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Multivariate multilevel spline models for
parallel growth processes: application to
weight and mean arterial pressure
in pregnancy
Corrie Macdonald-Wallis,a*† Debbie A. Lawlor,a Tom Palmera

and Kate Tillingb

Growth models are commonly used in life course epidemiology to describe growth trajectories and their deter-
minants or to relate particular patterns of change to later health outcomes. However, methods to analyse
relationships between two or more change processes occurring in parallel, in particular to assess evidence for
causal influences of change in one variable on subsequent changes in another, are less developed. We discuss
linear spline multilevel models with a multivariate response and show how these can be used to relate rates
of change in a particular time period in one variable to later rates of change in another variable by using the
variances and covariances of individual-level random effects for each of the splines. We describe how regression
coefficients can be calculated for these associations and how these can be adjusted for other parameters such
as random effect variables relating to baseline values or rates of change in earlier time periods, and compare
different methods for calculating the standard errors of these regression coefficients. We also show that these
models can equivalently be fitted in the structural equation modelling framework and apply each method to
weight and mean arterial pressure changes during pregnancy, obtaining similar results for multilevel and struc-
tural equation models. This method improves on the multivariate linear growth models, which have been used
previously to model parallel processes because it enables nonlinear patterns of change to be modelled and the
temporal sequence of multivariate changes to be determined, with adjustment for change in earlier time periods.
Copyright © 2012 John Wiley & Sons, Ltd.
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1. Introduction

Growth models are often used in life course epidemiology to describe patterns of growth or change,
to assess the influences of rates and timing of change on later health outcomes and to investigate the
effects of exposures on patterns of change [1–6]. In some cases two or more change processes occur in
parallel, such as gains in height and weight during childhood, and it may be of interest to assess rela-
tionships between such processes, or to adjust for the effects of one change process when assessing the
associations of another with a later health outcome. It may also be hypothesised that change in one pro-
cess causes a change in another, or that an unmeasured or latent construct causes change in both of the
processes simultaneously. Bivariate multilevel models (MLMs) for repeated measurements with linear
relationships of both outcome variables with time have been used to demonstrate the correlation between
values of the two variables at baseline and rates of change in the variables over time [7–9]. However, this
does not demonstrate whether change in one variable temporally precedes change in another and is thus
unable to provide evidence towards a causal effect.
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Linear spline models have recently been proposed as a method of representing growth [5] or change
[10], which reduces the dimensionality of repeated measurements. The shape of the trajectory of change
is assumed to be piecewise linear, with knot points defining changes in the magnitude or direction of
association of the response variable with time. The selection of the number and location of knot points
may be determined by the data or by prior knowledge and therefore the linear splines represent the shape
of the change trajectory in a meaningful way, and the linear periods of change provide coefficients that
are more interpretable than for polynomial curves. By first fitting splines to each change process and
then modelling these processes in parallel, we are able to model associations between observed rates
of change in one variable in one period of time and observed rates of change in another variable in a
subsequent period of time, with time periods defined by the splines, and thus we may identify whether
changes in one variable precede changes in another. By examining the temporal sequence of events
there is the possibility of improving causal inferences for pathways between variables. Furthermore,
prior knowledge or hypotheses about which pathways exist may be tested by constraining covariances
between individual-level random effects for different periods of change to be zero and comparing the
model fit to models where these covariances are freely estimated.

We will use the example of weight and mean arterial pressure (MAP) during pregnancy to demonstrate
these models. In normal pregnancy there is a decrease in blood pressure in early pregnancy followed by
a rise in late pregnancy [11]. Hypertensive disorders of pregnancy (HDP), defined by high blood pres-
sure in late pregnancy (after 20 weeks’ gestation), are associated with risk of adverse health outcomes
for both the mother and offspring [12–14]. and gestational weight gain (GWG) has been found to be
positively associated with the risk of developing an HDP [15–17]. However, it is not clear whether
changes in weight during pregnancy precede changes in blood pressure, or whether increases in blood
pressure precede GWG because of increases in oedema and plasma volume expansion [18]. MAP is
the average pressure in an artery over a complete cycle of one heart beat. It is estimated by combining
systolic and diastolic blood pressure and allowing for the lower pressure during the diastolic phase of
the cardiac cycle (see below for description of how this is calculated). In this paper we have used MAP
so that we have one blood pressure variable that we can relate to weight change in pregnancy and that
takes account of blood pressure in both systole and diastole. We show how MLMs and structural equa-
tion models (SEMs) with linear splines for gestational age can be applied to weight and MAP to learn
whether an increase in weight precedes a rise in MAP, and in which periods of pregnancy associations
are strongest. The paper is structured as follows: in Section 2 we describe the data. In Section 3 we
define the multilevel multivariate response model and the derivation of regression coefficients from the
variances and covariances of random effects. In Section 4 we show that the model can be equivalently
defined in SEM form. In Section 5 we provide an application of the model to weight and MAP changes in
pregnancy, and compare results from fitting the model in MLM software (MLWIN) (Rasbash J, Browne
W, Healy M, Cameron B, Charlton C, Centre for Multilevel Modelling, University of Bristol, UK) and
SEM software (MPLUS) (Muthen and Muthen, Los Angeles, California). Section 6 is a discussion of the
methods described.

