Skip to main content
. 2013 Jan;26(4):132–145. doi: 10.1016/j.fbr.2012.07.002

Table 1.

Summary of the current knowledge regarding the mechanisms of antifungal action and additional biological functions of selected antifungal defensins and defensin-like AMPs from fungi, plants, insects and mammals.

AMP producing organism Interaction molecules of the fungal envelope Cellular uptake Mechanism of action and signalling pathways involved in fungi–AMP interaction Biological functions beyond antimicrobial activity References
Fungi PAF Penicillium chrysogenum Q176 n.d. + Plasma membrane hyperpolarization, K+ efflux, Ca2+ influx, perturbation of the intracellular Ca2+ homeostasis, cAMP/PkA signalling, generation of intracellular ROS, apoptosis Signalling, supports asexual development (Hegedus et al., 2011a; Leiter et al., 2005; Binder et al., 2010a; Binder et al., 2010b; Kaiserer et al., 2003; Oberparleiter et al., 2003)
AFP Aspergillus giganteus lfGB0203 n.d. ± Plasma membrane permeabilization, activation of the cell wall integrity pathway n.d. (Hagen et al., 2007; Ouedraogo et al., 2011; Theis et al., 2005, 2003)
AFPNN5353Aspergillus giganteus A3274 n.d. + Ca2+ influx, perturbation of the intracellular Ca2+ homeostasis, MAPK signalling, activation of the cell wall integrity pathway n.d. (Binder et al., 2011)
Anisin1 Aspergillus nidulans n.d. n.d. n.d. Support of asexual development, oxidative stress signalling (Eigentler et al., 2012)
Plants DmAMP1 Dahlia merckii Sphingolipid M(IP)2C n.d. K+ efflux, Ca2+ uptake, alkalinization of the medium, membrane potential changes, membrane permeabilization n.d. (Thevissen et al., 1996, 2000, 2005, 2003b, 1999)
RsAFP2 Raphanus sativus Sphingolipid GlcCer n.d. K+ efflux, Ca2+ uptake, alkalinization of the medium, membrane potential changes, plasma membrane permeabilization, induction of ROS accumulation, MAPK signalling Plant root growth inhibition (Allen et al., 2008; Thevissen et al., 1996, 2004, 1999; Aerts et al., 2007; Ramamoorthy et al., 2007b)
HsAFP1 Heuchera sanguinea Interaction with plasma and microsomal membranes n.d. Plasma membrane permeabilization, ROS accumulation, apoptosis, MAPK signalling n.d. (Aerts et al., 2011; Thevissen et al., 1997, 1999)
MsDef1 Medicago sativa Sphingolipid GlcCer n.d. MAPK signalling Mammalian Ca2+ channel blocker, plant root growth inhibition (Allen et al., 2008; Spelbrink et al., 2004; Ramamoorthy et al., 2007a,b)
MtDef2 Medicago truncatula n.d. n.d. MAPK signalling Plant root growth inhibition (Allen et al., 2008; Ramamoorthy et al., 2007b)
Psd1 Pisum sativum n.d. + Interaction with cyclin F and interferes with cell division n.d. (Lobo et al., 2007)
AhPDF1.1 Arabidopsis halleri n.d. n.d. n.d. Tolerance against zinc and selenite, inhibition of plant root growth (Oomen et al., 2011; Mirouze et al., 2006; Tamaoki et al., 2008)
DEF2 Solanum lycopersicon n.d. n.d. n.d. Influence of pollen viability, seed production, and the growth of various organs of the producing plant (Stotz et al., 2009a)
ZmES4 Zea mais n.d. n.d. n.d. Inter-gametophype signalling, induction of pollen tube burst (Amien et al., 2010)
Ha-DEF1 Helianthus inbred line (LR1) n.d. n.d. Plasma membrane permeabilization Parasitic plant defence (de Zelicourt et al., 2007)
VrD1 Vigna radiata n.d. n.d. n.d. Insect inhibitory activity (Liu et al., 2006; Chen et al., 2004, 2002)
Sesquin Vigna sesquipedalis n.d. n.d. n.d. Inhibitory activity against cancer cells, inhibitory effect towards HIV reverse transcriptase (Wong and Ng, 2005)
Limyin Phaseolus limensis n.d. n.d. n.d. Inhibitory activity against cancer cells (Wang et al., 2009)
Insects Drosomycin Drosophila melanogaster Sphingolipids n.d. Plasma membrane permeabilization, pore formation Interaction with voltage-gated sodium channel (DmNav1), neuropeptide activity? (Gao and Zhu, 2008; Ferket et al., 2003; Jiggins and Kim, 2005)
Heliomicin Heliothis virescens Sphingolipid GlcCer n.d. n.d. n.d. (Lamberty et al., 1999; Thevissen et al., 2004)
Termicin Pseudocanthothermes spiniger, Reticulitermes flavipes Cell wall n.d. Acts synergistically with glucanases to break down β-glucans of the fungal cell wall Immune defence, external recognition system, accession of foraging grounds (Bulmer et al., 2009; Hamilton and Bulmer, 2012)
Mammals hBD1 Homo sapiens n.d. n.d. Plasma membrane permeabilization, pore formation Chemotactic for immature dendritic cells, suppression of cancer development (Sun et al., 2005; Yang et al., 1999, 2000)
hBD2 Homo sapiens n.d. n.d. Plasma membrane permeabilization, pore formation Chemotactic for CD45R0+ memory T cells, chemotactic for immature dendritic cells, degranulation of mast cells, migration and proliferation of keratinocytes, promotion of wound healing (Baroni et al., 2009; Yang et al., 1999, 2000; Befus et al., 1999; Niyonsaba et al., 2001; Niyonsaba et al., 2006)
hBD3 Homo sapiens n.d. n.d. Plasma membrane permeabilization, pore formation Chemotactic for immature dendritic cells, mast cell activation, migration and proliferation of keratinocytes, promotion of wound healing (Harder et al., 2001; Niyonsaba et al., 2006; Chen et al., 2007)
hBD4 Homo sapiens n.d. n.d. Plasma membrane permeabilization, pore formation Mast cell activation, migration and proliferation of keratinocytes, promotion of wound healing (Niyonsaba et al., 2006; Chen et al., 2007)
mDF2beta Mus musculus n.d. n.d. Plasma membrane permeabilization, pore formation Maturation of dendritic cells (Biragyn et al., 2002)

n.d. – not determined.

cellular uptake: − no uptake; + intracellular localization.