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Abstract
Single-molecule data often comes in the form of stochastic time trajectories. A key question is
how to extract an underlying kinetic model from the data. A traditional approach is to assume
some discrete state model, i.e. a model topology, and to assume that transitions between states are
Markovian. The transition rates are then selected according to which best fit the data. However in
experiments, each apparent state can be a broad ensemble of states or can be hiding multiple inter-
converting states. Here we describe a more general approach called the non-Markov Memory
Kernel (NMMK) method. The idea is to begin with a very broad class of non-Markov models and
to let the data directly select for the best possible model. To do so, we adapt an image
reconstruction approach that is grounded in Maximum Entropy. The NMMK method is not limited
to discrete state models for the data; it yields a unique model given the data; it gives error bars for
the model; it does not assume Markov dynamics. Furthermore, NMMK is less wasteful of data by
letting the entire data set determine the model. When the data warrants, the NMMK gives a
memory kernel that is Markovian. We highlight, by numerical example, how conformational
memory extracted using this method can be translated into useful mechanistic insight.
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1 Introduction
It is now routine to measure single-molecule (SM) trajectories of ion-channel opening/
closing events or folding/unfolding transitions of proteins and nucleic acids [1, 2, 3, 4, 5].
Single molecule trajectories show transitions of a molecule from one conformational state to
another. For instance in SM force spectroscopy, the trajectory includes transitions between a
high force state (folded state) and low force state (unfolded state). Individual states can
exhibit what is called “conformational memory” [1]. Broadly speaking, when a state has
conformational memory, the dwell time in that state is not distributed as a single
exponential. Alternatively, one can say that in bulk, the relaxation is not single exponential.
For example, the folding of phosphoglycerate kinase monitored by bulk fluorescence
experiments following a temperature jump [6] hints at a kinetically heterogeneous process;
SM fluorescence experiments find that adenylate kinase apparently shows no less than six
folding intermediates [8].
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Fig.(1) is a cartoon illustration of how conformational memory can arise. In this cartoon
example, the origin of the conformational memory is simple to understand. The low force
state in Fig.(1(b)) is made up of two microscopic states; it is called an aggregate. The dwell
time distribution in the low force state is therefore not a single-exponential because the low
force state is composed of two inter-converting states indistinguishable in this particular
experiment. Such models are called Aggregated-Markov (AM) models [9, 10, 11]. The
states within an observable aggregate are assumed to exchange with each other via Markov
processes. There are well-known limitations in using AM models in data analysis. First, they
require advance knowledge of the topology of the underlying kinetic states. By topology, we
are referring to the kinetic relationships among the states, usually expressed as sets of arrows
connecting the underlying states, see Fig. (1(b)). As a consequence, the AM approach does
not make full use of the data set -it forces the data onto a model rather than to let the data
tend towards a model. Second, if there are fewer independent observables than rates in the
model, then AM models are not unique; many different models would fit the data [12]. For
example, a 3-state system with two observable aggregates requires 6 rate coefficients.
However, only 4 independent parameters are determinable from such data. This problem is
often solved by using some symmetry relationship –for example by assuming that some
rates are identical [13], or by performing additional experiments that give orthogonal
information [14]. Third, AM models require the assumption that transitions are Markovian
and that there are a finite number of states. In reality, there could, instead, be a continuous
manifold of underlying states [15], fluctuating rates [20], or strong memory effects that can
give rise to heavy-tail statistics [21]. Points one and three are also limitations of a related
strategy tailored for noisy data, called Hidden Markov (HM) modeling [25, 7]. HM models
are commonly used when the microscopic state in which the molecule is found are obscured
by the noise. Thus HM modeling techniques can be useful in extracting aggregated Markov
models from data. That is, the HM and AM models are not mutually exclusive. The
stochastic rate models is another possible description of a system with memory where the
escape from a complex state is decribed using a rate which is a stochastic variable, in
general depending on time [22]. Yet another method is the Multiscale State Space Network,
which is useful for mapping out the interconnectivity of conformational state space of a
protein from a continuously varying observable [23]. Alternatively, the conformational state
space of single proteins has been described using a Langevin equation with a memory kernel
fit to data [24].

Here we describe an alternative approach to kinetic modeling. The idea is to start with a very
broad class of kinetic models. We subsequently use the data from SM time traces and the
tools of Maximum Entropy (MaxEnt) [15, 16, 26, 27, 28] to select the best model from this
class. The purpose of this approach is to avoid biasing our analysis or wasting data by
forcing the data ahead of time to fit a predetermined model. Rather we let the data determine
the model.