2. Data

The data are from the Avon Longitudinal Study of Parents and Children (ALSPAC), which is described in
full elsewhere [19] and on the website http://www.bris.ac.uk/alspac. A total of 14,541 pregnant women
were recruited, who were living in a defined area of Avon including the city of Bristol during their preg-
nancy and had an expected delivery date between 1 April 1991 and 31 December 1992. Ethical approval
for the study was obtained from the ALSPAC Law and Ethics Committee and from the National Health
Service local ethics committee. We restrict analysis to singleton live term births (> 37 weeks’ gesta-
tion) with no evidence of pre-eclampsia (defined according to the International Society for the Study
of Hypertension in Pregnancy criteria [20]) or a previous diagnosis of hypertension (N D 11; 650). All
weight and blood pressure measurements, which were taken routinely as part of antenatal care by mid-
wives or obstetricians, were abstracted from obstetric records by six trained research midwives. This
resulted in a median of 14 (interquartile range 11 to 16) blood pressure measurements and median of 12
(interquartile range 10 to 14) weight measurements per woman. MAP was calculated as 1=3� systolic
blood pressure C 2=3� diastolic blood pressure. Confounding variables considered here are maternal
height, age, parity, education, smoking and offspring sex. Maternal age and offspring sex were obtained
from obstetric records and maternal height, parity, highest educational qualification and smoking sta-
tus were obtained from questionnaires administered during pregnancy. Smoking status was classified as

3148

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 3147–3164



C. MACDONALD-WALLIS ET AL.

Table I. Characteristics of the dataset (N D 11; 650) and the subset with complete data on all covariates
(N D 9429).

N with Mean (SD) or % in
Maternal characteristic data Mean (SD) or % complete case

Height (cm) 10,278 164.0 (6.69) 164.1 (6.65)
Age (yrs) 11,650
< 20 4.84 3.45
20� 24 19.30 16.66
25� 29 38.66 39.56
30� 34 27.60 29.95
35C 9.60 10.38

Parity 10,830
Nulliparous 44.56 44.63
Multiparous 55.44 55.37

Smoking in pregnancy 10,945
Never 66.20 68.69
Prepregnancy/first trimester 13.85 13.41
Throughout 19.95 17.90

Highest educational qualification 10,492
CSE/vocational 29.89 28.10
O level 34.51 34.99
A level 22.57 23.35
Degree 13.03 13.55

Sex of offspring 11,650
Male 51.12 50.79
Female 48.88 49.21

‘never’, ‘immediately prepregnancy or first trimester only’, or ‘throughout pregnancy’ for women who
continued to smoke after the first trimester. Table I shows the characteristics of the women included in
the analysis. Linear spline random effects models have previously been fitted to weight measurements
in pregnancy, to model changes in weight with gestational age [21]. A similar method was used to fit a
linear spline random effects model to MAP (see Section 5).

3. Multilevel spline model with a multivariate response

3.1. Multivariate response linear spline random effects model

Multilevel models for repeated measurements have been described by Goldstein [22] and others. We
will first consider a univariate MLM for repeated measurements of a response variable y, measured on
occasions, j D 1; : : : ; rk for each individual k D 1; : : : : ; n, with two levels: measurement occasionj
within individualk . The response variable is modelled as a linear function of time and the intercept and
linear slopes are allowed to vary at the individual level by including individual-level random effects for
these parameters as follows:

yjk D ˇ0k C .ˇ1k C u1k/tjk C u0k C "0jk (1)

where yjk is the value of the response variable, y, at the j th measurement for the kth individual, tjk is
the time of the j th measurement for the kth individual, u0k and u1k are the individual level (level-2)
residuals for the intercept and slope respectively and the ©0jks are the measurement occasion level
(level-1) residuals. These parameters have the following assumptions:�

u0k

u1k

�
�N.0;�u/; �u D

"
�2u0

�u01 �2u1

#

"0jk �N.0;�"/; �" D �
2
"0

(2)

A bivariate response model to investigate linear change in two variables y.i/ for i D 1; 2 over time
has three levels: responses.i/ within measurement occasionj within individualk and thus a model with
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a random intercept and random slope at the individual level is defined by the following formula and
assumptions [22]:
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To extend this to a model where time is represented by a set of m.i/ linear splines for response (i)
where, for m.i/ splines there are m.i/C 1 time points, t .i/0 < t
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1 < : : : < t
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(4)

Hence, a linear spline model with a bivariate response has the form
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(5)
The individual-level random effects give each individual’s deviance from the average intercept .u0k/

and from the average slope of each of the splines .u1k; : : :; um.i/k/ and the individual-level covariance
matrix contains the pair wise covariances between each set of these random effects for the intercept and
slopes within each of the response variables and between the response variables. For simplicity we have
defined a bivariate response model, but this can be extended to more than two response variables. In this
case the covariance matrix at the individual level would include all variances and covariances between
individual-level residuals and the covariance matrix at the occasion level would include all variances and
covariances between occasion-level residuals.

