt.

Breast cancer data set: For this data set, PPLS-DA using cmax

and PPLS-DA using copt does not show significantly different PEs

(Figure 7C). The number of components used are also similar for

these two methods with 2.4 for PPLS-DA using copt and 2.3 for

PPLS-DA using cmax.

Also PLS-DA shows an equal PE and a slightly higher number

of components (2.7), compared to PPLS-DA using copt and cmax or

c~0:5.

If compared to PPLS-DA using copt, t-LDA and SVM show

similar PE.

Prostate 1 data set: PPLS-DA using copt shows equal PE to

PPLS-DA using cmax (Figure 7D). PPLS-DA using copt leads in

average to 3.4 components, while PPLS-DA using cmax uses 2.5

components.

Investigating PLS-DA, the PE is equal to the PE of PPLS-DA

using cmax or c~0:5. PPLS-DA using c~0:5 and PLS-DA use the

largest average number of components, 4.1 and 4 (see Figure S4).

Also t-LDA and SVM show equal PEs to the other methods.

Prostate 2 data set: The PE of PPLS-DA using copt is equal to

the PE of PPLS-DA with cmax (Figure 7E). Moreover, PPLS-DA

using cmax used 2.9 components and PPLS-DA using copt uses 3.7

components.

PPLS-DA using c~0:5 and PLS-DA show equal PE and

significantly higher PE than for PPLS-DA using cmax or using copt.

PPLS-DA with c~0:5 and PLS-DA use more components in

comparison to all versions of PPLS-DA.

Both methods t-LDA and SVM show a significantly larger PE

than PPLS-DA using cmax or PPLS-DA using copt, but a

significantly lower PE than PLS-DA and PPLS-DA using c~0:5.

Discussion

The focus of our study is on introduction of an extension for the

method PPLS-DA for better classification in high-dimensional

datasets, as for example gene expression datasets in biomedicine.

The optimization criterion for the power parameter cmax in the

ordinary PPLS-DA is towards canonical correlation, and does not

need to be best for prediction. Our extension of PPLS-DA

introduces optimization of c with respect to prediction using an

inner cross-validation approach. We carry along comparisons to

LDA and SVM, to bring our proposed method into line with these

standard classification methods.

Figure 5. Mean PE of PPLS-DA using ªmax, ªopt and ª~0:5, PLS-DA, t-LDA and SVM for the five cases of the simulated data.
doi:10.1371/journal.pone.0055267.g005

Table 2. The mean number of components used for
simulated data for Ninner~50 and nc = 0.1.

simulated data PPLS-DA with PLS-DA

case s2
t D cmax copt c~0:5

1 0 [0.1,0.5] 2.6 1.9 2.7 2.7

2 1

4
s2

b

[0.1,0.5] 2.8 2.0 2.7 2.9

3 s2
b

[0.1,0.5] 2.9 2.0 2.8 2.9

4 s2
b

0.2 2.7 2.5 2.7 2.7

5 s2
b

0.5 2.4 1.7 2.5 2.5

doi:10.1371/journal.pone.0055267.t002
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Comparison between PPLS-DA using cmax and copt

The PEs of the outer test sets for PPLS-DA were improved or

showed at least equal values by optimization of the c{value with

respect to the prediction with LDA in comparison to PPLS-DA

using cmax, for all simulated data and the experimental data sets.

Simulated data. Comparing the histograms of c{values

found by PPLS-DA using copt and PPLS-DA with cmax, the reason

for the lower PE can be traced back to the down-weighting of the

non-informative features for the simulated data (see Figure S2 and

Figure 6). The loading weights for these features are near or equal

to zero. The influence of the features, which are not informative

for the discrimination (and can be interpreted as noise), is reduced,

because the impact on the calculation of the components is lower

for PPLS-DA using copt than for PPLS-DA with cmax. Values of c

near to one, leads to preference of features which show a high

correlation to the dummy response (in the simulation study these

are the differentially expressed genes). Changing the optimization

criterion from correlation towards prediction, leads also to a lower

average number of components for the simulated data.

Experimental data. For the experimental data, the c-values

determined by the canonical correlation (cmax) are larger than the

c{values detected by our proposed extension of PPLS-DA. Even

if our analyses of simulated data suggested lower PE values for

larger choices of c, for the Leukemia data set and the Lymphoma

data set also PPLS-DA using copt shows a significantly lower PE

than PPLS-DA using cmax. Note, that the true informative genes

for the experimental data are not known, and the proportion of

differentially expressed genes most likely is much larger than for

the simulated data, therefore the comparison of the results for

simulated and experimental data is not straightforward. Moreover

experimental data are usually noisier than simulated data. The

part of reality we have not been able to model in the simulated

data might be a sort of noise and data structure that we cannot

improve on, regardless our choice of c. If we could remove this

part of the noise from the real data, the relative improvements

might be just as good as with the simulated data.