We call our approach the Non-Markov Memory-Kernel (NMMK) method. Here the
underlying system kinetics are modelled using continuous memory kernels rather than using
explicit states such as in AM and HM modeling. In the NMMK method, the memory kernel
itself is the model. It predicts the full dynamics without the need for any associated
assumptions about kinetic rates or topologies. Thus a Markov model (a model with no
memory) emerges from the NMMK method only if it is warranted by the data. In many
ways this method complements AM and HM modeling methods described above as well as
approaches for inferring rate distributions –also called rate spectra– from raw data; these
include a hybrid method of of Maximum Entropy and nonlinear least squares (MemExp)
[16] as well as a variety of other methods [17]. Such methods seem less successful when
applied to rate distributions which cannot be described by the sum of many exponentials
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[17]. Other efforts in describing sequential multistep reactions [18] are specific to
exponential rates or stochastic rates sampled from a Gaussian distribution [19].

Here we focus on some clear distinguishing features of the NMMK method: the model
extracted is unique, transitions between states are not assumed Markovian from the onset, a
topology is not assumed a priori, our variational method yields the time it takes for the
memory in each state to decay to zero and the method gives error bars on the model it
predicts. We also discuss what features we should expect in the memory kernel for the
special case when the observed state is composed of an aggregate of states.

2 Theoretical Methods
2.1 The Non-Markov Memory Kernel Model approach

Here we illustrate how the NMMK method works on simulated data. In the analysis of noisy
time traces of SM data, investigators first pick out transitions and obtain both marginal dwell
time histograms for each state as well as conditional dwell time histograms for each pair of
state (processes entirely described by marginal dwell histograms for each state are called
renewal processes [30]). Furthermore, for AM models, no additional information is
contained in higher order conditional histograms [9].

For instance, from Fig.(1(a)) the dwell time distribution in the low force state is obtained by
histogramming τ2, τ4, … In a follow-up publication where we will tackle real experimental
data, we use change-point algorithms [31] for detecting transitions in noisy data in a model
independent way. That is, unlike the HM or AM approach, transitions are picked out from
data in a way which does not depend on the topology assumed a priori.

The NMMK model describes the kinetics in terms of a generalized master equation with a
memory kernel κ(t), as follows

(1)

where f (t) denotes a dwell time distribution in a particular state obtained from data 1. When
we talk about a model we will be referring to the memory kernel. It gives us a dynamical
picture of a state by telling us how the memory in a state decays.

Note that if the dwell distribution, f (t), in a particular state is single exponential, then the
resulting κ(t) is a delta function. This is the signature of a memoryless, i.e. Markov, process.
Put another way, if the memory kernel for some state is a delta function, we conclude that
this state is a single state whose transitions to its neighbors satisfy the Markov property.

2.2 The AM model shows clear signatures in the memory kernel
Suppose some state A is an aggregate of indistinguishable discrete states. We show in the
appendix that AM models always give rise to multi-exponential dwell time distributions.
What memory kernel should we expect for state A?

In this case, the most general dwell time distribution in this state is

1For simplicity, we will assume that the distribution from which all dwell times are sampled is stationary. Thus our memory kernel
depends on the amount of time spent in a state t, κ(t), since first arriving in that state, not on some absolute time. Likewise, if we were
discussing conditional dwell distributions, we would only consider the memory kernel for having spent time t in some state A
conditioned on having spent time τ in state B, say κAB(t|τ), and this object would again not depend on some absolute time.
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(2)

An exponential decay with N components can arise in cases where the state is an aggregate
of N states. In Laplace space Eq. (1) is

(3)

Substituting Eq. (2) into Eq. (3) yields

(4)

where ℒ−1O denotes the inverse Laplace transform of O. We will perform the inverse
Laplace transformation by expressing O using partial fractions as ∑m hm/(s + σm) + K (for
constant K). This gives

(5)

where δ̃(t) is defined by the property . The explicit form of Eq. (5) is:

(6)

where the {σi} are the zeroes of .

For the special case that all {ci}’s in Eq. (2) are positive, all parameters {σm, hm} are also
positive. To see this explicitly, consider a plot of f ̂(s), see Fig. (3), where it is clear that λ1 <
σ1 < λ2 < σ2… < σn−1 < λn. The signs of the {hm} are then determined from its explicit
form in Eq. (6). From this ordering and Eq. (6), it follows that all {σm, hm}’s are positive.