Of note, the model estimated variances and covariances of individual-level random effects, O�2.i1/
ul1

,

O�
.i1/.i2/

ul1l2
, are not the same as the variances and pairwise covariances of the estimated individual-level

residuals produced by MLMs, Ou.i1/
l1k

, Ou.i2/
l2k

, because the residuals are shrunken towards the population
mean by varying degrees, reflecting the level of uncertainty with which each individual’s residual is
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estimated [23]. Because the individual-level variance–covariance matrix estimated by the model pro-
vides estimates of the population variances and covariances of the random effects this should be used to
assess associations between the intercepts and slopes in the population rather than the shrunken residuals.

3.2. Testing hypotheses about temporal relationships between response variables

The model defined in Equation (5) allows the individual-level random effects relating to the intercepts
and each of the slopes of the response variables in different time periods to be correlated with each other.
Specific hypotheses about time periods in which changes in each of the variables are associated may
be applied by setting the covariances between the corresponding pairs of the random effects to be zero,
thus simplifying the model. The hypotheses may be tested by comparing the simplified models with the
full unrestricted model. The fit of the models may be compared by using a likelihood ratio test, with the
difference in degrees of freedom between the models being the number of constrained covariances.

For simplicity of explanation, in the following example hypotheses it will be assumed that the same
splines are used for both response variables; however, these definitions can easily be adapted to take into
account time periods with different endpoints.

Hypothesis 1: Changes in each of the variables are only associated in the same or adjacent
time periods

This hypothesis can be tested by fitting a model with covariances between individual-level random
effects relating to change in nonadjacent time periods to be zero:

�
.i1/.i2/

ul1l2
D 0 for all jl1 � l2j> 1I l1; l2 ¤ 0;

and comparing the fit of this model with the full model with no constraints. The hypothesis can be used
to test whether change in one variable in one time period has long-term associations with change in the
other variable, or whether it is only associated with change in the immediately subsequent time period.

Hypothesis 2: Changes in variable 1 are associated with subsequent changes in variable 2, but
changes in variable 2 are not associated with subsequent changes in variable 1

For this hypothesis, in the restricted model, all covariances between random effects relating to change in
variable 2 and random effects relating to change in variable 1 in a later time period are set to zero:

�
.i1/.i2/

ul1l2
D 0 for all l1 > l2I l1; l2 ¤ 0

This can be used to test for evidence that changes in variable 1 precede changes in variable 2, rather
than changes in variable 2 preceding change in variable 1.

Hypothesis 3: There is a lag time between change in one variable and change in another

To test this hypothesis, in the restricted model the covariance between random effects relating to change
in one variable in a particular time period and random effects relating to change in the other variable in
subsequent time periods is set to zero for any time period where it is hypothesised that there may be a
lag, but covariances with random effects relating to change in time periods after the hypothesised lag
time remain unconstrained

�
.i1/.i2/

ul1l2
D 0 for l2 � l1 < ısI l1; l2 ¤ 0;

where ıs is the number of splines/time periods that make up the hypothesised lag time.
The choice of hypotheses to be tested should be guided by the research question, which the analysis is

designed to answer, and prior knowledge about the plausible relationships between the variables studied.

3.3. Deriving regression coefficients from the random effects variance–covariance matrix

From the covariance matrix of the individual-level random effects relating to baseline values of the
response variable or rates of change in these variables in each time period described by the splines it is
possible to derive regression coefficients to describe the associations between baseline values and rates
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of change in each of the variables in different time periods. The regression coefficient for the change in
random effect u.i1/

l
1

associated with a unit change in random effect u.i2/
l2

is given by [24]

ˇ
.i1/.i2/

l1l2
D
�
.i1/.i2/

ul1l2

�
2.i2/

ul2

i1; i2 D 1; 2I l1 D 0; 1; : : :; m
.i1/I l2 D 0; 1; : : :; m

.i2/ (6)

This formula can be extended to give regression coefficients for the relationship between two variables
when adjusting for others. Fisher described how to adjust regression coefficients for additional variables
[25] and expressions for regression coefficients when adjusting for up to four covariates are given in the
online supplemental material 1.

