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Abstract
A simple and robust formulation of the path-independent confinement method for the calculation
of free energies is presented. The simplified confinement method (SCM) does not require matrix
diagonalization or switching off the molecular force field, and has a simple convergence criterion.
The method can be readily implemented in molecular dynamics programs with minimal or no
code modifications. Because the confinement method is a special case of thermodynamic
integration, it is trivially parallel over the integration variable. The accuracy of the method is
demonstrated using a model diatomic molecule, for which exact results can be computed
analytically. The method is then applied to the alanine dipeptide in vacuum, and to the α-helix ↔
β-sheet transition in a sixteen-residue peptide modeled in implicit solvent. The SCM requires less
effort for the calculation of free energy differences than previous formulations because it does not
require computing normal modes. The SCM has a diminished advantage for determining absolute
free energy values, because it requires decreasing the MD integration step to obtain accurate
results. An approximate confinement procedure is introduced, which can be used to estimate
directly the configurational entropy difference between two macrostates, without the need for
additional computation of the difference in the free energy or enthalpy. The approximation has
similar convergence properties as the standard confinement method for the calculation of free
energies. The use of the approximation requires about five times less wall-clock simulation time
than that needed to compute enthalpy differences to similar precision from an MD trajectory. For
the biomolecular systems considered in this study, the errors in the entropy approximation are
under 10%. The approximation will therefore be most useful for cases in which the dominant
source of error is insufficient sampling in the estimation of enthalpies, as arises in simulations of
large biomolecules. Practical applications of the methods to proteins are currently limited to
implicit solvent simulations.
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1 Introduction
Quantitative understanding of biomolecular reactions requires knowledge of the relative free
energies corresponding to the states of the system under consideration.1 Complex
biomolecular systems such as proteins are often described by a rugged potential energy
surface, on which configurational transitions between local minima are rare events. For such
systems, direct calculations of conformational free energy differences from equilibrium
molecular dynamics simulations are impractical. Because conformational transitions
underlie many processes of biological significance (e.g. protein conformational changes in
response to the binding of a ligand) and are relevant for finding the most stable
configurations of a molecular system (e.g. structure refinement), algorithms to calculate
conformational free energy differences in an accessible time using computer simulations
continue to be the focus of intense research (see e.g. Ref. 2 for an introduction).

Path-based methods for conformational free energy calculation3–9 require the user to specify
a reaction coordinate and/or a physical transition path that connects different conformations.
For cases in which suitable reaction coordinates or transition paths are unknown, it is
important to be able to calculate free energy differences by a path-independent method.
Path-independent methods can also be used to provide estimates of the free energy to
validate other methods.10

In this study we focus on confinement analysis,11–13 a simple path-independent method that
is related to Einstein’s early work on crystals (see e.g. Ref. 14, Ch. 5) and later studies,15–17

in which internal motions were approximated as a superposition of harmonic oscillations.
When the harmonic approximation is accurate, it can also be used to compute the
entropy.18,19 An application is the approximate calculation of the entropy difference
between a folded and a denatured protein presented by Karplus et al. 20. More generally,
using molecular simulation tools, one can reversibly transform many types of biomolecules
in silico to “ideal” crystals, whose thermodynamic properties can be determined
analytically.15,16 Reference states other than independent harmonic oscillators (HOs) have
also been used21 with success. The HO state has the practical advantage that harmonic
restraints have been implemented in the majority of molecular dynamics (MD) programs, so
that the confinement approach generally does not require significant code modifications.

Frenkel and Ladd16 presented a method to compute the free energy of solids based on a
reversible transformation of the solid to a system of interacting HOs. The free energy of the
interacting HO system was then computed by Monte Carlo simulation. Tyka et al. 12

described a similar method to compute side-chain entropies given fixed configurations of the
protein backbone, an approach that is useful in protein structure prediction. Using reversible
application of harmonic positional restraints of increasing stiffness, protein side-chains were
transformed into weakly-interacting HOs, whose free energy (FE) was subsequently
computed by Normal Mode Analysis (NMA). A key insight made in Ref. 12 was that the FE
of transformation from the original state to the reference HO state could be computed
accurately using thermodynamic integration (TI) in logarithmic space, based on the
observation that the restraint force exhibits power-law behavior as the restraint stiffness is
increased.12 Cecchini et al. 13 extended the confinement analysis to a translation/rotation-
invariant formulation, which facilitates the convergence of the confinement procedure for
biopolymers without fixed atoms. The method of Ref. 13 also relies on NMA to compute the
reference FE, although principal component analysis (PCA) of the dynamics of the
restrained system could be used as well.13 If vibrational frequencies of the HO reference
state are obtained from NMA or PCA by matrix diagonalization (as in the above two
methods), the confinement analysis is inefficient for large systems (e.g. proteins composed
of 104 atoms or larger). Hensen et al. 22 and Park et al. 23 avoided this problem by gradually
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turning off the contribution from the classical molecular force field used in the confinement
procedure. This modification implies that the HO frequencies are known a priori (as evident
from the Methods below) and, therefore, expensive diagonalization is not required.
However, the requirement of turning off the force field makes the resulting method not
readily usable in standard MD codes.

We describe a simplified confinement method (SCM) that does not require performing
NMA, PCA, or turning off the molecular force field, and that is best suited for cases in
which accurate free energy differences, rather than absolute free energies are desired. Using
a test system for which the FE is known analytically (a homonuclear diatomic model), we
demonstrate the convergence of the method. Convergence criteria are presented for systems
in which the FE is unknown a priori.

Starting from the confinement formalism, we develop an approximation to compute directly
the entropy difference between two states by a modified confinement procedure. The
approximation requires simulating two replicas of the system interacting via a restraint
potential, and uses an estimate of the difference in the exponential averages of the potential
energy. In the simplest approximation, the exponential average is replaced by the
conventional average. With this choice, the error between the approximate and the true
entropy difference is found to be around 8% for two biomolecular systems. For large
systems, in which the use of a truncated cumulant expansion of the exponential average is
justified, the method can be used to compute the absolute entropy, but requires a precise
estimate of the variance of the potential energy.

The present confinement approach is described in Methods. The method is validated using a
model diatomic molecule for which the free energy can be obtained analytically.
Applications to the alanine dipeptide and a β-hairpin polypeptide are described in Results.
The utility and the limitations of the approach, as well as a comparison between SCM and
the previous approaches are presented in the Concluding Discussion.