Summarizing the findings for the simulated data, PPLS-DA

using copt shows significantly lower PEs than PPLS-DA with cmax.

For the experimental data, the results are also significantly lower

or equal for the extensions considering the PE.

Additionally we had considered three further versions to

determine the power parameter towards prediction. These

versions for example differ in the number of considered

components for the optimization of the power parameter and

also one version which optimizes an individual power parameter

for each component was studied. The results are similar to those of

the extension presented here (data not shown).

Comparison between PPLS-DA using cmax and PLS-DA
The development of PPLS-DA followed the development of

powered partial least squares as a natural extension of the power

methodology to handle discrete responses. Several factors moti-

vated this advancement to PLS-DA. First the application of

powers enables focusing on fewer explanatory variables in the

loading weights, smoothing over some of the noise in the

remaining variables. Second, focus can be shifted between the

correlation and standard deviation parts of the loading weights,

which is even more important for discrete responses. Finally, the

maximization criterion is moved from the between-group varia-

tion (B) to the product of the between group variation matrix and

the inverse of the within-group variation matrix (W{1B~T{1B).

This has the effect of moving from covariance maximization to a

correlation maximization. Instead of just searching for the space

having highest variation between the groups, we also minimize the

variation inside the groups, increasing the likeliness of good group

separation.

In our study, PPLS-DA with c~0:5 (applying no power

parameter) and PLS-DA always show equal PEs for the simulated

and the experimental data sets. Hence, for this case the different

Figure 6. Average loading weights of the first component for the simulated data (case 3). The simulated data of case 1 are constructed
such that the technical variance is of the same size as the biological variance. 10 differentially expressed genes with a mean class difference
D[½0:1,0:5� are simulated. Loading weights for the first component as calculated by PPLS-DA are shown with the power parameter cmax (A) and copt

(B) using 50 inner cross-validation steps and a stepsize of nc~0:1. The basis are the results of 100 choices of the outer training and outer test set.
doi:10.1371/journal.pone.0055267.g006
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optimization tasks show no great differences with respect to the

PEs of the outer test sets. Including the power parameter, the PE

of PPLS-DA using cmax is equal to the PE of PLS-DA for all

simulated data. Also, the number of components used is in average

lower or equal for PPLS-DA using cmax than for PLS-DA.

For two of the five experimental data sets (Leukemia and

Lymphoma), the PE of PPLS-DA using cmax is significantly higher

than the PE of PLS-DA. For these data sets, the proportions of

differentially expressed genes are large (24.4% and 40.5%) and the

genes are only weakly linear dependent (considering the condition

indexes). The PE of PPLS-DA using cmax is significantly lower

than for PLS-DA for the Prostate 2 data set, and the number of

components used is also in average lower. This data set contains

only a low proportion of 1.4% differentially expressed genes, and

the total number of genes is very high (42129). Moreover, for this

data set, the genes show a stronger linear dependency (rapid

increase of the condidion index) than for the Leukemia or the

Lymphoma data set.

Summarizing, a weak increase of kj ,j~1 . . . ,5 indicates no

improvement for the PE when using PPLS-DA with cmax instead

of PLS-DA. Concerning percentage of DEGs, the PE of PPLS-DA

using cmax is equal to the PE of PLS-DA only for a small

percentage of DEGs (Breast Cancer data and case 3 of the

simulated data). For a weak increase of kj ,j~1 . . . ,5 and high

percentage of DEGs, the PE for PPLS-DA using cmax is even

larger than for PLS-DA (Leukemia and Lymphoma data sets).

A rapid increase of kj ,j~1 . . . ,5 and a large proportion of

DEGs, using cmax instead of PLS-DA does not improve the PE

(Prostate 1). On the contrary, for a rapid increase of kj and the

case of small percentage of DEGs, we can improve the PE,

employing PPLS-DA using cmax instead of PLS-DA (Prostate 2).

Comparison between PLS-DA and PPLS-DA using copt

For the simulated data, PLS-DA shows equal PE if compared to

PPLS-DA using cmax or c~0:5. The PE of PPLS-DA using copt is

significantly lower than the PE of PLS-DA. For the experimental

data, for four of the five data sets (Leukemia, Lymphoma, Breast

Cancer and Prostate 1), the PEs of PLS-DA and PPLS-DA using

copt show no significant differences. For the Prostate 2 data set, the

PE of PPLS-DA using copt is clearly lower than for PLS-DA.

We conclude first, equal PEs between PLS-DA and PPLS-DA

using copt are caused by a weak between-feature dependency,

independent of the proportion of DEGs. Second, a data set with

strong collinearity between the features and a low number of

DEGs, in contrary shows a clearly lower PE for PPLS-DA using

copt than for PLS-DA.