In the more general case, to regress random effect u.i0/
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be the p�p matrix of variances and pairwise covariances of the independent variables. Then †ˇ D � 0,
meaning that the mutually adjusted regressions can be found by solving the equation:

ˇ D†�1� 0 (7)

3.4. Standard errors of regression coefficients derived from the random effects
variance–covariance matrix

We consider a number of methods for calculating the standard errors of the regression coefficients
derived from the random effects variance–covariance matrix and compare the performance of these
methods on the example dataset in Section 5. The first method estimates the standard errors as if we had
sampled n observations of the individual-level random effects from an underlying population (where
n is the number of individuals in our MLM), whereas Methods 2 and 3 estimate the standard errors
by treating the regression coefficients as nonlinear combinations of the estimates of the variances and
covariances of the random effects, but do this in different ways.

Method 1: If we treat our estimates of the variances and covariances of the random effects as if they
were obtained from a sample of the individual-level random effects, then the standard errors of the
regression coefficients can also be derived using formulae described by Fisher [25]. For the general case
with p independent variables, where ˇ,† and � 0 are as in (7) above, let d be the p�1 vector containing
the diagonal elements of the inverse of †, d D

�
†�1Œ1; 1�; †�1Œ2; 2�; : : :; †�1Œp; p�

�
0. Then the p � 1

vector of standard errors, SEˇ D .SE.ˇ1/; SE.ˇ2/; : : :; SE.ˇp//0 is given by

SEˇ D

vuut�
�
2.i0/

l0
� ˇ0� 0

�
d

n� p � 1
(8)

Method 2: The second approach is to use the delta method to approximate the standard errors [26, 27].
This can be implemented in STATA (StataCorp LP, College Station, Texas) using the command nlcom
and by explicitly defining the formulae for the regression coefficients from the estimated variances and
covariances of random effects (see supporting information for formulae)‡. We note that some programs

‡Supporting information may be found in the online version of this article.
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estimate variances and covariances on transformed scales [28], and implementations of the delta method
are also available in R (The R Foundation for Statistical Computing, Vienna, Austria) [29]. This method
is practical when adjusting for up to three or even four variables; however, because there is no convenient
expression for the inverse of a square matrix of order greater than four, a method that solves the inverse
of † numerically (see Method 3) is more appropriate when adjusting for more variables.

Method 3: The third approach is to generate a large number, q;of realisations of a .m.1/ C m.2/ C
2/ � 1 vector, which we shall call Q� , containing all of the variances and covariances of the ran-
dom effects from the multivariate multilevel spline model (as described in Equation (5)), Q� h D�
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.1/.2/

u0m
.2/

h

; : : :; Q�
2.2/

um
.2/

h

	
0 for h D 1; 2; : : :; q, using a multivariate normal dis-

tribution, Q� � N.�; �/. The mean vector, �, of the multivariate normal distribution is the .m.1/ C
m.2/ C 2/ � 1 vector of estimates of the variances and covariances of the random effects from the

MLM, � D
�
O�
2.1/
u0 ; O�

.1/
u01; O�

2.1/
u1 ; : : :: O�

.1/.2/

u0m.2/
; : : : O�

2.2/

m.2/

�
0, and the .m.1/ Cm.2/ C 2/� .m.1/ Cm.2/ C 2/

variance–covariance matrix, � , is the matrix of the variances and covariances of these estimates,

� D

2
66666664

var
�
O�
2.1/
u0

�
cov

�
O�
2.1/
u0 ; O�

.1/
u01

�
var

�
O�
.1/
u01

�
:::

: : :

cov
�
O�
2.1/
u0 ; O�

2.2/

um.2/

�
� � � � � � var

�
O�
2.2/

um.2/

�

3
77777775

.

After producing q realisations of Q� , the coefficients relating to the regression of one of the random
effects on a subset p of the random effects from the MLM are derived for each of the realisations of Q�
separately. The hth realisations of†, Q†h, and � 0, Q� 0h, defined in (7) are formed from the estimates in Q�h
and the equation Q̌ h D Q†

�1
h
Q� 0h is solved for each of the q realisations. The overall estimate of the vector

of regression coefficients Q̌ D
�
Q̌
1; Q̌2; : : :; Q̌p

�
is produced by taking the mean of the q realisations,
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�
. 95% confi-

dence intervals for each of the elements of Q̌ W Q̌1; Q̌2; : : :; Q̌p are then produced by using the 2:5th and
97:5th percentiles of their distributions over the q realisations as the lower and upper limits, respectively.

We have uploaded STATA commands that implement Methods 2 and 3, named reffadjust4nlcom
and reffadjustsim, respectively, to the Statistical Software Components archive [30].