The structure of the zeroes and poles is more complicated when some of the {ci}’s are
negative, which can apply in instances where detailed balance is violated in the underlying
AM model. Nonetheless, we can still rank order the zeroes and poles to determine the sign
of {σm, hm}.

The type of structure we expect in the memory kernel from an AM model is given by Eq.
(6). Eq. (6) captures a sharp spike in the memory kernel at t = 0 (the hallmark of a Markov
process) in addition to components present at later times which describe the relaxation of the
memory kernel.

While in its full generality Eq. (6) looks daunting, consider a simple biexponential dwell
time distribution with positive {c1, c2}. This dwell describes the decay from an aggregated
state with two different timescales, a faster and a slower timescale. In this case, the memory
kernel is a sharp positive spike at the origin (the delta function) followed by a dip below
zero and then followed by an exponential rise back to zero. See the green curve in Fig. (4(b))
for an example of this behavior. At the origin, the memory kernel’s sharp positive spike says
that the decay is memoryless. At the next time step, the slower timescale becomes relevant
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and reduces the effective rate of escape from this state. This coincides with the negative
component of the memory kernel. In other words, the slower timescale introduces memory
in the memory kernel; it introduces mathematical structure beyond the single spike at the
origin.

Memory kernels arising from multi-exponential dwell time distributions are helpful in
building intuition because the form for the coinciding memory kernels have analytic
mathematical forms. We have just shown how additional states yield effective memory in
the system. Given an AM model, the structure of the memory kernel can then be interpreted
according to the presence of aggregates of discrete states. However AM models are
idealizations of real data and the structure in the memory kernel can be interpreted
differently. For example, the structure in the memory kernel can be interpreted in the context
of a diffusion model in a rough energy landscape - a model recently used to describe the
dwell in the unfolded state of phosphoglycerate kinase we discussed earlier [6].
Alternatively, we are free to interpret the memory kernel as a model where the rates
themselves are stochastic variables. We argue here that the memory kernel in itself provides
a model -it dictates the way in which the memory decays to zero within error as well as the
amount of time this takes.

We now turn our attention to developing a robust algorithm for extracting memory kernels
from noisy histograms. Answering this question will help us answer questions like “is a
Markov model (the most basic of all models normally taken for granted) warranted by the
data?”.

2.3 An algorithm for extracting the memory kernel
As noted earlier, transitions between states in SM trajectories are rarely as clear as shown in
Fig. (1(a)). Rather, transitions are obscured by noise. In this case, a dwell distribution like f
(t) would be obtained by using a model-independent change-point algorithm to detect
transitions in the real noisy data [31]. That is, unlike HM models, the change-point
algorithm would pick out significant transitions in the data without committing to a
particular model from the onset. The output of this procedure is a “denoised time trace” like
the one given in Fig. (1(a)). The amount of time spent in each state is histogrammed. Since
data is finite, the histograms themselves are noisy.

The numerical extraction of the memory kernel from noisy histograms can be mapped onto
an adaptation of the method of image reconstruction [15, 26, 27, 28]. Briefly, the goal of
image reconstruction is to obtain an image, I, from data, D, where data and image are related
by a linear transform G. That is D = G * I. Direct inversion of the data, (G*

−1)D, would be
numerically unstable for noisy data so we use the variational procedure of image
reconstruction to regularize the operation and obtain a reconstructed image. The variational
procedure is based on the principle of Maximum Entropy.

The analog of Eq. (1) in discrete time is

(7)

Here the memory kernel plays the role of the image. The important difference between Eq.
(7) and standard image reconstruction is the operator G. Our operator in Eq. (7) contains
noisy data. Our goal is to derive a variational procedure for extracting the memory kernel
with such an operator. We do so by defining an objective function which we will optimize
with respect to each κj in order to obtain our reconstructed memory kernel.
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We begin by assuming the experimental input to be in the form of a dwell time histogram

with error bars for each bin. That is  where fj is the theoretical value of the dwell

time distribution at time point j. Brute-force inversion of  to
obtain {κj} is numerically unstable because noise propagates quickly as we solve κ1 in
terms of κ0, κ2 in terms of κ1 and so on. Image reconstruction is used as a regularizing

procedure to overcome this problem. For this reason, using  we write Eq. (7) as
follows