Comparison between PPLS-DA using c~0:5 and PLS-DA
The PEs for PLS-DA and PPLS-DA using c~0:5 are non-

distinguishable for all simulated and all experimental data sets

investigated. Maximization of the covariance or maximization of

the correlation without the power parameter, results in equal PEs

of the outer test set.

Comparison between PPLS-DA using copt and t-LDA and
SVM

The more classic and widely available classification methods t-

LDA and SVM were also run and compared to PPLS-DA using

copt on all simulated and experimental data sets. For the simulated

data, t-LDA performs indistinguishable well as PPLS-DA using

copt. For the experimental datasets, SVM draws level with our

proposed approach except for the case of Prostate 2. In this

comparison, PPLS-DA using copt shows a comparatively stable

well performance. There may, however, exist further statistical

learning methods which outperform the methods presented in this

study. t-LDA and SVM should serve to demonstrate comparability

of PLS-related methods to other commonly chosen approaches for

the classification problems. The focus of our study, however, was

on further developing PPLS-DA, a so-called multivariate method,

which has already been proven its large potential for classification

problems involving magnitude more features than samples as it is

the case in OMICs data sets.

Conclusions and Outlook
It is conceivable to use results of an initial PPLS-DA cross-

validation series, optimizing cmax, to try to judge if running the

extended version would be rewarding. Data sets with a high

proportion of differentially expressed genes and weak linear

dependency (like the Leukemia data set and the Lymphoma data

set) most probably show good prediction results for PLS-DA.

Here, we found no gain using PPLS-DA with powers (cmax or copt).

On the contrary, for a rapid increase of the condition index, a low

proportion of differentially expressed genes and a large total

number of genes, using PPLS-DA with cmax clearly improves the

prediction error compared to PLS-DA. In cases where PPLS-DA

using cmax gives no advantages over PLS-DA, using the extensions

of PPLS-DA (optimizing the power parameter) for prediction can

be advantageous. Starting to analyse the eigenvalue structure and

the number of differentially expressed genes, can possibly be useful

to decide which method to use. One aspect of future work is to

validate our conclusions by additional experimental data sets as

well as further simulations implementing a more complex

covariance structure.

Supporting Information

Figure S1 Mean PE of PPLS-DA for simulated data using copt

plotted against Ninner. The simulated data of case 3 are

constructed such that the technical variance is of the same size

as the biological variance. 10 differentially expressed genes with a

mean class difference D [ ½0:1,0:5� are simulated. For different

numbers of the cross-validation steps, the mean prediction error

Figure 7. Mean PE of PPLS-DA using cmax, copt and c~0:5, PLS-DA, t-LDA and SVM for the five cases of the experimental data sets.
doi:10.1371/journal.pone.0055267.g007

Table 3. The mean number of components used for the
experimental data sets.

PPLS-DA with PLS-DA

data set cmax copt c~0:5

Leukemia 2.6 2.8 2.3 2.0

Lymphoma 2.9 3.1 2.8 1.8

Breast cancer 2.4 2.3 2.4 2.7

Prostate 1 2.5 3.4 4.0 4.1

Prostate 2 2.9 3.7 4.3 4.2

doi:10.1371/journal.pone.0055267.t003
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(PE) and the corresponding 95% confidence intervals are shown

for PPLS-DA using copt for the determination of the power

parameter. Two stepsizes nc are considered for the fragmentation

of the interval [0,1], nc~0:05 (A) and nc~0:1 (B). The basis are

the results of 100 choices of the outer training and outer test set.

(TIFF)

Figure S2 Histograms of cmax and copt for the simulated data

(case 3). The simulated data of case 1 are constructed such that the

technical variance is of the same size as the biological variance. 10

differentially expressed genes with a mean class difference

D [ ½0:1,0:5� are simulated. Values of cmax detected by PPLS-DA

for the first component (A) and for all components (B). In panel (C)

the c-values are shown, detected for copt with Ninner~50 and

stepsize nc~0:1. The basis are the results of 100 choices of the

outer training set.

(TIFF)

Figure S3 Histograms of cmax and copt for the Leukemia data

set. Values of cmax detected by PPLS-DA for the first component

(A) and for all components (B). In panel (C) the c-values are shown,

detected for copt with Ninner~50 and step size nc~0:1. The basis

are the results of 100 choices of the outer training set.

(TIFF)

Figure S4 Histograms of cmax and copt for the Prostate 1 data

set. Values of cmax detected by PPLS-DA for the first component

(A) and for all components (B). In panel (C) the c-values are shown,

detected for copt with Ninner~50 and step size nc~0:1. The basis

are the results of 100 choices of the outer training set.

(TIFF)
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