4. Comparison with a structural equation model

Structural equation models contain a measurement equation and a structural equation [31, 32]. In
the measurement equation, each of the measurements y.i/j loads on the latent variables f .i/

l
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l D 0; 1; : : :; m.i/. The intercept term for variable i is f .i/0 , and the loadings for each of the mea-
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periods defined by the splines. Using the same m.i/C 1 time points, t .i/0 < t
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Any rescaling of this equation proportional to these loadings can also be used. To see that this is

equivalent to Equation (5), an extra subscript representing individuals, k, is added and
�
ˇ
.i/

l
C u

.i/

lk

�
is

substituted for each of the f .i/
lk

. This gives
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where s.i/

ljk
is defined as in Equation (4).

The structural equation of the SEM defines the mutual relationships between the factors. It can be
shown that the regression coefficient for the univariate relationship between two factors, f .i1/

l1
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Adjusted regression coefficients for the relationships between factors and their standard errors can be
shown to be equivalent to those between random effects in a similar way.

The MLM described in Equation (5) is equivalent to the SEM shown in the path diagram in Figure 1.
There have been a number of papers demonstrating the equivalence of linear MLMs and SEMs when
each individual has the same number of measurements occurring at the same time points meaning that
the data are balanced [31–33]. It has also been shown that SEMs can be estimated equivalently to MLMs
when data are unbalanced, by treating the design as balanced with missing data and using full informa-
tion maximum likelihood estimation [33]. However, nonlinear MLMs and generalized linear MLMs do
not always have equivalent parametrisations within the SEM framework [7,33]. For our weight and MAP
example, where individuals have different numbers of measurements and these were taken at different
times for each individual, this can be modelled in an SEM by including all times when measurements
were taken on any individual (rounded to whole week periods) and treating a particular individual’s
measurements as missing for any time points on which they were not measured.

5. Example: bivariate model of weight and MAP change in pregnancy

Where there was more than one blood pressure or weight measurement in a 2-week period, one was
selected at random for the analysis to prevent any individual from having too high an influence on the
models. This left a median of 10 and range of 1 to 18 measurements per woman for analysis. Linear
spline models were fitted to weight and MAP separately to describe the shapes of the average trajec-
tories of weight and MAP with gestational age [11, 21]. Full details of this process are provided in the
online supporting information. The model that minimised the differences between predicted and actual
values over pregnancy for weight had two knot points, at 18 and 28 weeks’ gestation, and for MAP had
three knot points, at 18, 30 and 36 weeks’ gestation. For simplicity, because the first two knot point
locations were similar for weight and MAP and altering the position of the second knot point by 1 week
had little effect on the fit of these models, we have used knot points of 18 and 29 weeks for weight and
18, 29 and 36 weeks for MAP. Baseline was set at 8 weeks’ gestation for both weight and MAP because
there were few measurements prior to this and model predictions earlier in pregnancy than this may
be unreliable. Gestational age was rounded to the nearest whole week to make the MLM comparable
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Figure 1. Path diagram for bivariate response spline model in structural equation format. Path diagram assumes
that measurements y.i/

j
occur at equally spaced time points.

with the SEM. The formulae for the separate multilevel spline models for weight and MAP, without any
confounders included in models were

Weightjk D 62:943C
�
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weight
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�
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weight
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where sweight
1 is the first gestational age spline for weight, up to 18 weeks’ gestation, sweight

2 is the second
spline, from 18� 29 weeks, and sweight

3 is the third spline, from 29 weeks onwards. For MAP sMAP
1 is the

first gestational age spline, up to 18 weeks’ gestation, sMAP
2 is the second spline, from 18 � 29 weeks,

sMAP
3 is the third spline, from 29 � 36 weeks and sMAP

4 is the fourth spline, from 36 weeks onwards.
The shape of the average weight and MAP trajectories across gestation predicted from these models are
shown in Figure 2 , and Figure S1 shows example predicted trajectories of weight and MAP for five
individual women.

We combined both of these separate spline models into one bivariate spline model, with two responses:
weight and MAP. The distributions of weight and MAP at 8 weeks and rates of change in weight and
MAP in each period of pregnancy predicted by this unadjusted bivariate model are shown in Table SI.
We then included the potential confounders: maternal height (continuous variable); age (< 20, 20� 24,
25 � 29, 30 � 34, 35 C years); parity (nulliparous, multiparous); smoking (never, prepregnancy/first
trimester, throughout pregnancy); education (CSE/vocational, O level, A level, degree) and offspring sex
(male, female). Maternal height was centred about the mean (164 cm) and the reference categories for

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 3147–3164
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Figure 2. Average trajectories of (a) weight and (b) mean arterial pressure across pregnancy predicted by
univariate multilevel linear spline models (N D 11; 650).

the other variables were: age 25 � 29 years, nulliparous, never smoked, O level qualification and male
offspring. We completed analyses using STATA version 11.2 and MLWIN version 2.24 with runmlwin
[34] for the MLMs and MPLUS version 5 for the SEMs.

