Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jan 12;69(Pt 2):o231. doi: 10.1107/S1600536813000226

4-Hy­droxy-1-methyl-3-phenyl­quinolin-2(1H)-one

Stanislav Kafka a, Andrej Pevec b,*, Karel Proisl a, Roman Kimmel a, Janez Košmrlj b
PMCID: PMC3569765  PMID: 23424511

Abstract

In the title compound, C16H13NO2, the quinoline system is approximately planar with a maximum deviation from the least-squares plane of 0.059 (1) Å for the N atom. The phenyl ring is rotated by 62.16 (4)° with respect to the plane of the quinoline system. In the crystal, O—H⋯O hydrogen bonds link mol­ecules into infinite chains running along the b-axis direction.

Related literature  

For the preparation of the title compound and other 4-hy­droxy­quinolin-2-ones, see: Baumgarten & Kärgel (1927); Lange et al., (2001); Martensson & Nilsson (1960); Bezuglyi et al. (1992). For synthetic utilization of the title compound, see: Kafka et al. (2002); Klásek et al. (2002).graphic file with name e-69-0o231-scheme1.jpg

Experimental  

Crystal data  

  • C16H13NO2

  • M r = 251.27

  • Monoclinic, Inline graphic

  • a = 6.1787 (2) Å

  • b = 8.2696 (2) Å

  • c = 12.3665 (4) Å

  • β = 101.632 (2)°

  • V = 618.89 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.50 × 0.25 × 0.10 mm

Data collection  

  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) T min = 0.957, T max = 0.991

  • 2580 measured reflections

  • 1479 independent reflections

  • 1235 reflections with I > 2σ(I)

  • R int = 0.017

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.102

  • S = 1.02

  • 1479 reflections

  • 174 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813000226/fy2079sup1.cif

e-69-0o231-sup1.cif (23.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813000226/fy2079Isup2.hkl

e-69-0o231-Isup2.hkl (71.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813000226/fy2079Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O1i 0.82 1.89 2.655 (2) 156

Symmetry code: (i) Inline graphic.

Acknowledgments

This study was supported by the inter­nal grant of the TBU in Zlin (No. IGA/FT/2012/043) funded from the resources of specific university research and the Slovenian Research Agency (Project P1–0230–0103 and Joint Project BI—CZ/07–08–018). This work was also partly supported through the infrastructure of the EN–FIST Centre of Excellence, Ljubljana.

supplementary crystallographic information

Comment

The title compound, (I) (Fig. 1), was first prepared by the thermal condensation of diethyl phenylmalonate with N-methylaniline (Baumgarten & Kärgel 1927). This reaction, performed with various malonates and anilines, is still the most widely used general method for the preparation of 4-hydroxyquinolin-2-ones, including compound I. The performance of the reaction under microwave irradiation was described by Lange et al. (2001). Among other approaches to the preparation of compound I and other 4-hydroxyquinoline-2-diones, intramolecular condensations of 2-acylaminobenzoates could be particularly feasible (Martensson & Nilsson, 1960; Bezuglyi et al., 1992). Recently, compound I was utilized for the preparation of the corresponding 3-bromo- and 3-chloro-1-methyl-3-phenylquinoline-2,4(1H,3H)-diones, from which other compounds were prepared by nucleophilic substitution of the halogen atom (Kafka et al., 2002; Klásek et al., 2002).

In the crystal structure of the title compound (I) (Fig. 2) 4-hydroxy-1-methyl-3-phenylquinolin-2(1H)-one molecules are connected by intermolecular O—H···O hydrogen bonds between the hydroxyl and carbonyl groups (Table 1). These connections form linear chains along the b-axis in the crystal structure.

Experimental

Title compound was prepared according to a modified procedure published by Baumgarten & Kärgel (1927). A mixture of N-methylaniline (10.7 g, 100 mmol) and diethyl phenylmalonate (24.8 g, 105 mmol) was gradually heated in a Wood's metal bath at 200–290 °C for 4.5 h (until the distillation of ethanol stopped; reached 8.57 g, i.e. 93% of theoretical mass of distillate). The hot reaction mixture was poured into a mortar, crushed after cooling and dissolved in the mixture of aqueous sodium hydroxide solution (0.5 M, 300 ml) and toluene (50 ml). The aqueous phase was separated, washed with toluene, shortly stirred with active carbon, filtered and acidified by addition of 10% hydrochloric acid to Kongo red. The precipitated white solid was filtered off, washed with water and air dried affording 23.4 g (93% of theory) of crude product, m. p. 223–225 C. Crystallization of the crude product from ethanol afforded 20.1 g (80% of theoretical yield) of the title compound (I), m. p. 222–226 °C. In the literature (Martensson & Nilsson, 1960), the same m. p. is given.