2 Methods
2.1 Simplified confinement analysis

The essential idea of confinement analysis is to relate the free energy of a system of interest
with 3N degrees of freedom to the free energy of 3N harmonic oscillators (HOs), which is
known analytically. Given a single Cartesian configuration X0 of a system of N atoms (e.g.
the Cartesian coordinates of an xray crystal structure of a protein) that belongs to a
macrostate24 Ω (alternatively, wide microstate25 or conformational substate26) in the
canonical ensemble at a temperature T with partition function ZΩ, the free energy of Ω can
be written as

(1)

in which E0 = E(X0) is the potential energy at X0, GHOν = (3N/β) logβhν is the free energy

of 3N identical classical HOs with frequency ν,14  is the free energy of the HOs with
E0 as the energy at zero temperature, β = 1/(kBT), and kB and h are the Boltzmann and

Planck’s constants, respectively.  corresponds to the free energy change of
transforming (confining) the macrostate Ω to the HO state.11–13 This term can be readily
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evaluated by MD sampling as follows. For reasons that will become clear below, we choose
ν so large that the condition

(2)

is satisfied, in which |∇2E(X0)M−1| is largest eigenvalue of the mass-weighted Hessian
computed at X0.1 Such values of ν clearly exist for any X0 that can be used to start a MD
calculation (a reasonable, though not unique choice is an energy-minimized structure13). A
practical criterion for choosing ν is discussed below. With ν as in Eq. (2), the partition

function for the  state can be written as

(3)

in which mi are the particle masses, xi are coordinate triplets, ||·|| is the Euclidean norm, and
C contains the integral over the particle momenta (P) and Planck’s constant. The second
equality in Eq. (3)) follows from Laplace’s saddle point method for the evaluation of
exponential integrals, 27 or from the representation of the Dirac delta function as the limit (ν
→ ∞) of a sequence of Gaussians. Heuristically, for a very large ν, the quadratic terms
restrict the domain X for which the integrand is non-negligible to an infinitesimal
neighborhood of X0, so that E(X) tends to E0. Defining the Hamiltonian

, which for λ = 0 and λ = 1

corresponds to the Ω and the  states, respectively,  can be computed using
thermodynamic integration (TI)28

(4)

in which ℳ is the total mass of the system, and ρm(X, X0) is the mass-weighted root-mean-
square (RMS) distance between the coordinates X and X0. Because the reference HOs are

non-interacting,  for any Ω and ν as in Eq. (2), and the λ-averages in Eq. (4)
generally converge rapidly.12,13 Combining Eqs. (4) and (1) we obtain the expression for the
free energy of the macrostate Ω

(5)

(A similar expression was also given by Frenkel and Ladd16.) The reference HO frequency
ν may be estimated using a priori knowledge of the system, e.g. the highest bond vibration

1The energy function E is assumed to be continuous.
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frequency obtained from the force field, or the high-frequency portion of the IR spectrum of
alkanes (≃3000 cm−1 or ≃90ps−1). Although this estimate turns out to be reasonable in the
examples below, physical insight may not be sufficient for all systems. Generally, ν can be
estimated ‘on-the-fly’ using Eq. (5) as follows. With the change of the integration variable ζ
= λν2, Eq. (5) becomes

(6)

where Hζ (X; ζ) = Hλ (X; ζ/ν2). Given a sufficiently large ν* according to Eq. (2), for any
ν >ν*, ∂GΩ/∂ (ν2) = (1/2ν)∂GΩ/∂ν ≃ 0. Differentiating Eq. (6) and rearranging gives the
relation

(7)

To make use of the above convergence criterion, simulations are carried out according to Hζ
(ν2), starting with ν = 0 (which corresponds to regular MD). Additional simulations are
performed with progressively larger values of ν until Eq. (7) holds. GΩ is then computed
from Eq. (5). Equations (5) and (6) are general, and will hold for any system, provided that
the condition in Eq. (2) is satisfied. Since the Hamiltonian Hζ (or Hλ) involves simple
harmonic positional restraints with respect to a fixed structure X0, the expectations in Eq. (6)
are easily computed in standard MD programs. However, under certain circumstances, the
expectation values will converge very slowly. In the case of pairwise-additive force fields,
such as those currently employed in MD simulations of proteins, the system is invariant with
respect to rigid-body motions. A naïve application of Eq. (5) would correctly result in

infinite  for λ = 0, since the simulated system can translate freely in any

direction. For λ > 0, convergence of  will be slow because of the mixing of the

contributions to  from the translational, rotational, and non-rigid-body motions.
To remedy this problem, we employ a modified HO reference state, which is invariant with
respect to rigid body motions.13 In this case, the reference state includes N three-
dimensional HO located at X0, as well as at all possible rotations and translations of X0.

This construction implies that the RMS distance  now measures the distance
between X and a mass-weighted best-fit alignment of X0 onto X,29–31 which is also
generally available in standard MD codes.32–34 The rotational invariance of the reference
state implies that the total number of DOF is 3N less five or six rigid-body DOF, and the
free energy GΩ now excludes contributions from translation and rotation (which can be
included separately if desired14). More generally, if the number of DOF in the reference
system is reduced by the use of other constraints, such as SHAKE,35 Eqs. (5)–(7) are
modified to reflect the total number of unconstrained DOF. Numerical tests of Eqs. (5)–(7)
are presented in Results.

2.2 Calculation of entropy differences
Equation (5) can be used as a starting point for deriving expressions for the entropy
difference of two conformations of a molecule from confinement simulations. The simplest
approach to compute the entropy difference using Eq. (5) is to obtain also an estimate of the
enthalpy difference between the two conformations, which can be computed from unbiased
MD simulations. However, because enthalpy estimates obtained by the ‘brute force’ method
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usually converge slowly (see Refs. 36–38, and also Tab. 4 in Results), it is useful to seek
methods that avoid explicit enthalpy computation.

Since the only condition on X0 in Eq. (5) is that X0 ∈ Ω, a possible approach is to
Boltzmann-average Eq. (5) over the macrostate to obtain

(8)

where  represents a Boltzmann average over Ω, and Ē is the average potential energy of
the macrostate. 2 Adding and subtracting the average kinetic energy K = 3N/(2β), and using
U for the total energy E + K, Eq. (8) becomes

(9)

The last two terms on the right hand side represent the entropy (−TSΩ). Equation (9)
quantifies the intuitive relationship between RMS fluctuations observed in an MD
simulation and the system entropy: a high value of the RMS distance between e.g. an xray

structure and simulation structures (i.e. ) is likely to correlate with a larger

value for the entropy. To obtain the actual entropy (i) the integrand  in Eq. (9) is
averaged over all possible reference configurations X0 ∈ Ω, and (ii) one must include the
reversible work of confining the system to a small neighborhood of each structure in X0. We
wish to construct dynamics according to a Hamiltonian that combines the averaging

operations  and 〈·〉 of Eq. (9) into a single operation. Being able to do so would allow one
to perform only one MD simulation for each λ to obtain SΩ via Eq. (9). A possible choice
for such a Hamiltonian (that is also relatively easy to define in standard MD programs) is

(10)

Evidently,  represents two identical systems (specified by X and X0) that interact

via λ-dependent harmonic restraint potentials. Unfortunately, the averages  and 
are not the same; a straightforward derivation (see the Appendix) shows that, in the limit ν
→ ∞ (which is implied by the use of Eq. (5)),

(11)

which gives the following expression for the entropy

2In the numerical cases considered here we assume the pressure-volume work term is zero, and therefore do not make a distinction
between the enthalpy and the average energy of the system.
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(12)

For practical purposes, the formal requirement that ν → ∞, can be enforced by choosing ν
sufficiently large, e.g. so that the convergence criterion of Eq. (7) holds, as was done for Eq.