The level 2 (individual-level) covariance matrix and correlations between individual-level random
effects for this model, with all covariances between random effects freely estimated, are shown in
Table II. We will call this MLM Model 1. We then considered several restricted models and tested
different hypotheses about the relationships between changes in weight and MAP by comparing these
restricted models to the full model (MLM Model 1). MLM Model 2 was constrained so that changes
in weight and MAP could only be correlated with weight and MAP change in the same and adjacent
periods, but weight and MAP at baseline were allowed to correlate with changes in weight and MAP in
all periods. In MLM Model 3 MAP change was not allowed to correlate with weight change in subse-
quent periods of pregnancy, but weight change was allowed to correlate with later MAP changes, and in
MLM Model 4 weight change was not allowed to correlate with MAP change in subsequent periods of
pregnancy, but MAP change was allowed to correlate with later weight changes. These models (MLM
Models 3 and 4) were used to test whether changes in weight precede changes in MAP or vice versa.
In MLM Model 5, MAP change up to 18 weeks was not allowed to correlate with weight at baseline or
weight changes in any period, to test whether baseline weight and changes in weight were only asso-
ciated with increases in MAP after 18 weeks, but not associated with MAP change prior to 18 weeks,
when it is decreasing and less likely to be influenced by HDP. Table III shows the deviances of each of
the models tested. The fits of the constrained models were all much poorer than the full model (MLM
Model 1) so this was selected as the model that best represented the relationships in the data and all of
the alternative hypotheses were rejected in favour of this unrestricted model.

We also fitted an SEM to the data as in Figure 1 with each time point representing a week of preg-
nancy up to 44 weeks. The earliest week of gestation for which we had data was week 2, producing 43
time points. We included four splines of gestational age for MAP with the same knot points as in the
MLM and adjusted for the same set of confounders. All intercept and slope latent variable variances
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Table III. Model fit comparisons for full and restricted multilevel models adjusted for confounders
(N D 9429).

Difference in df
Model Deviance (compared with model 1) ¦2p-value

MLM Model 1: Full model 984211.981 — —

MLM Model 2: Changes in MAP or 984277.574 8 < 0:001

weight are only associated in adjacent
periods of gestation

MLM Model 3: Weight change precedes 984241.507 3 < 0:001

MAP change

MLM Model 4: MAP change precedes 984235.532 5 < 0:001

weight change

MLM Model 5: Weight at baseline and 984228.987 4 0.002
changes in weight are only associated
with MAP changes after 18 weeks

Note:
MLM Model 1: Full model with no restrictions.

MLM Model 2: Individual-level random effects for periods of MAP and weight change are correlated only with MAP and weight
changes in concurrent and immediately subsequent periods, but not with later periods (although MAP and weight at 8 weeks (intercept)
may correlate with MAP and weight changes in any time period).

MLM Model 3: Individual-level random effects for periods of MAP change are not correlated with weight change in later periods of
gestation; weight change can correlate with later MAP changes.

MLM Model 4: Individual-level random effects for periods of weight change are not correlated with MAP change in later periods of
gestation; MAP change can correlate with later weight changes.

MLM Model 5: Individual-level random effects for weight at 8 weeks and periods of weight change are not correlated with MAP
change between 8 and 18 weeks (but may correlate with later MAP changes).

and covariances were freely estimated, but the residual variances for weight in each time period were
constrained to be equal, the residual variances for MAP in each time period were constrained to be equal
and a common residual covariance between weight and MAP at each time point was also estimated, to
make equivalence with MLM Model 1. Table IV shows the covariances and correlations between the
intercept and slope latent variables for each of the splines for weight and MAP estimated from the SEM
in MPLUS. The covariances and correlations are very similar to the full MLM Model (MLM Model 1).
We also compared the estimates of mean weight and MAP at 8 weeks’ gestation (baseline) and the mean
weight and MAP slopes in each period of gestation between multilevel and structural equation models
that were not adjusted for confounders and these were equivalent in the MLM and SEM.

Table V shows the associations of weight at 8 weeks and GWG in each period of pregnancy with
MAP changes in the same and subsequent periods of gestation, with and without adjustment for weight
and MAP at baseline and earlier changes in these variables. These regression coefficients were derived
using the variances and covariances of random effects from MLM Model 1, as set out in Equation (7).
The three different methods for producing the standard errors described in Section 3.4 are compared
in Table V. We did not use the delta method (Method 2) for regression models that adjusted for more
than three variables because this method involved specifying an explicit formula for each of the regres-
sion coefficients and these quickly became extremely complex when adjusting for more variables, and
impractical to implement. Confidence intervals using Method 1, which assumed the regression coeffi-
cients had been obtained from a sample of observations of the individual-level random effects, were
much narrower than for Methods 2 and 3, which treated the regression coefficients as nonlinear trans-
formations of the estimates of variances and covariances of the random effects, and these two methods
produced very similar confidence intervals.

Table V shows that weight at 8 weeks’ gestation was positively associated with MAP at 8 weeks and
with MAP change between 8 and 18 weeks, but negatively associated with MAP change between 18
and 29 weeks. GWG between 8 and 18 weeks was not strongly associated with MAP in the same period
but was positively associated with MAP change between 18 and 29 weeks and negatively associated
with MAP change between 29 and 36 weeks, and these associations remained similar when adjusting
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for weight and MAP at baseline. GWG between 18 and 29 weeks was positively associated with MAP
changes in the same period but not in subsequent periods and GWG from 29 weeks onwards was posi-
tively associated with MAP changes between 29 and 36 weeks and from 36 weeks onwards, in models
with and without adjustment for weight and MAP at baseline and earlier changes in these variables.

We also considered associations of MAP at 8 weeks and MAP changes with subsequent changes in
weight, to examine whether there was evidence that MAP increases may influence greater weight gain
for example through increased oedema (Table SII). In models that were unadjusted for baseline weight
and earlier GWG and MAP changes, MAP at 8 weeks was negatively associated with GWG in all three
periods of gestation and MAP changes between 8 and 18 weeks, and between 18 and 29 weeks were
positively associated with GWG in all subsequent periods. However, after adjustment for weight at 8
weeks, there was little evidence that MAP at 8 weeks was associated with changes in weight across
pregnancy, except for a weak association with GWG between 18 and 29 weeks. MAP change between
8 and 18 weeks was not associated with GWG between 18 and 29 weeks but was weakly positively
associated with GWG from 29 weeks onwards in models adjusted for weight at 8 weeks and GWG and
MAP changes in earlier periods of gestation. MAP change between 18 and 29 weeks was not associated
with subsequent GWG in fully adjusted models.

6. Discussion

We have shown that linear splines for two or more change processes can be used in a multivariate
response MLM to investigate associations between rates of change in adjacent periods and to determine
whether change in one time period in one variable is associated with change in another variable in the
next time period, with time periods defined by the splines. It is also possible to adjust for the value of
one or both of the variables at baseline or changes in the variables in earlier time periods.

We compared several methods of deriving standard errors for the regression coefficients for the asso-
ciations between changes in different time periods and found that standard errors using Method 1,
which acted as though we had a sample of individual-level random effects rather than estimates of their
variances and covariances, produced confidence intervals that were too narrow and overestimated the
evidence against the null hypothesis. The delta method is an appropriate way of estimating the variance
of linear and nonlinear transformations of parameter estimates [27], and incorporated the variance of
the estimates of the variances and covariances of random effects in the standard errors of the regression
coefficients derived from these. Using percentiles of the distribution of the regression coefficients to
combine estimates over 10,000 simulated datasets produced comparable confidence intervals for these
regression coefficients to those produced using the delta method. However, it should be noted that these
methods (Methods 2 and 3) both assume that the distributions of the variances and covariances of the
random effects have a multivariate normal distribution, and so should only be used for large samples
where this approximation is justified.

We presented regression coefficients for the associations of pregnancy weight and MAP at baseline
and rates of change in these variables with subsequent rates of change in the other variable, both with
and without adjustment for weight and MAP at baseline and changes in earlier periods of pregnancy for
comparison. This was to assess whether associations between pregnancy weight and MAP change were
confounded by earlier changes or baseline values. In general, careful consideration is needed to identify
which variables to adjust for to tease out evidence for causal relationships and this decision should be
motivated by a particular hypothesis to be tested or by prior knowledge of the relationships between the
variables studied.

Previous studies have used covariation in the random effects of two variables in MLMs, either mea-
sured at a single point in time [35] or longitudinally by examining the covariance between random
intercept and random slope terms in linear growth models [7,8] to investigate relationships between two
variables or rates of change in these variables measured in the same individuals. However, the advantage
of using linear splines is that the timings of associations can be identified. For this example analysis
we were able to assess whether changes in weight or MAP preceded changes in the other variable, and
whether this occurred in all periods of pregnancy or only in early or late pregnancy. This is not possible
with a bivariate linear growth model. The linear splines also have the advantage of representing nonlin-
ear patterns of change in an interpretable way, so that the correlations between periods of linear change
are more meaningful than correlations between random effects for squared or cubic terms in polynomial
models would be. We could also extend the model to include categorical outcomes, provided that the
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assumption of normally distributed random effects was not violated by including these variables. It is
also possible to include different sets of splines for each of the variables if patterns of change in the
variables are different.