Refinement

All H atoms were included in the model at geometrically calculated positions and refined using a riding model, with C—H bond lengths constrained to 0.93 Å (aromatic CH), 0.96 Å (methyl CH3), and O—H = 0.82 Å, and with Uiso(H) values of 1.2Ueq(C) [for aromatic CH] or 1.5Ueq(C) [for OH and methyl groups]. In the absence of significant anomalous scattering, the Flack parameter could not be determined reliably. Therefore Friedel-pairs were merged prior to the final refinement cycle. 16 low angle reflections were dropped by the integration routines because of detector saturation.

Figures

Fig. 1.

Fig. 1.

A view of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

The packing of (I), with the O—H···O hydrogen bonds. [Symmetry code: (i) -x, y + 1/2, -z + 2.]

Crystal data

C16H13NO2 F(000) = 264
Mr = 251.27 Dx = 1.348 Mg m3
Monoclinic, P21 Melting point = 495–499 K
Hall symbol: P 2yb Mo Kα radiation, λ = 0.71073 Å
a = 6.1787 (2) Å Cell parameters from 1471 reflections
b = 8.2696 (2) Å θ = 1.0–27.5°
c = 12.3665 (4) Å µ = 0.09 mm1
β = 101.632 (2)° T = 293 K
V = 618.89 (3) Å3 Prism, colorless
Z = 2 0.50 × 0.25 × 0.10 mm

Data collection

Nonius KappaCCD area-detector diffractometer 1479 independent reflections
Radiation source: fine-focus sealed tube 1235 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.017
φ scans + ω scans θmax = 27.4°, θmin = 5.5°
Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) h = −7→7
Tmin = 0.957, Tmax = 0.991 k = −10→8
2580 measured reflections l = −16→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0575P)2 + 0.0786P] where P = (Fo2 + 2Fc2)/3
1479 reflections (Δ/σ)max = 0.0001
174 parameters Δρmax = 0.13 e Å3
1 restraint Δρmin = −0.16 e Å3