(8)

where . The deviation of experiment and theory, the residuals, are on the

right hand side of Eq. (8). We assume  and 〈εi〉 = 0. Squaring both sides of Eq.
(8) and taking the average with respect to the noise, we find

(9)

We define a χ2 statistic as a sum over all time intervals

(10)

where N here is the number of data points. For a finite sample, we may invoke the
frequentist logic often used in image reconstruction [15, 26, 27, 28], and suppose that χ2 =
N. That is, on average, the difference between each data point and its theoretical expected
value differ by their standard deviation. We then follow the logic of Maximum Entropy,
which is often invoked in image reconstruction, and ask that the memory kernel be as
featureless as possible given χ2 = N as a constraint on the data. In other words, we now
maximize the objective function, F(θ, {κ}), with respect to the set {κj}

(11)

The entropy of the memory kernel is −∑j(κj + κ̄) log((κj + κ̄)/(Λj + κ̄)); {α, β} = {cos2 θ,
sin2 θ} are the Lagrange multipliers that enforce the constraints on the data 2; Λj is the prior
on κj; and κ̄ is a constant positive parameter to ensure that κj + κ̄ never becomes negative so
that the entropy is well-defined. Our estimate of the set {κj} in the absence of data is

therefore . By setting χ2 = N, the problem is under-determined. We
therefore need to use Maximum Entropy to select one of the many possible solutions for
which χ2 = N. In other words, the Lagrange multipliers “tune” the balance between fitting
the data points on the one hand vs. “smoothing” to achieve the model closest to the prior.

2Only one Lagrange multiplier is independent since α + β = 1. When we take a derivative of the objective function, Eq. (11), with
respect to κj, we can divide through the entire expression by β. Then we are left with only one Lagrange multiplier, the ratio α/β.
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Now we need to specify our prior. In the absence of any data, we should assume a simple
Markov memory kernel. In our case, we set the first two points from our brute-force
memory kernel (j = 0 and j = 1) –which are more reliably determined than later points– as
the first two points of the prior, Λj. We take the rest of the prior to be flat. The idea is to take
advantage of the structure of the memory kernel we know to be reliable to set our prior.

Next, the 95% confidence interval of the memory kernel is estimated assuming that the true
memory kernel lies somewhere between the solution obtained by optimizing the objective
function under the constraint χ2 = μ ± 2σ rather than χ2 = N when N is large (where the χ2

distribution has μ = N and ). We should expect the memory kernel’s lower bound
(when χ2 = μ − 2σ) to be close to the brute force inversion (where χ2 is strictly zero) and its
upper bound (when χ2 = μ + 2σ) to be closer to the chosen prior (where χ2 is very large).

As an aside, we choose the Shannon-Jaynes entropy in Eq. (11) because it worked for all
examples we have considered so far and it tries to minimize features in the memory kernel;
we show only a small fraction of the many numerical examples we tackled in the next
section. It is quite possible that other entropies, or other regularizing procedures, would also
serve as acceptable substitutes to the Shannon-Jaynes entropy.

3 Results and Discussion: Proof of principle of the NMMK method
Fig. (4) shows an illustration of how NMMK methods work on a theoretical example. We
first create a decay signal and then add noise to it. We imagine such a dwell distribution
originates from having used a change-point algorithm to detect significant transitions in a
real time trace as discussed earlier. Then, we ask how well NMMK can extract the correct
underlying model. In this case, we added 30% noise to a biexponential dwell time
distribution, pj = 0.5 × 0.9j + 0.5 × 0.05j; the raw “data” made up in this way is shown in
Fig. (4(a)).

First, as a point of reference, Fig. (4(b)) shows the memory kernel that is obtained by brute
force inversion of the raw data (pink line). It is too noisy to give a good approximation to the
the exact answer (green line), or even to register that there are two exponentials in the dwell
distribution. The exact memory kernel (computed from Eq. (6)) is not simply a delta
function, it shows more structure consistent with the presence of a second state. Now, in
order to apply the NMMK method, we use only the first two points of the pink line to
construct the prior (blue line). Using that prior, we then use the NMMK image-
reconstruction method. The NMMK predictions are shown as the red curve. The NMMK
method clearly shows a peak followed by a dip, consistent with the correct two exponentials
even when the noise level is high. This example shows that while the double-exponential
behavior is invisible in the time trace due to a high noise level (Fig. (4(a)), red line), the
double-exponential is nevertheless detectable as the rising tail in the memory kernel
obtained by the image reconstruction algorithm (Fig. (4(b)), red curve). Hence, the NMMK
method appears to be a sensitive model-building strategy that can detect structure in the
memory kernel (or hidden intermediate states in the language of AM), without assuming that
the process is Markovian.