Cross-lagged SEMs have been used effectively with panel data to demonstrate possible causal relation-
ships between two or more variables measured at several points in time [36,37] and Granger investigated
causal relationships between two time series by assessing whether earlier values of each of the vari-
ables predicted later observations of the other variable [38]. The synchronous common factor model
may be used when a latent variable is thought to influence the two measured processes simultane-
ously [39]. These models have the flexibility to include prior information by adding constraints and
removing unlikely paths from the models. However, the cross-lagged panel design relies on observations
being made at the same point in time for each individual and for each measure, and these models are
restricted to researcher-determined timing of measurements, rather than time points that may be more
biologically meaningful.

Linear MLMs can be equivalently estimated using the SEM framework with both balanced and unbal-
anced data structures [31–33] but many nonlinear and generalised linear MLMs cannot be equivalently
estimated as SEMs [7, 33]. The MLM approach is a more efficient method of fitting linear models with
unbalanced data because within the MLM framework it is not necessary for data to be measured for all
individuals at all time points, provided that missingness is at random, whereas in SEMs missing data
must be dealt with in some way [31] such as by full information maximum likelihood estimation. Also,
the data management and code become complicated in an SEM when individuals have different numbers
of measurements and these occur at different times for each individual, and the models are computation-
ally intensive if there are many possible time points. Furthermore, it is possible to fit a wider range
of hierarchical models within the MLM framework [31]. However, a particular advantage to the SEM
framework is its high flexibility to specify complex covariance structures, which may not fit into stan-
dard MLMs, and the ability to include latent outcome or predictor variables, which are measured by a set
of indicator variables [32]. It is also possible to investigate mediation by estimating direct and indirect
effects within the SEM framework and obtain tests of overall model fit, which are not available in MLM
software [33]. Curran suggested that there was no benefit to using an SEM instead of a standard MLM,
but that SEMs could be used to incorporate additional model features that could not be included in an
MLM [32]. The multivariate spline MLMs described here could be extended within the SEM framework
to produce growth mixture models from the multivariate splines, where patterns of change in two or
more variables are used as indicators of latent class membership to extract subgroups of the population
with similar change trajectories.

The MLMs and maximum likelihood procedure used in the SEM models to deal with missing data
both assume that the data are missing at random, meaning that the missingness in the data can be
explained by observed variables [40]. If there is reason to suspect that the missing data mechanism
is nonignorable, there are methods available to test the sensitivity of inferences to data being not missing
at random for multivariate longitudinal data [41].

We have demonstrated that these models can be fitted in both MLM and SEM frameworks. The SEM
took longer to converge than the MLM, because of the low coverage of the data. All of the women had
far fewer weight and MAP observations than the number of time periods used and the SEM treated each
time period in which the individual did not have a measurement as a missing value that needed to be
estimated using maximum likelihood estimation. However, despite the difficulties with estimation in the
SEM, the variance–covariance matrix of the latent intercept and slope factors produced by this model
was very similar to that of the individual-level random effects produced by the MLM.

Convergence can also be an issue in MLMs, especially if there are many splines and therefore many
variances and covariances of individual level random effects to be estimated. If the model does not
converge or calculates negative variances for some of the random effects, it is not possible to derive
regression coefficients from these. The choice of the number of splines to use for each variable should
depend on the pattern of change in the variable over time, and should be sufficient to achieve an accept-
able fit to the observations. It is possible to include a greater number of splines if there is a larger sample
size and a high number of measurements per individual, and convergence may be easier if the vari-
ables are measured at the same time points for each individual and fewer covariates are included in the
model. Difficulties in achieving convergence could be overcome by adding one random effect at a time
to the model and reestimating using initial values from the previous model, using fewer splines, or by
reducing the accuracy of the timings of the observations, for example rounding gestational age to whole
weeks rather than the nearest day, because this reduces the variability in measurement times between
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individuals. The complexity of the model fitted in our example appeared to be close to the limit of what
is possible with this dataset, as in some of our constrained models convergence became difficult.

In summary, we found that GWG up to 18 weeks’ gestation was associated with a greater increase in
MAP in the next period of pregnancy (18 � 29 weeks), but associated with a smaller rise in MAP later
on (29�36 weeks). GWG between 18 and 29 weeks was positively associated with concurrent increases
in MAP but not with MAP in later periods, and GWG from 29 weeks onwards was also associated with
concurrent MAP. There was some evidence that MAP change was also related to later GWG, with a
weak positive association between MAP change up to 18 weeks and GWG from 29 weeks onwards.
This method could be applied to many other areas where it is of interest whether changes in one variable
precede changes in another, and in what time periods these relationships exist and are strongest. For
example it could be used to investigate whether changes in weight are related to changes in respiratory
function or bone mass or whether changes in socioeconomic position over time precede changes in a
wide range of health and social outcomes.
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