(5) (note that in this case the expectation is computed with respect to ). A numerical test

of Eq. (12) is shown in Fig. 1b. The utility of the dynamics based on  for
evaluating the entropy therefore depends on the magnitude of the last term in Eq. (12), and
on the accuracy with which it can be evaluated. Since the direct evaluation of exponential
averages is known to suffer from poor convergence,39,40 we approximate the last term in Eq.
(12) using the cumulant expansion:

(13)

with the higher order terms omitted. For progressively large biomolecules, the distribution
of the energy approaches a Gaussian, in view of the central limit theorem, as noted before41

(see also Fig. 4 in Results). In the Supporting Information, we apply the Lilliefors-
Kolmogorov-Smirnov (LKS) test42 to the distributions of the potential energy corresponding
to two larger proteins. For a globular protein with ~12K atoms (Myosin VI), the LKS test
cannot distinguish between the sampled energy histogram and a Gaussian. In the case of a
Gaussian distribution, only the first term of the expansion in Eq. (13) is nonzero,43 and the
following expression for the entropy of the macrostate becomes exact

(14)

in which we have defined σΩ(E) as the standard deviation of the internal energy distribution
computed over the macrostate Ω. For systems in which the distribution of the energy
deviates from a Gaussian, Eq. (14) will not give an accurate approximation to the entropy.
We found that it still gives a good estimate of the entropy difference between the c7eq and
c7ax conformations of the alanine dipeptide (see Results), despite the fact that the
corresponding potential energy histograms are positively skewed (see Fig. 4). Equation 14
provides an interesting particular decomposition of the entropy in terms of the heat capacity
(see below), confinement work, and a (HO) correction that depends only on the number of
particles and the temperature. It does not, per se, offer an immediate computational
advantage over the standard confinement procedure in Eq. (5), which involves Hλ (X;λ),
since it requires calculating σ(E) (rather than Ē) to obtain the entropy.

To make Eq. (14) more useful for computations of entropy differences between
conformational macrostates Ω1 and Ω2 of a molecule, we make the approximation that σΩ1

(E) ≃ σΩ2 (E). In view of the relationship between the canonical heat capacity of the system

and fluctuations in the total energy, , this approximation amounts to
assuming that the different macrostates of a large system have equal heat capacities at
temperature T. The approximation is tested on two conformational states of the alanine
dipeptide in Results. For this simple system, the difference in the last term of Eq. (14),

, is found to be ≃ 0.1 kcal/mol, relative to the mean absolute value of ≃4.75 kcal/
mol (see Tab. 3). In some cases, such as those involving protein-protein association, the
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energy fluctuations σ(E) will differ significantly for different states,44 and the
approximation is inaccurate. The assumption of equal heat capacities results in the following
expression for the entropy difference

(15)

If the energy distributions cannot be represented by Gaussians (see e.g. Fig. 4b), Eq. (15)
can be obtained by approximating the exponential average of the potential energy by a
standard average, up to a system-dependent constant. An alternative derivation of Eq. (15)
that does not explicitly involve the exponential average is provided in the Appendix.

Equation 15 is applied to transitions of the alanine dipeptide and of the β-hairpin (see
Results). It is found that the use of Eq. (15) for these systems results in errors less than 10%.
The efficiency of the direct entropy confinement approach is compared to that of the
standard free-energy confinement method in Concluding discussion.

The Hamiltonians  in Eq. (15) correspond to  with additional restraint terms to
ensure that X, X0 remain within Ωi during MD simulations. For cases in which the mean
transition time between macrostates Ωi is much larger than the computationally affordable
sampling time,26 no such additional restraints will be necessary (see Results). Since most
conformational transitions in large biomolecules occur on timescales that are far beyond
those accessible to MD simulation (milli- vs. nano-seconds), restraint terms will usually not
be required to confine the system to a given macrostate. However, restraint terms can also be
added to limit the volume of a macrostate to improve convergence of the expectations in
Eqs. (5) and (15). A potential problem with such restraints is that the resulting ‘restrained’
macrostates exclude important configurations that would otherwise contribute the the free
energy. The dependence of the free energies on the definition of macrostate restraints is
discussed further in Ref. 13

 (Eq. (10)) can be defined easily and without any codemodifications in the
programCHARMM,32 which we use for calculations, as follows. First, the system topology
and structure are duplicated to yield two identical systems (i.e. X and X0). Nonbonded
interactions between the two systems are then switched off using CHARMM’s BLOCK
module. The λ-dependent part of the Hamiltonian can be added in the form of best-fit
positional restraints. An alternative way of decoupling the systems X and X0 is to specify a
nonbonded exclusion list in the structure file, which should allow the use of other
CHARMM-compatible MD programs, such as NAMD.33

To carry out the TI in Eqs. (6) and (15), we use linear interpolation in logarithmic
space.12,13 For a function x(α) evaluated at the discrete points {a = α1, α2, … αM+1 = b},

(16)

and the integral is evaluated as
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(17)

Uncertainty is propagated according to σ(Ii) = |∂Ii/∂xi| × σ[xi] + |∂Ii/∂xi+1| × σ[xi+1]. The
accuracy of the above integration scheme was tested on a system of ideal gas particles by
Tyka et al. 45, who found that the transformation to double-logarithmic space produced
integration errors of <1%. In contrast, the errors obtained with the trapezoidal rule in linear
space were 6%–9%.45 To determine whether the use of a higher-order interpolant would
significantly change the free energy values reported in this study, we computed the integrals
in Eqs. (5) and (15) for the alanine dipeptide transition described in Results using fourth
order spline interpolation in logarithmic space. The difference from the values computed
using the linear interpolation above were slightly less than 1%, which is smaller than the
uncertainty due to limited sampling.

3 Results
3.1 Validation of methodology

In this subsection, we compute the classical free energy and entropy of a diatomic molecule
using SCM, and compare them with the corresponding analytical result. The chosen
molecule most closely corresponds to ethane represented using the polar hydrogen force
field,46 although the focus of the analysis is on the validation of the methods and not on the
accuracy of the representation. The force field consists of a single harmonic bond potential
U(r(X)) = Kb(r−r0)2/2 with Kb = 450 kcal/mol/Å2 and r0 = 1.54Å. The mass of each
extended carbon atom is 15.035 a.m.u., so that the system corresponds to a single HO with
frequency ν ≃ 25.188ps−1 (840.18cm−1).

To compute the free energy using Eq. (6), MD simulations were preformed using  (see
Methods) with frequencies νi listed in Tab. 1. The integration step was set to 0.1 fs and all
simulations were 10ns in duration (the effect of the integration step size is discussed below).
To maintain the temperature at 300K, a Langevin thermostat was used,47 with the friction
coefficient (γ) of 10ps−1. X0 corresponds to an equilibrium geometry with r(X0) = r0.

To show the convergence of Eqs. (5) and (12), we plot the absolute error in the free energy
(G) and entropy (TS) in Fig. 1. The effect of resolution in the numerical integration is
illustrated by using every other frequency value in Tab. 1 for the TI in Fig. 1a, and by
doubling the resolution in Fig. 1b.