A good data-processing algorithm should display both sensitivity and specificity. Sensitivity
means that small changes in the data originating from the underlying physics should be
reflected in the corresponding model. Specificity means that irrelevant differences in the
data due to noise should not be captured in the model. Figs. (4)–(9) show our tests of
sensitivity and specificity of the NMMK approach.

In Fig. (6), we show a memory kernel extracted from a biexponential dwell time histogram
with 20% Gaussian noise. The noise is always proportional to the value of the histogram bin
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for each bin. Compare this to the memory kernel extracted from a dwell histogram with 40%
noise from Fig. (4(b)). The biexponential nature of the dwell time distribution is apparent in
both despite a large difference in the noise. Hence, NMMK shows specificity. Similarly we
show specificity for memory kernels extracted from a noisy monoexponential dwell time
histogram in Fig. (5) (with 40% noise) versus Fig. (9) (with 60% noise). We can extract a
memory kernel for a simpler model (like the monoexponential) at higher noise levels than
we can for more complex models (like biexponentials). This is because the histograms of
more complex models have more features which make the NMMK method less specific.

Comparing Figs. (4(b)) and (5) we find that even at 40% noise the NMMK method can
distinguish monoexponential versus biexponential models. Thus NMMK is therefore also
sensitive. In Fig. (8) we show that if the two decay rates of the biexponential histogram are
more similar than they are for Fig. (4(b)), then the NMMK has difficulty picking out a
reasonable memory kernel at 40% noise though not at 20% noise (see Fig.(7)) for the
biexpoential model considered. See footnote for a brief note on noise and bin sizes 3.

We have illustrated how NMMK method is used to extract memory kernels here from
simple mono and biexponential histograms. We have used sums of exponentials because
they are common and important in dynamical processes and simple to illustrate. However,
the NMMK is not limited in any way to exponentials. NMMK can also treat processes
involving a continuum of states.

4 Conclusion
Stochastic trajectories are the common form of data from SM and few-particle experiments.
Such processes are often treated using AM models, where it is assumed that states are
clustered together into aggregated states that can interconvert using Markov processes. To
go beyond the limitations of such models, we propose an alternative, the non-Markov
memory-kernel (NMMK) model. We show that the NMMK model has the following
advantages: for given data, it gives a unique model (with error bars); it does not require
inputting knowledge of the number of underlying states; it is readily combined with current
first-principles-based image-reconstruction methods to provide a stable numerical recipe;
and it can be used even when the underlying physical states are not discrete and transitions
between these are not Markovian. When the data warrants a simple Markov model, the
memory kernel reduces to a delta function. The NMMK is a way to harness the entire
experimental output from kinetics experiments to reconstruct kinetic models with error bars.
In addition, it complements the method of image reconstruction for the determination of rate
distributions though NMMK is not intrinsically tied to exponential decay forms. We have
only explicitly considered extracting memory kernels from dwell histograms where the time-
ordering information of dwells is lost. However, our method readily generalizes to the
analysis of conditional and higher-order histograms if such data is available. It is worth
investigating whether our NMMK formulation could be adapted to treat time-ordered data
explicitly rather than processed data like histograms.
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3We extract our memory kernel from dwell histograms. Since we assume the noise around each bin value of our dwell histogram is

Gaussian, doubling our histogram bin size reduces the the noise by a factor of . Selecting bin sizes which are too large can make
complex memory kernels look like delta functions. The optimal bin size therefore depends on the model.
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Appendix

Deriving dwell time distributions for Aggregated Markov (AM) models
We first summarize the necessary theory and notation from AM models [9, 10, 12, 29]. We
consider Markov states that are aggregated into s distinguishable groups, which we simply
call aggregates. We define the Markovian rate matrix Q whose rows sum to zero. The
submatrix Qαβ is the rate matrix connecting the states in aggregate α to those in β. The

individual matrix elements  within Qαβ for α ≠ β are the physical values for the rates
connecting the kth state in aggregate α to the lth state in aggregate β.

Aggregate α has nα underlying states, where ∑α nα = N. The general joint probability
density for the dwell time t1 in the α1 aggregate followed by a dwell of t2 in α2 and so forth,
denoted as fα1…αr (t1 …tr), is [9]:

(12)

where uβ is a column vector of length nβ whose elements are all equal to 1, and Πα is the
row vector of length nα whose jth element is the probability that a dwell in the aggregate α
starts in the jth state of that aggregate. By diagonalizing Qαα as  with a diagonal
matrix λα, we obtain

(13)

 are the eigenvalues of Qαα and also the ith diagonal element of λα, and the projection

matrix  is defined by its elements:

(14)

Using Eq. (13), Eq. (12) is rewritten as

(15)

and

(16)

For AM processes, the two-time joint probability density fαβ (t, τ) for all label pairs α and β
-or, alternatively, the pair fαβ(t|τ) and fα(t)- captures the full statistics of the n-time density
given by Eq. (12) [9]

(17)

An AM model is fully characterized by the combination of the model topology and the rates
which are captured in fα(t) and fαβ(t|τ). As we noted in the main body, a set of densities
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fα(t) and fαβ(t|τ) for all α and β can correspond to many potential topologies and rates. AM
models are therefore not unique in general [12].
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Figure 1.
The experiment can only distinguish between two observable states - a high force and a low
force state - for this example drawn from SM force spectroscopy. (a) A cartoon of a
stochastic time trajectory shows the discrete transitions of SM between two conformational
states (one extended and the other not). τ denotes the amount of time the molecule dwells in
each successive state. (b) The AM model. Here the dark shaded state (the high force state)
represents the folded state while the un-shaded state (low force state) represents the unfolded
state. For this example, the dark shaded state is composed of two underlying microscopic
states which transition between themselves and to all other states via a Markov process. The
dwell time distribution in this state is correspondingly biexponential.
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Figure 2.
AM models and NMMK models. (a) AM model with an aggregated shaded state. (b) The
AM model formulated as a NMMK model. The AM model is a special case of the NMMK
model. See text for details.
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Figure 3.
Pole and zero structure of g ≡ f ̂ (s). Dots denote poles, asterisks denote zeroes.
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Figure 4.
Extraction of the memory kernel from data. (a) Time trace data, where the green curve is
double exponential function and the red curve is the fictitious data obtained by adding 40%
noise. (b) The memory kernel. The green curve is the exact answer, the pink curve is the one
obtained by brute force (i.e. direct) inversion, the blue curve is the prior, and the red curve is
the solution obtained by image reconstruction (the optimal answer). See the text for details.
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Figure 5.
Extraction of the memory kernel from data. The memory kernel as a function of time when
the dwell time distribution coincides with a single exponential in the presence of 40% noise.
Even at 40% noise, image reconstruction can reliably extract the memory kernel and pick
out the delta function expected from the noise. Other features of the memory kernel apparent
from the brute force curve are interpreted as noise and the sharp peak at the origin is the
only qualitatively significant feature apparent from the optimal solution.

Pressé et al. Page 15

J Phys Chem B. Author manuscript; available in PMC 2014 January 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 6.
Extraction of the memory kernel from data. Same as Fig. (4) but now with 20% noise. As
expected here, the optimal solution matches the theoretical solution much more closely.
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Figure 7.
Extraction of the memory kernel from data. Same as Fig. (6) but with a double exponential
decay described by the equation 0.5 × 0.9j + 0.5 × 0.3j. As the two decay constants here are
more similar than in Fig. (6), the negative dip expected theoretically is less pronounced and
is consequently more difficult to pick out at 20%.
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Figure 8.
Extraction of the memory kernel from data. Same as Fig. (7) but now the noise is raised to
40%. For sufficiently similar rate constants, the negative dip is now impossible pick out at
40% noise. This figure should be compared to Fig. (4(b)) where the negative dip is more
pronounced when the decay constants are more dissimilar. In that case, the negative dip is
clearly noticeable even at 40% noise.
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Figure 9.
Extraction of the memory kernel from data. Same as Fig. (5), the monoexponential case, but
now the noise is level is raised to 60%. These histograms have less features than their
biexponential counterparts so it is easier to extract the memory kernel from such histograms
at higher noise levels. The most prominent feature of the memory kernel is, somewhat
surprisingly, still the sharp peak at the origin which is correct. However, at such high noise
levels, the magnitude of the peak recorded at the origin is far from the theoretical exact
answer.
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