Special details

Experimental. 216 frames in 4 sets of φ scans + ω scans. Rotation/frame = 2.0 °. Crystal-detector distance = 31 mm. Measuring time = 200 s/°.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 −0.3506 (3) 0.6870 (2) 0.76995 (14) 0.0421 (5)
O1 −0.3484 (2) 0.6084 (2) 0.94498 (12) 0.0461 (4)
O2 0.2230 (3) 0.9476 (3) 0.86700 (12) 0.0527 (5)
H2O 0.2433 0.9751 0.9320 0.079*
C1 −0.2491 (4) 0.7574 (3) 0.69150 (17) 0.0408 (5)
C2 −0.3367 (5) 0.7420 (4) 0.57760 (19) 0.0563 (7)
H2 −0.4659 0.6833 0.5536 0.068*
C3 −0.2321 (5) 0.8131 (4) 0.50211 (19) 0.0640 (8)
H3 −0.2903 0.8004 0.4272 0.077*
C4 −0.0430 (6) 0.9027 (4) 0.5350 (2) 0.0631 (7)
H4 0.0251 0.9512 0.4827 0.076*
C5 0.0453 (5) 0.9202 (3) 0.64626 (19) 0.0531 (6)
H5 0.1720 0.9821 0.6688 0.064*
C6 −0.0539 (4) 0.8458 (3) 0.72531 (17) 0.0408 (5)
C7 0.0393 (4) 0.8579 (3) 0.84224 (17) 0.0392 (5)
C8 −0.0553 (4) 0.7782 (3) 0.91735 (16) 0.0374 (5)
C9 −0.2559 (3) 0.6871 (3) 0.88098 (16) 0.0374 (5)
C10 −0.5599 (4) 0.6003 (4) 0.7363 (2) 0.0558 (6)
H10A −0.5330 0.4973 0.7057 0.084*
H10B −0.6579 0.6625 0.6817 0.084*
H10C −0.6261 0.5843 0.7994 0.084*
C11 0.0412 (3) 0.7767 (3) 1.03788 (15) 0.0374 (5)
C12 0.2473 (4) 0.7070 (3) 1.07702 (19) 0.0456 (5)
H12 0.3288 0.6669 1.0274 0.055*
C13 0.3319 (4) 0.6971 (4) 1.1895 (2) 0.0537 (6)
H13 0.4682 0.6483 1.2151 0.064*
C14 0.2142 (5) 0.7594 (4) 1.26318 (19) 0.0568 (7)
H14 0.2709 0.7523 1.3386 0.068*
C15 0.0133 (4) 0.8321 (4) 1.22571 (19) 0.0535 (6)
H15 −0.0640 0.8764 1.2758 0.064*
C16 −0.0749 (4) 0.8396 (3) 1.11342 (18) 0.0460 (6)
H16 −0.2124 0.8871 1.0886 0.055*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0427 (10) 0.0467 (10) 0.0362 (9) 0.0025 (9) 0.0062 (7) 0.0040 (9)
O1 0.0438 (8) 0.0554 (10) 0.0408 (8) 0.0007 (8) 0.0124 (6) 0.0101 (7)
O2 0.0653 (10) 0.0598 (10) 0.0366 (8) −0.0198 (9) 0.0191 (8) −0.0084 (8)
C1 0.0524 (12) 0.0392 (11) 0.0311 (10) 0.0092 (10) 0.0095 (9) 0.0020 (9)
C2 0.0630 (15) 0.0639 (17) 0.0397 (12) 0.0002 (13) 0.0047 (11) 0.0030 (12)
C3 0.087 (2) 0.0729 (19) 0.0299 (11) 0.0020 (17) 0.0058 (12) 0.0045 (12)
C4 0.0925 (19) 0.0656 (17) 0.0352 (11) −0.0053 (16) 0.0220 (12) 0.0065 (12)
C5 0.0719 (15) 0.0535 (15) 0.0376 (11) −0.0069 (13) 0.0201 (11) −0.0013 (12)
C6 0.0531 (13) 0.0377 (11) 0.0339 (10) 0.0027 (10) 0.0143 (9) −0.0009 (9)
C7 0.0472 (12) 0.0402 (12) 0.0325 (10) −0.0009 (9) 0.0136 (9) −0.0039 (9)
C8 0.0448 (11) 0.0383 (11) 0.0312 (10) 0.0041 (9) 0.0128 (8) −0.0010 (9)
C9 0.0418 (11) 0.0392 (11) 0.0327 (10) 0.0083 (10) 0.0115 (8) 0.0030 (9)
C10 0.0476 (12) 0.0669 (16) 0.0497 (13) −0.0029 (13) 0.0022 (10) 0.0035 (13)
C11 0.0432 (11) 0.0398 (11) 0.0315 (10) −0.0029 (10) 0.0127 (9) 0.0005 (9)
C12 0.0439 (12) 0.0535 (14) 0.0410 (11) 0.0019 (11) 0.0126 (9) −0.0017 (11)
C13 0.0470 (13) 0.0618 (15) 0.0492 (13) 0.0024 (12) 0.0019 (10) 0.0052 (13)
C14 0.0621 (15) 0.0732 (17) 0.0317 (11) −0.0115 (14) 0.0017 (10) 0.0033 (11)
C15 0.0594 (15) 0.0693 (16) 0.0353 (11) −0.0037 (13) 0.0177 (10) −0.0062 (12)
C16 0.0483 (12) 0.0557 (14) 0.0354 (11) 0.0045 (11) 0.0118 (9) −0.0011 (11)

Geometric parameters (Å, º)