For ν ≲ 100ps−1, the error in G and TS decreases as the frequency is increased, as expected
(see the discussion of Eqs. (3) and (11) in Methods). The smallest errors computed from
Eqs. (5) and (12) are 6.8×10−4 and 5.3×10−4, respectively (units of kcal/mol). The error
cannot be made smaller by using higher frequencies because the simulation step (0.1fs) is
too large to integrate the dynamical equations accurately. Instead, as the frequency is
increased beyond ≃ 100ps−1, the error curves exhibit small random oscillations. Assuming
that accurate integration of the equations of motion using the second order Brünger-Brooks-
Karplus (BBK) integrator47 (in CHARMM) requires about 100 discrete steps per period, the
largest oscillation that can be integrated at 0.1fs is ≃10fs, which corresponds to ν =100ps−1,
in rough correspondence with the results in Fig. 1. Because in most all-atom biomolecular
simulations the integration step is ≃1 fs, computing absolute free energy values from Eq. (5)
with high accuracy requires reducing the integration step by at least an order of magnitude.
This requirement is clearly undesirable, as it would require increasing the simulation time to
maintain uniform sampling. In principle, one could avoid the need to reduce the timestep
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below 1fs by choosing as a reference state a harmonic oscillator system with a lower
frequency. For such a frequency (ν−) Eq. (3) does not hold, and the confined system
corresponds to a system of interacting harmonic oscillators, because the effects of the force
field are non-negligible. In that case, the free energy expression Eq. (5) would require a
correction corresponding to the transformation of the interacting HO system into the
noninteracting HO system (possibly of the same frequency ν−), which can be done with
Monte-Carlo or MD sampling.16,22 We show in the next subsection that if the free energy
differences, rather than the absolute values, are desired, the need to compute the corrections
does not arise, due to cancellations in systematic errors, as has been suggested previously.13

This feature of SCM makes it particularly useful in the calculation of free energy and
entropy differences in classical MD simulations, since, for biomolecules at room
temperature, quantum corrections to the free energy and entropy differences tend to be
small, which is not the case for the corresponding absolute values. For example, the use of
the present classical approach yields negative values for the absolute entropies (see below).

3.2 Calculation of Free Energy and Entropy Differences
Alanine dipeptide—The alanine dipeptide (AD) in vacuum is one of the simplest models
for understanding the conformational space of the protein backbone,48 and remains a
standard model system for testing free energy computation methods. We use the SCM to
compute the FE and entropy differences between the c7eq and c7ax conformations of AD
and compare with a previously published result.13 We use the polar hydrogen force field in
CHARMM46 to represent AD, and perform MD calculations at 300K using the Langevin
thermostat with the friction γ = 1ps−1. The integration step ranges from 0.025fs to 1fs, as
described below. The simulation time is 20ns. The frequencies used in the confinement
simulations are computed in AKMA units according to the formula νi = 0.001×1.9i, i = {1,2,
…,17}. This prescription is very similar to the one used for the diatomic molecule test case
(see Tab. 1) that corresponds to the lower-resolution case in Fig. 1a.

The adiabatic energy landscape of AD in vacuum in the (φ, ψ) dihedral variables is shown
in Fig. 2. The two lowest-energy conformations of AD (c7eq and c7ax) correspond to the
backbone dihedral coordinates (φ, ψ) = (−77,87) and (60,−70) in degrees (°). Following
Cecchini et al. 13, we use a simple and somewhat arbitrary criterion to subdivide the
conformational space into two states: Ωc7ax = {X ∈ ℝ3N: 130° ≥ φ (X) ≥ 0°}, and Ωc7eq =
ℝ3N\Ωc7ax. Because the macrostates Ωc7eq and Ωc7ax are separated by a relatively low energy
barrier (≃7kcal/mol in Fig. 2), spontaneous transitions between them will occur for low
values of the λ (or ζ) parameter in the Hamiltonian. To restrictMD sampling to one of the
states, we employ ‘flat-bottom’ dihedral restraint potentials: 49 U(X) = Kφ × max(0, |φ(X) −
φ0| − Δφ)2/2 with Kφ = 10 kcal/mol/rad2×(π/180 [rad/°])2, and φ0 = 65° and φ0 = −115° for
Ωc7ax and Ωc7eq, respectively, with the corresponding widths Δφ = 65° and Δφ = 115°. (In
the equation for U(X), the range of the dihedral angle difference is taken to be (−π … π]).
In the direct entropy confinement simulations, identical restraint potentials are added to each
system. The results of the confinement calculations discussed below are summarized in Tab.
2. Unlike the previous case of the diatomic molecule, the free energies of the AD states
Ωc7ax and Ωc7eq are not obtainable analytically. As discussed in Methods, Eq. (7) can be
used to check convergence of the simulation. Figure 3a shows the two terms in Eq. (7) for
Ωc7ax (the results for Ωc7eq are omitted, as they are similar), demonstrating convergence as ν
→ ∞. In analogy with the results in the previous section, the use of higher frequencies in
the Hamiltonian requires decreasing the integration step: Δt < 1fs for ν ≳ 50ps−1 and Δt <
0.1fs for ν ≳ 500ps−1. If the integration step is too large for a given frequency, the value of

 overshoots the asymptotic limit. This phenomenon is expected, because the
reference HO system becomes progressively less stable as ν increases for a fixed Δt,
resulting in increased oscillations. This observation suggests that, heuristically, the most
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accurate estimate of G for a given Δt corresponds to the largest frequency for which the left-
hand side of Eq. (7) is smaller than the right-hand side. Figure 3b shows free energy GΩc7ax
computed using Δt = 1.0fs, 0.1fs and 0.025fs. In accord with Fig. 3a, GΩc7ax is converged
for ν ≥ 200ps−1, which requires the integration step Δt ≃ 0.1fs.

In Fig. 3c we plot the free energy difference ΔG = GΩc7eq − GΩc7ax as a function of
reference HO frequency. The most interesting feature of Fig. 3c is that ΔG is converged for
ν ≃86ps−1, even though the absolute free energy G (shown in Fig. 3b) is not converged (by
≃2 kcal/mol). This frequency is sufficiently low that stable MD can be achieved with Δt =
1fs, without the need to reduce the integration step. The present estimate of ΔG is
−2.90±0.05 kcal/mol, in agreement with the previous result of −2.90±0.02 kcal/mol.13

For comparison, we also computed the free energies GΩc7eq and GΩc7ax using a confinement
procedure that includes switching off the force field (annihilation).22,23 The computational
effort required to obtain absolute free energies in this procedure is similar to that of SCM,
but is significantly greater than that of SCM if only free energy differences are desired (see
Concluding Discussion). The corresponding free energy values are included in Tab. 2, and
the technical details of the simulations are provided in the Supporting Information.

The average internal energies of the macrostates, ĒΩc7ax and ĒΩc7eq, were computed from
200ns of unbiased MD simulation of AD in each macrostate (flat-bottom dihedral restraints
were used to restrict sampling to a given state). The long simulation times were required to
obtain standard errors of ≃0.02 kcal/mol (see Tab. 2). Entropies were computed using TSΩi
= ĒΩi+K − GΩc7eq (with K = [3N − 6]/[2β]), giving the values TSΩc7eq = −0.76±0.07 and
TSΩc7ax = −1.96±0.04 (units of kcal/mol). These values are to be compared with the
vibrational entropies computed from Normal Mode Analysis (NMA)50 using the classical

HO formula, which are  and . (We recall that classical
entropies, i.e., those computed from continuous distributions, need not be positive because
they are not invariant under variable transformations.51,52) The agreement for Ωc7ax suggests
that this macrostate has an approximately harmonic energy landscape. For Ωc7eq, the entropy
estimate from NMA underpredicts the confinement result by ≃0.67 kcal/mol, indicating the
presence of anharmonicities in the macrostate. This difference is evident in a qualitative
sense from the contours corresponding to Ωc7eq and Ωc7ax in Fig. 2.

The entropy difference between the two states obtained from confinement analysis TΔS =
TSΩc7eq − TSΩc7ax is 1.20±0.06 kcal/mol. We use this estimate, rather than the estimate
obtained from confinement method with annihilation, because of the smaller uncertainty in
the free energy difference (using the latter estimate would give an entropy difference of
1.15±0.08 kcal/mol). For the purpose of assessing the accuracy of approximation Eq. (15),
in the following we consider this to be an unbiased estimate. The expectations in Eq. (12)
were computed as described in Methods. The frequencies were specified as before (νi =

0.001×1.9i, i = {1,2, …,16}, ν0 = 0), with . The direct entropy simulations were
integrated for 20ns using a time step of 1 fs, and Langevin friction of 1ps−1. The direct
entropy difference estimate of Eq. (15) is plotted as a function of the reference HO
frequency in Fig. 3d. The estimates for ν14 ≃163ps−1 and ν15 ≃310ps−1 are TΔS =
1.105±0.05 and 1.115±0.06, respectively. Because the uncertainties in the unbiased entropy
difference and in the entropy difference approximation are very similar, the simulation times
associated with the two values can be compared directly to obtain a measure of the relative
numerical efficiencies of the approaches. The exact entropy estimate involves explicit
computation of the enthalpy difference, which required 200ns of MD simulation. On the
other hand, the entropy approximation requires doubling the number of atoms, since the
simulation system is composed of two identical replicas. The wall clock time associated
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with the entropy approximation is therefore approximately five times lower than that for the
exact entropy evaluation (see also Concluding discussion). To reduce the uncertainty in the
approximate entropy difference, we extended the entropy confinement simulations to 60ns
per window (only for windows 1–14), which resulted in the estimate TΔS = 1.10±0.03. The
difference in the mean values between the unbiased estimate and the approximate result is
≃8%. (We note that, even if the contribution to the uncertainties from the confinement
integration were zero, the uncertainty in the unbiased TΔS would still be ≃0.03kcal/mol,
due to the uncertainty in the average energies) The greater increase in the uncertainty with
increasing frequency in Fig. 3d (compared with Fig. 3c) is caused by the lowering of the
effective sampling temperature at high restraint energies, as discussed in the Appendix.

The above entropy values can be used with the time series of the internal energy computed
from MD simulations to test the accuracy of the cumulant expansion (Eq. (13)). Figure 4b
shows the normalized histogram of the internal energy obtained from a 200ns unbiased MD
trajectory of AD in the Ωc7eq state (the histogram for the Ωc7ax is omitted, as it is similar).
Qualitatively, the histogram is similar to the Gaussian distribution with the same mean and
variance, even though the AD energy function involves only 12 atoms.46 (The behavior can
be contrasted with Fig. 4a, which shows the histogram for the diatomic molecule, discussed
in the previous subsection.) To make a quantitative comparison, we evaluate both sides of
Eq. (11) and compare to the cumulant expansion (Eq. (13)) to first order in β in Tab. 3. The
energy histogram in Fig. 4a is clearly skewed toward positive values, which, in view of Eq.
(13), suggests that truncating the cumulant expansion after the variance will overestimate the

quantity  (Eq. (11)). In Tab. 3 we compare three different evaluations of this
quantity. “Exact” values correspond to the left-hand side of Eq. (11), “direct” values are
computed by using directly the instantaneous internal energy values obtained from unbiased
MD in the exponential and arithmetic averages, and “cumulant” values correspond to
βσ2(E)/2 obtained from unbiased MD. The uncertainty in the absolute values is ≃0.05 kcal/
mol. Table 3 shows that the cumulant expansion overestimates the exact value by ≃2.5 kcal/
mol. A direct calculation of the exponential average results in a smaller overestimate of ≃0.6
kcal/mol. The difference between the values corresponding to Ωc7eq and Ωc7ax is much
smaller (≤0.08), and consistent with the entropy differences shown in Tab. 2. It is also
noteworthy that for this test case Eq. (15) provides a reasonable approximation to the
entropy difference even if the cumulant expansion of the exponential average is not very
accurate.

β-hairpin from protein G—Investigations of β-sheets and α-helices, which are
fundamental building blocks of protein structures, provide information about protein
thermodynamics and dynamics, and can be useful for understanding the initial steps in the
folding reaction.53–56 A 16-residue β-hairpin fragment of streptococcal protein G57 has been
used as a realistic test system for the application of enhanced sampling methods to
biomolecules.13,58,59 We apply SCM to calculate the free energy and entropy differences
between the β-sheet and α-helical conformations of this peptide. The difference between the
two folded conformations is larger than that investigated in previous studies.

Spontaneous transitions to the α form have been observed in previous MD simulations in
implicit solvent starting from the β form, and metastable states with significant helical
content have been found in explicit solvent simulations (see Ref. 60 for a review). Whether
the α-helical conformation of the β-hairpin peptide actually plays physical role is uncertain
because solution experiments have not found evidence for appreciable α-helical content.61

Also, different force-fields overpredict either the α-helical (e.g. CHARMM27,62 but see the
CHARMM36 force field63) or β-sheet (e.g. AMBER64) propensity in small peptides relative
to experimental studies.65,66 The primary focus of the present calculations is on the
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application of the confinement methodology to a realistic system, rather than on the
biological significance of the result. It is found in the present analysis that the β form is
more stable than the α form by ≃7 kcal/mol.

The β conformation was taken from the coordinates of protein G,57 and subjected to 2000
steps of ABNR minimization in CHARMM.67 The all atom force-field with the CMAP
correction62 was used to represent the polypeptide, and the updated FACTS (Generalized
Born) solvation model68 (from CHARMM version c37) was used to approximate the effects
of solvent in the minimization and in the subsequent dynamics simulations. The α-helical
conformation was generated from the default internal coordinate entries in CHARMM,62

with the backbone dihedral φ and ψ angles fixed at −57° and −47°, respectively. The system
was minimized for 2000 steps in the presence of harmonic restraints on the backbone φ and
ψ dihedrals (Kφ = 1000 kcal/mol/rad2). The minimized α and β structures were then
equilibrated at 300K in a 1ns MD simulation with harmonic restraints on the backbone atom
positions (KHARM = 10 kcal/mol/Å2) using the Langevin thermostat with γ = 1ps−1. An
additional equilibration for 30 ns is performed without restraints. The α and β
conformations after equilibration are shown in Fig. 5. The N-terminal turn of the α-helix
conformation unwinds (Fig. 5a), but the rest of the helix is stable for 30 ns of MD
simulation, indicating that, with the CHARMM parameters and the FACTS solvation model,
the α-helical conformation corresponds to a macrostate on this time scale.

The confinement calculations were performed using the same frequencies as described for
the alanine dipeptide. The integration step was 1 fs, and the duration of the simulations was
100ns for each frequency value, which corresponds to 210 hours on a Pentium Xeon X5650
2.67GHz CPU. The duration of the entropy confinement calculations was 20ns for each
frequency value, which was sufficient to obtain an error of 0.5 kcal/mol for the entropy
difference (see Tab. 4). Statistics of the internal energy were calculated from a 100ns
unrestrained equilibration MD simulation. The results discussed below are summarized in
Tab. 4. First, we note that the simulation time step of 1 fs is too large to achieve
convergence according to Eq. (7). In the case of AD, convergence required a time step of at
most 0.1 fs. For the polypeptide calculation, 10ns at 0.1fs per step would take ≃200 hours.
We therefore did not perform simulations at frequencies above 86ps−1 (which would require
the 0.1fs step). The absolute free energy and entropy values in Tab. 4 should be considered
approximate (the FE values are probably underestimated by ≃10%, in accordance with the
results of the AD simulations in Fig. 3b) with the expectation that their differences are
accurate, as described for AD.

The free energy difference between the α and β form is 6.7±0.4 kcal/mol in favor of the β
form. The α-helical form is disfavored enthalpically by 13.6 kcal/mol, but favored
entropically by 6.9 kcal/mol. The higher entropy of the α form is consistent with the
unwinding of the N-terminal helical turn (Fig. 5a), which fluctuates in the MD simulation.
Fluctuations are also observed in the C-terminal helical turn, but they are smaller, and do not
result in unwinding. The direct entropy difference formula (Eq. (15)) predicts a value of 7.4
kcal/mol, overestimating the standard confinement result by 0.5 kcal/mol (≃8%). For large
systems, the error of the entropy difference approximation can be difficult to obtain because
the reference entropy values are computed by subtracting the free energy from the enthalpy,
which is known to converge very slowly.36 In principle, if the distributions of the internal
energy of the two states are Gaussian, the cumulant expansion (Eq. (13)) can be truncated
beyond the variance, and the entropy confinement results can be corrected by the difference
in the variances (see Eq. (14)). Figure 4c shows that, visually, the energy histogram for the
α-helix is indistinguishable from a Gaussian (although it is distinguishable by the Lilliefors
Kolmogorov-Smirnov test;42,69 see Supporting Information). The standard deviations
computed from the time series are ≃12±1 kcal/mol, but the uncertainties are too high for the

Ovchinnikov et al. Page 13

J Phys Chem B. Author manuscript; available in PMC 2014 January 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



corrections to be useful for this case. The high uncertainty of the standard deviation estimate
is due to the slow convergence properties of direct enthalpy calculations,36 which was the
main motivation behind developing the confinement entropy approximation.

To quantify the effect of the unwinding of the α-helix N-terminus on the entropy difference,
we performed an additional entropy confinement simulation of the α-helical state, but with
added restraint potentials applied to the φ and ψ dihedral angles involving residues 1–5
(which correspond to residue numbers 41–45 in the PDB file57). The force constants in the
restraint potentials were estimated from equilibrium fluctuations of residues 6–12 in the
center of the α-helix by fitting to a Gaussian distribution according to kφ = 1/(βσ2). The
standard deviation of the dihedral angle fluctuations was σ ≃ 7° for both angles,
corresponding to kφ ≃40kcal/mol/rad2. The restraints were sufficient to maintain the α-
helical conformation of the N-terminus. The direct formula (Eq. (15)) predicts a reduced
entropy difference of 4.2 kcal/mol between the restrained α-helix and the β-sheet relative to
7.4 kcal/mol obtained using the unrestrained α-helix (see Tab. 4). The difference
corresponds to a decrease in the entropy of the restrained α-helix by 3.2 kcal/mol, relative to
the unrestrained α-helix. The entropy difference per residue, 3.2 kcal/mol/5 res. = 0.64 kcal/
mol/res. is considerably smaller than per-residue estimates of the entropy of protein
unfolding, which are in the range 1.2–1.8 kcal/mol.20,70 However, the N-terminus of the
unrestrained α-helical state (Fig. 5a) is probably not sufficiently disordered or fluctuating to
be considered unfolded, predominantly due to interactions with the rest of the α-helix, so the
estimate of 0.64 kcal/mol/res. is reasonable.

4 Concluding Discussion
We have described a simplified confinement method (SCM) that does not require matrix
diagonalization or switching off the molecular force field, and can be readily implemented
in standard MD software, in some cases without writing a single line of new code. Simple
convergence criteria are also presented and tested. The main difference between SCM and
the standard confinement methods used in Refs. 12,13,45 is that SCM (Eq. (5)) involves a
single reference frequency ν. Provided the frequency is sufficiently high, the
thermodynamic integral represents the work required to transform the original system into a
set of noninteracting HOs. The standard confinement methods12,13,45 transform a system
into a set of interacting HOs, which can be achieved with a lower frequency, but requires an
additional transformation to a noninteracting HO state, e.g. using Normal Mode
Analysis(NMA),12,13 or umbrella sampling.16 In addition, SCM has a simple convergence
criterion, which indicates whether the chosen frequency ν is sufficiently high. The present
confinement formulation is well suited for the calculation of free energy differences between
molecular conformations. The determination of such FE differences by classical MD
simulations is of great interest because the corresponding quantum corrections are small in
many applications (e.g. proteins at physiological temperature71).

SCM is less efficient for the calculation of absolute free energy values than the standard
method, because it requires the reference HO frequency to be high, and necessitates
decreasing the simulation time-step by an order of magnitude to reach convergence. If
absolute free energies are desired, SCM is expected to be more efficient than the standard
confinement for proteins with 104 atoms or more, for which a single NormalMode
calculation can take days, and requires several gigabytes of random-access memory. For
smaller systems, the standard confinement procedure of Refs.12,13 will be the faster method
for obtaining absolute free energies because a high reference HO frequency is not required,
and NMA takes between hours and minutes (the cost of diagonalization in NMA scales
cubically with the number of atoms N, and also depends on the basis set used to represent
the normal modes.50).
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To evaluate the efficiency and accuracy of the SCM relative to the confinement method with
force field annihilation,22,23 the free energies GΩc7eq and GΩc7ax for the alanine dipeptide
were computed with both methods. The values obtained with the two methods are
consistent, and the uncertainties are comparable (they are slightly smaller for the SCM, as
can be seen from Tab. 2). Obtaining the absolute free energies for each macrostate required
840 ns of total simulation time for the confinement method with annihilation, and 1080 ns
for the SCM. The major expense of the SCM was due to the calculations performed with the
reduced time step Δt = 0.1fs. Since uncertainty in the free energy dfference obtained by
SCM is slightly smaller than that from confinement with annihilation (0.05 kcal/mol vs. 0.07
kcal/mol, respectively), the efficiencies of the two methods appear to be comparable.
However, if only the free energy differences are desired, the high-frequency calculations in
the SCM are not required, and the corresponding computation cost drops to 560ns. The
SCM therefore appears to be more efficient for the calculation of free energy differences.
We also believe that the simplicity of implementation is an advantage of the SCM. In some
MD programs, switching off the force field will require modification of the integrator, of the
force calculation routines, and/or of the parameter or structure files (e.g. to scale down
atomic charges, or force constants for bond or angle terms). These steps require the user to
perform additional programming. Further details on the comparison are provided in the
Supporting Information.

We also expect that the SCM will be well-suited for computing the free energies of ligand-
protein binding, as well as those involved in protein-protein interaction. In such cases, the
unbound state would require one independent confinement simulation for each ligand or
protein molecule, and the bound state would require a single confinement simulation. The
free energy penalty due to the loss of translational freedom is related to the standard
concentration,72,73 and that due to the loss of rotational freedom by the ligand(s) can be
approximated by the rigid rotator expression involving the moments of inertia of the
ligands.14,74 In addition, if the ligand molecules have symmetry and can bind in n ways, the
orientational free energy penalty is reduced by log(n)/β.73 Such corrections to the free
energy difference can easily be added in a postprocessing step.

Starting from the expression for the confinement free energy, we derived an approximation
to the entropy difference between two states of a system that does not require computing
either the free energy or the enthalpy. The approximation underestimates the unbiased
entropy difference by ≃8% for the c7eq to c7ax transition in the alanine dipeptide (1.11
kcal/mol vs. 1.20 kcal/mol), and overestimates it by ≃7% for the helix-to-hairpin transition
in a 16-residue peptide (7.4 kcal/mol vs. 6.9 kcal/mol). Generally, the approximation is
expected to be most accurate for biomolecular conformational transitions that are not too
large, e.g., those that do not involve significant changes to the secondary structure, but
instead involve rearrangements of secondary structure elements such as α-helices and β-
sheets. Heuristically, for such transitions, the differences in the entropies of the macrostates
should be dominated by the differences in the anharmonicity of the microstates that
comprise the macrostate. These differences are captured by the confinement procedure of
Eq. (15) because the high restraint strengths of the reference state result in a lower
anharmonicity due to a decrease in the effective sampling temperature (see Appendix). In
contrast, for transitions which involve large secondary structure change, such as protein
denaturation studied by Karplus et al. 20, differences in the number of microstates
corresponding to the given macrostate can make a large contribution to the entropy
difference (e.g. a denatured state will have more microstates than a folded state). The β-
hairpin transition test case studied here belongs to the class of large transitions, as it involves
the breaking of all the hydrogen bonds and a complete change of secondary structure, which
may explain the ≃7% error in the entropy difference. The significance of the error will
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clearly depend on the contribution that the entropy difference makes to the overall free
energy difference for the particular problem under study.

The computational advantage of using Eq. (15) is that a separate calculation of the enthalpy
is not required, and that the thermodynamic averages in Eq. (15) converge as quickly as
those in Eq. (5) (albeit to an approximate result). Equation Eq. (15) is thus expected to be
useful for cases in which the dominant source of error is insufficient sampling in the
estimation of enthalpies, which can be true even for relatively small biomolecular systems
(see Tab. 4). For the alanine dipeptide, obtaining the enthalpy with similar accuracy as the
free energy required 200 ns of simulation, compared with 20 ns per replica for the free
energy calculation (see Results). Although the total confinement simulation time was
relatively large (2 macrostates × 20 ns × 14 replicas = 560 ns), simulations corresponding to
different values of the integration parameter λ are independent and were therefore run
simultaneously resulting in the same user time as that of a single 20ns simulation. Because
the entropy approximation (Eq. (15)) requires simulating two identical MD systems
concurrently, the computational cost associated with its use is approximately twice that of
the conventional confinement approach (Eq. (5)). For the β-hairpin, enthalpies were
calculated from 100 ns MD simulations. The standard error of the enthalpy difference was
about 21/2 larger than the standard error in Eq. (15), which was computed from 20 ns
restrained simulations. Therefore, about 200 ns of simulation would be needed to compute
the enthalpy difference with the same precision as the approximate entropy difference. Thus,
using a parallel computer for the calculation of the averages in Eqs. (5) and (15), the
estimation of the entropy difference via Eq. (15) is about five times faster than an exact
calculation via Eq. (5) (the difference is larger if the number of CPUs associated with the
duplicated system is also doubled). Since the main disadvantage of the exact approach
comes from the enthalpy calculation, any method that improves the convergence of the
enthalpy will improve the performance of the exact method. One possiblilty is to perform
several shorter unbiased MD calculations, starting from slightly different initial
configurations within the same macrostate, and/or to use different random seeds for the
thermostat (in the case that the thermostat is stochastic). The efficiency of such an approach
will vary with the specific system under study, because it depends on the rate of divergence
of trajectories started from similar configurations. In principle, the enthalpy could also be
sampled during the free energy confinement simulations, followed by a reweighting
procedure. However, only the very low-frequency windows of the confinement calculation
would be well-suited for this purpose, because in the higher-frequency windows the
sampling is effectively restricted to a small neighborhood of the reference structure.

The confinement method described here is ideally suited to the calculation of free energy
and entropy differences of biomolecules in implicit solvent. Applications to explicitly
solvated systems are more involved, for several reasons. First, the reference state for the
solvent is invariant with respect to pairwise exchanges of solvent molecules. This
degeneracy results in contributions to the free energy that depends on the number of solvent
molecules, and would require (grand-canonical) corrections if the numbers of solvent
molecules in different configurations are not the same. In addition, if the volumes of the
explicitly-solvated configurations are not equal, a comparison of corresponding free energy
values would require estimating the pressure-volume work difference between the different
reference states. Furthermore, for simulations in the canonical ensemble using periodic
boundary conditions with treatments of long-range electrostatics, any difference in the sizes
of the periodic cells is likely to introduce additional errors. Finally, from a technical
standpoint, the degeneracy of the reference state also introduces ambiguities into the
definition of restraint potentials at low restraint strengths.45 These challenges are the subject
of ongoing work.
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Refer to Web version on PubMed Central for supplementary material.
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5 Appendix
To verify Eq. (11), we first perform the integration of the second term using the definition of

 (in analogy with Eq. (4)):

(A1)

in which the constant C2 contains the integral over the momenta of the two systems and
Planck’s constant. In the limit ν → ∞, E(X0) → E(X) by the continuity of the force field,
and Eq. (A1) becomes

(A2)

Combining the last expression with Eq. (8) gives Eq. (11).

As noted in Methods, approximation Eq. (15) can be derived by an alternative argument.
First, we note that the exponential average in Eqs. (11) and (A2) can be written as a
difference of the free energies corresponding to the inverse temperatures β and 2β:

(A3)

(where the last term is the logarithm of the difference in the momentum integrals at the two
temperatures). Combining Eqs. (A3) and (A2) gives

(A4)

Making use of the thermodynamic identity ∂G/∂T = −S, we have

(A5)

where we have defined S* as the average entropy in the temperature window [T/2, T]. The
approximation in Eq. (15) follows by writing the difference in the above expression for the

two macrostates Ω2 and Ω1, and assuming . Furthermore, assuming that
Sβ = S* is equivalent to using a finite difference (FD) approximation in the identity ∂G/∂T =
−S with ΔT = T/2. Although, in principle, a smaller ΔT can be used in the FD estimate, the

uncertainty in the entropy contribution TS diverges for ΔT →0 as . In
view of the modest errors in the entropy approximation found in this study (less than 10%),
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the choice ΔT = T/2 apparently corresponds to a reasonable compromise between precision
and accuracy for the calculation of entropy differences.

It was noted in Results that the uncertainty in the entropy difference estimated from Eq. (15)
increases for very large frequencies. We show below that, as the frequency ν → ∞, the
effective sampling temperature is lowered by a factor of two, which decreases the
convergence rate of expectation values. (We recall that this limitation does not pose a
significant drawback for estimating entropy differences, which do not require frequencies
above ≃100ps−1.) For simplicity, we sketch the proof for the motion of one-dimensional
particles. The generalization to higher dimensions is straightforward. Using the Hamiltonian

, a Langevin thermostat with friction γ and temperature T, and defining k =
λ(2πν)2, the equations of motion are

(A6)

where ξ (t) and ξ0(t) are identically distributed white-noise stochastic processes with unit
variance and zero mean. Defining xa = (x+x0)/2 and averaging the above equations, we have

(A7)

where ξa(t) ≡ (ξ (t)+ξ0(t))/2 is a white noise process distributed identically to ξ (t), but with

variance 1/2. Normalizing ξa to unit variance, i.e. using , Eq. (A7) can be
written as

(A8)

Assuming that the force field is continuously differentiable, and letting k → ∞ implies that
x → x0, and that ∇xE(x) → ∇x0E(x0). In this limit, Eq. (A8) describes the motion of a single
unrestrained particle identical to x (with λ = 0) but moving in a thermal bath of temperature
T/2. Since both x and x0 tend to xa, this completes the argument.
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Figure 1.
(a) Absolute error |Gconf−Gexact| in the free energy of the diatomic molecule computed using
Eq. (6) and the exact analytical values below. M (13 and 26) corresponds to the number of
integration points. For M = 13, the frequencies correspond to νi, i = 1,3, …,25 in Tab. 1. (b)
Absolute error |TSconf −TSexact| in the entropy computed using Eq. (12). The exact
(classical) free energy, average energy, and entropy values at T = 300K, are G ≃0.83085, Ē
= 1/β = 0.59618, and TS = −0.23467, respectively (units of kcal/mol). For M = 48, the
frequencies are computed as in Tab. 1, but with Δ = 0.25 The oscillatory behavior of the
error for large frequencies is caused by using an integration step size that is too large (see
text).
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Figure 2.
Adiabatic energy surface in degrees for alanine dipeptide in vacuum calculated with the
polar hydrogen representation. The locations and the energies of the two significant minima
are: (φc7eq,ψc7eq) = (−77°,87°), Ec7eq = −43.30 kcal/mol; (φc7ax,ψc7ax) = (60°,−70°), Ec7ax =
−41.31 kcal/mol. The area between the dashed lines defines the macrostate Ωc7ax (see text).
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Figure 3.
Results of the confinement analysis for the alanine dipeptide (see text). a) Convergence
criterion of Eq. (7) for different integration steps; symbols denote the left-hand side, and the
horizontal dashed line denotes the constant right-hand side. b) Calculation of the absolute
free energy for macrostate Ωc7ax using different integration steps. c) Calculation of the free
energy difference using two integration steps. d) Direct approximation of the entropy
difference using Eq. (15) with an integration step of 1 fs.
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Figure 4.
Normalized histograms of the potential energy for (a) diatomic molecule, (b) alanine
dipeptide in the Ωc7eq state, (c) β-hairpin in the helical conformation. The solid lines are
Gaussian probability densities with the mean and variance computed from the corresponding
histograms. The dashed line (a only) is the exact probability density, obtainable analytically
for the classical harmonic oscillator as (β/[πE])1/2 exp(−βE).
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Figure 5.
Equilibrated structures of the 16-residue peptide from protein G in (a) α-helical
conformation, (b) β-sheet conformation. Details of the equilibration are given in the text.
The N-terminal domain in panel a is at the bottom.
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Table 1

Frequencies used in confinement simulations (  in Eq. (5) or Eq. (12), and  in Eq. (6)). They are

computed in AKMA units (kcal/mol/a.m.u./Å2) used in CHARMM67 according to the formula νi =

0.001×1.9(i+5)Δ with Δ = 0.5. The conversion factor to inverse picoseconds is ≃20.45483. The frequencies are
equispaced in logarithmic space, consistently with the TI protocol.12

i νi(ps−1)×10−2

1 0.001402996671785

2 0.001933897452291

3 0.002665693676392

4 0.003674405159352

5 0.005064817985144

6 0.006981369802769

7 0.009623154171774

8 0.013264602625261

9 0.018283992926370

10 0.025202744987996

11 0.034739586560104

12 0.047885215477193

13 0.066005214464197

14 0.090981909406666

15 0.125409907481974

16 0.172865627872665

17 0.238278824215750

18 0.328444692958063

19 0.452729766009925

20 0.624044916620321

21 0.860186555418858

22 1.185685341578609

23 1.634354455295830

24 2.252802148999357

25 3.105273465062076

26 4.280324083098780
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Table 2

Free energy and entropy results for the alanine dipeptide in units of kcal/mol. The uncertainty corresponds to
the standard error of the mean. Entropies ere computed using TSΩi = ĒΩi+K-GΩi with K = [3N − 6]/[2β] = 15/

β.

Ωc7eq Ωc7ax ΔΩc7ax→Ωc7eq

G −24.11±0.04 −21.21±0.03 −2.90±0.05

G† −24.19±0.05 −21.34±0.045 −2.85±0.07

Ē −33.81±0.02 −32.12±0.02 −1.69±0.03

TS −0.76±0.05 −1.96±0.04 1.20±0.06

TS‡ −1.43 −1.98 0.55

TS§ 1.10±0.03

†
Computed by switching off the force field after system was restrained at ν = 12.5ps−1 (see text).

‡
 Computed from Normal Mode Analysis.

§
 Computed from the approximation in Eq. (15).
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Table 3

Comparison of the approximations to  for the alanine dipeptide (units of kcal/mol).

Ωc7eq Ωc7ax ΔΩc7ax→Ωc7eq

Exact 2.34 2.27 0.07

Direct 2.96 2.97 −0.01

Cumulant 4.80 4.72 0.08
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Table 4

Free energy and entropy results for the 16-residue peptide in units of kcal/mol. The reference HO frequency is
ν = 86ps−1.

α-helix β-sheet Δβ→α

G −75.9±0.3† −82.6±0.3† 6.7±0.4

Ē −332.6±0.5 −346.2±0.5 13.6±0.7

TS −37.6±0.6† −44.5±0.6† 6.9±0.8

TS‡ 7.4±0.5

TS§ 4.2±0.6

†
 The values for the absolute free energy and entropy are approximate because the convergence requirement (Eq. (7)) cannot be satisfied with the 1

fs time step (see text).

‡
 Computed with Eq. (15). The differences between the corresponding are accurate because of error cancellations (see text, Fig. 3c, and Ref. 13).

§
 Computed with Eq. (15) using the simulation of the α-helix in the presence of backbone dihedral restraints in the N-terminal domain (see text).
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