N1—C9 1.380 (3) C7—C8 1.363 (3)
N1—C1 1.385 (3) C8—C9 1.443 (3)
N1—C10 1.464 (3) C8—C11 1.490 (3)
O1—C9 1.248 (3) C10—H10A 0.9600
O2—C7 1.339 (3) C10—H10B 0.9600
O2—H2O 0.8200 C10—H10C 0.9600
C1—C6 1.400 (3) C11—C16 1.389 (3)
C1—C2 1.409 (3) C11—C12 1.393 (3)
C2—C3 1.370 (4) C12—C13 1.386 (3)
C2—H2 0.9300 C12—H12 0.9300
C3—C4 1.374 (4) C13—C14 1.376 (4)
C3—H3 0.9300 C13—H13 0.9300
C4—C5 1.382 (3) C14—C15 1.373 (4)
C4—H4 0.9300 C14—H14 0.9300
C5—C6 1.397 (3) C15—C16 1.387 (3)
C5—H5 0.9300 C15—H15 0.9300
C6—C7 1.448 (3) C16—H16 0.9300
C9—N1—C1 122.40 (19) O1—C9—N1 118.3 (2)
C9—N1—C10 117.14 (19) O1—C9—C8 123.29 (18)
C1—N1—C10 120.37 (18) N1—C9—C8 118.40 (18)
C7—O2—H2O 109.5 N1—C10—H10A 109.5
N1—C1—C6 119.64 (18) N1—C10—H10B 109.5
N1—C1—C2 121.7 (2) H10A—C10—H10B 109.5
C6—C1—C2 118.7 (2) N1—C10—H10C 109.5
C3—C2—C1 120.2 (2) H10A—C10—H10C 109.5
C3—C2—H2 119.9 H10B—C10—H10C 109.5
C1—C2—H2 119.9 C16—C11—C12 118.78 (19)
C2—C3—C4 121.3 (2) C16—C11—C8 120.87 (19)
C2—C3—H3 119.3 C12—C11—C8 120.32 (18)
C4—C3—H3 119.3 C13—C12—C11 120.4 (2)
C3—C4—C5 119.5 (2) C13—C12—H12 119.8
C3—C4—H4 120.3 C11—C12—H12 119.8
C5—C4—H4 120.3 C14—C13—C12 120.0 (2)
C4—C5—C6 120.7 (2) C14—C13—H13 120.0
C4—C5—H5 119.7 C12—C13—H13 120.0
C6—C5—H5 119.7 C15—C14—C13 120.2 (2)
C5—C6—C1 119.60 (19) C15—C14—H14 119.9
C5—C6—C7 121.7 (2) C13—C14—H14 119.9
C1—C6—C7 118.66 (19) C14—C15—C16 120.2 (2)
O2—C7—C8 124.90 (19) C14—C15—H15 119.9
O2—C7—C6 114.51 (18) C16—C15—H15 119.9
C8—C7—C6 120.6 (2) C15—C16—C11 120.3 (2)
C7—C8—C9 119.96 (18) C15—C16—H16 119.8
C7—C8—C11 123.1 (2) C11—C16—H16 119.8
C9—C8—C11 116.93 (18)
C9—N1—C1—C6 −6.3 (3) C6—C7—C8—C11 175.7 (2)
C10—N1—C1—C6 177.3 (2) C1—N1—C9—O1 −173.6 (2)
C9—N1—C1—C2 173.3 (2) C10—N1—C9—O1 2.9 (3)
C10—N1—C1—C2 −3.0 (3) C1—N1—C9—C8 6.6 (3)
N1—C1—C2—C3 −180.0 (2) C10—N1—C9—C8 −177.0 (2)
C6—C1—C2—C3 −0.3 (4) C7—C8—C9—O1 178.3 (2)
C1—C2—C3—C4 −1.1 (5) C11—C8—C9—O1 −0.4 (3)
C2—C3—C4—C5 0.7 (5) C7—C8—C9—N1 −1.8 (3)
C3—C4—C5—C6 1.0 (5) C11—C8—C9—N1 179.48 (19)
C4—C5—C6—C1 −2.3 (4) C7—C8—C11—C16 118.9 (3)
C4—C5—C6—C7 178.0 (3) C9—C8—C11—C16 −62.4 (3)
N1—C1—C6—C5 −178.4 (2) C7—C8—C11—C12 −63.2 (3)
C2—C1—C6—C5 1.9 (3) C9—C8—C11—C12 115.5 (2)
N1—C1—C6—C7 1.4 (3) C16—C11—C12—C13 1.7 (4)
C2—C1—C6—C7 −178.3 (2) C8—C11—C12—C13 −176.3 (2)
C5—C6—C7—O2 1.2 (3) C11—C12—C13—C14 −1.4 (4)
C1—C6—C7—O2 −178.5 (2) C12—C13—C14—C15 −0.2 (5)
C5—C6—C7—C8 −177.1 (2) C13—C14—C15—C16 1.6 (5)
C1—C6—C7—C8 3.2 (3) C14—C15—C16—C11 −1.3 (4)
O2—C7—C8—C9 179.0 (2) C12—C11—C16—C15 −0.3 (4)
C6—C7—C8—C9 −2.9 (3) C8—C11—C16—C15 177.6 (2)
O2—C7—C8—C11 −2.4 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O2—H2O···O1i 0.82 1.89 2.655 (2) 156

Symmetry code: (i) −x, y+1/2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FY2079).

References

  1. Baumgarten, P. & Kärgel, W. (1927). Ber. Dtsch Chem. Ges. B, 60, 832–842.
  2. Bezuglyi, P. A., Ukrainets, I. V., Treskach, V. I. & Turov, A. V. (1992). Khim. Geterotsikl. Soedin. pp. 522–524.
  3. Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Kafka, S., Klásek, A., Polis, J. & Košmrlj, J. (2002). Heterocycles, 57, 1659–1682.
  6. Klásek, A., Polis, J., Mrkvička, V. & Košmrlj, J. (2002). J. Heterocycl. Chem. 39, 1315–1320.
  7. Lange, J. H. M., Verveer, P. C., Osnabrug, S. J. M. & Visser, G. M. (2001). Tetrahedron Lett. 42, 1367–1369.
  8. Martensson, O. & Nilsson, E. (1960). Acta Chem. Scand. 14, 1129–1150.
  9. Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  10. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813000226/fy2079sup1.cif

e-69-0o231-sup1.cif (23.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813000226/fy2079Isup2.hkl

e-69-0o231-Isup2.hkl (71.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813000226/fy2079Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES