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e initial response of lymphoid malignancies to glucocorticoids (GCs) is a critical parameter predicting successful treatment.
Although being known as a strong inducer of apoptosis in lymphoid cells for almost a century, the signaling pathways regulating
the susceptibility of the cells toGCs are only partly revealed.ere is still a need to develop clinical tests that can predict the outcome
of GC therapy. In this paper, I discuss important parameters modulating the pro-apoptotic effects of GCs, with a speci�c emphasis
on the microRNA world comprised of small players with big impacts. e journey through the multifaceted complexity of GC-
induced apoptosis brings forth explanations for the differential treatment response and raises potential strategies for overcoming
drug resistance.

1. Introduction

1.1. Glucocorticoids in the Treatment of Lymphoid Malignan-
cies. Glucocorticoids (GCs) are among the most effective
drugs used in the treatment of hematopoietic malignan-
cies of the lymphoid lineage in virtue of their ability to
induce apoptosis of these cancerous cells [1–3]. e main
hematopoietic cancer types that respond well to GC therapy
include T acute lymphoblastic leukemia (T-ALL), chronic
B lymphocytic leukemia (CLL), multiple myeloma (MM),
Hodgkin’s lymphoma (HL), and non-Hodgkin’s lymphoma
(NHL). GCs appear, however, to have little value in the treat-
ment of acute or chronic myeloid leukemia (AML/CML). A
major drawback of GC therapy is the gradual development
of resistance to GC during treatment that limits the clinical
utility of this drug. Poor response to a 7-day monotherapy
with the GC prednisone is one of the strongest predictors of
adverse outcomes in the treatment of pediatric ALL [2, 4].
A great challenge today is to develop strategies that can
overcome the drug resistant phenotype. For this purpose it is
important to understand the underlying mechanisms of GC
resistance and the signaling pathways regulating apoptosis
induced by GCs.

Besides inducing apoptosis of lymphoid cells, GCs are
used in palliative care. GC treatment produces rapid symp-
tomatic improvements, including relief of fever, sweats,
lethargy, weakness, and other nonspeci�c effects of can-
cer. GCs decrease the severity of chemotherapy-induced
emesis. GCs are also used in the clinics for other medical
conditions such as autoimmune diseases, asthma, ulcera-
tive colitis, chronic obstructive pulmonary disease, kidney
diseases, and rheumatologic disorders due to their strong
anti-in�ammatory and immunosuppressive properties. GC
therapy is hampered by a variety of metabolic and medical
complications, including insulin resistance, diabetes, hyper-
tension, glaucoma, osteoporosis, and osteonecrosis with
increased risk of bone fractures [5–10]. Diabetesmay develop
by direct GC-mediated induction of apoptosis in insulin-
producing beta cells of the Langerhans islets [11–13], and
osteoporosismay develop due to apoptosis of osteoblasts [14–
16]. GCs also suppress cell growth and proliferation processes
in the brain [17, 18].

Besides being used as monotherapy at high dosages,
GCs are frequently combined with other chemotherapeu-
tic drugs to achieve rapid and more efficient therapeutic
effects. For the treatment of T-ALL, GCs such as prednisone,
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methylprednisolone, and dexamethasone are usually used
in combination with other chemotherapeutic drugs such as
vincristine, daunorubicine, L-asparaginase, cytosine arabi-
noside, doxorubicin, and cyclophosphamide. is multidrug
regimen prolongs remission, minimizes the long-term use of
prednisone, and thus reduces the steroid-mediated adverse
effects.

Typical B-cell chronic lymphocytic leukemia (CLL) in
the early stage of progression responds well to combination
chemotherapy including an alkylating agent (such as chlo-
rambucil) plus or minus prednisolone. Advanced stages of
the disease oen require the addition of an anthracycline and
a vinca alkaloid for successful therapy. One commonly used
combination is cyclophosphamide, doxorubicin, vincristine,
and prednisolone, a drug combination termed CHOP. Ritux-
imab, a chimeric monoclonal antibody directed against the
B-cell speci�c antigen CD20, is oen added to the therapy,
which is here termed R-CHOP. Rituximab is also combined
with �udarabine and cyclophosphamide in the treatment
of CLL [19, 20]. Another antibody proved to be efficient
against CLL in combination with methylprednisolone is
alemtuzumab, which targets CD52. is combination is
also effective in p53-defective CLLs [21]. However, alem-
tuzumab was not found to be superior to rituximab [22].
e immunomodulatory drug lenalidomide shows also good
activity in relapse/refractory or treatment-naïve CLL [23, 24].

CHOP is also used for non-Hodgkin’s lymphomas
and anaplastic large cell lymphoma (ALCL). Sometimes
interferon-𝛼𝛼2b is added in the treatment of the former. GCs
are also effective for the treatment of Hodgkin’s lymphoma.
Here, prednisone has been used in combinationwith carmus-
tine, vincristine (Oncovin), procarbazine (MOPP), and ritux-
imab. Recently, brentuximab vedotin (Adcetris), an antibody
directed towards CD30 conjugated with the anti-tubulin
chemotherapeutic agent monomethyl auristatin E [25], has
been approved for the treatment of Hodgkin’s lymphoma and
systemic anaplastic large cell lymphoma. CD30 expression
is restricted to only a relative small population of activated
T and B cells, and therefore this treatment is expected to
be more selective for CD30-positive tumor cells. Another
monoclonal antibody entered the clinics is epratuzumab,
which targets CD22 and is proved to be efficient in the
treatment of adult non-Hodgkin’s lymphoma as a single agent
or in combinationwith chemotherapy. A phase II clinical trial
showed that combining epratuzumab with rituximab and
CHOP (ER-CHOP) may have a favorable response on diffus-
ing large B-cell non-Hodgkin lymphoma (DLBCL) [26].

Multiple myeloma (MM) has frequently been treated
with vincristine, doxorubicine (Adriamycin), and dexam-
ethasone (VAD) or prednisone/melphalan. Bortezomib (Vel-
cade), lenalidomide, and to a lesser extend thalidomide have
proven efficient in the treatment of MM in combination
with dexamethasone. is is in addition to autologous or
allogeneic hematopoietic stem cell transplantation. Lenalido-
mide is a 4-amino-glutamyl analogue of thalidomide that
lacks the neurological side effects of thalidomide and has
emerged as a drug with activity against various hematological
malignancies [27, 28]. Bortezomib is a selective inhibitor of
the 26S proteasome that stabilizes many cell cycle-regulatory

proteins. e antitumor effects of bortezomib in lymphoid
tumors have been attributed to NF𝜅𝜅B inhibition through
stabilization of its inhibitor I𝜅𝜅B. Other tumors that have
been treated with combination chemotherapy involving a
GC include medulloblastoma, primitive neuroectodermal
tumors, and ependymomas.

1.2. Alternative Treatment Approaches for Overcoming GC
Resistance. One major obstacle in the therapy of lymphoid
malignancies is the appearance of GC resistant cells. Drug
resistance may occur at the level of the glucocorticoid recep-
tor (GR) or through alterations in downstream regulatory
pathways. In most GC-resistant ALL primary biopsy speci-
mens, GR was found to be functional [29], suggesting that
pharmacological intervention may restore drug sensitivity.
Several strategies have been developed that aim to overcome
drug resistance through speci�cally targeting anti-apoptotic
pathways. Below, three major strategies applicative for GC
therapy are discussed.

1.2.1. Targeting Anti-Apoptotic Bcl-2 Members as a erapeu-
tic Approach for Overcoming GC Resistance. GC resistance
may occur due to overexpression of anti-apoptotic proteins
of the Bcl-2 superfamily [30, 31]. Among these, Bcl-2, Bcl-XL,
and Mcl-1 are frequently overexpressed in lymphomas [32].

1.2.1.1. Targeting Bcl-2 with Small Molecular Inhibitors. Small
molecules that target the anti-apoptotic proteins of the Bcl-2
family are attractive drugs that should be able to overcome
GC resistance. One example is ABT-737, a BH3 mimetic that
inhibits the pro-survival function of Bcl-2, Bcl-XL, and Bcl-w
and induces apoptosis in a variety of cancer cell types includ-
ing leukemias [33–35]. Treatment of the lymphoma-prone
E𝜇𝜇-Myc transgenic mice with ABT-737 prevented the devel-
opment of Myc-driven lymphomagenesis [36], understating
the need for these anti-apoptotic proteins. Combined use
of ABT-737 and the dual speci�city PI3�/mTOR inhibitor
PI-103 led to loss of c-Myc expression and apoptosis of
Burkitt’s lymphoma cells, whose tumorigenicity is driven by
overexpression of the c-Myc gene [37].

e pro-apoptotic effect of ABT-737 in CLL depends on
sufficient amount of Bcl-2 that tonically sequesters the pro-
apoptotic Bim protein [38]. Also, the sensitivity of lymphoma
cell lines to Bcl-2 antagonism is directly related to the amount
of Bcl-2 primed with Bim [35].e sequestration of Bimmay
explain the marked chemosensitivity of CLL and follicular
lymphoma (FL) that express abundant Bcl-2 [38]. is drug-
responsive condition is termed “primed for death”.

ABT-737 potentiated the effect of vincristine, dexametha-
sone, and L-asparaginase (VXL) treatment on ALL cells [39]
and could potentiate the effect of the VXL combination in
chemoresistant human primary ALL xenogras [40]. is
study also shows a synergistic effect between the three
components of the VXL regimen. An additive effect was
observed in primaryMM cells when ABT-737 was combined
with dexamethasone [41, 42].

ABT-263 (Navitoclax) is a second generation, orally
bioavailable small molecule Bcl-2 family protein inhibitor
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that has entered clinical trials with promising efficacy on CLL
[43–46]. ABT-263 has been shown to have synergistic effects
with R-CHOP treatment on mantle cell lymphoma [45]. It
also synergizes with rapamycin in killing lymphomas [47].

1.2.1.2. Overcoming ABT-737 Resistance by Targeting Mcl-
1. Resistance to ABT-737 occurs in lymphoma cells with
high expression of Mcl-1 and/or B�-1/A1 [48]. e pro-
apoptotic Bim that is displaced from Bcl-2 by ABT-737,
becomes captured by either B�-1 or Mcl-1. e resistance
could be overcome by decreasing the Mcl-1 level with
the cyclin-dependent kinase (Cdk) inhibitors �avopiridol
and PHA767491 [48], or by inhibiting mTOR complex 1
(mTORC1) [49] or glycolysis [49, 50].

Another approach to overcome Mcl-1-dependent resis-
tance is to use the small molecule obatoclax (GX15-070) that
has entered clinical trials in the combined treatment of var-
ious hematopoietic neoplasms [51–53]. Obatoclax disrupts
the interaction between Mcl-1 and its pro-apoptotic coun-
terparts including Bak, Bax, and Noxa [54, 55]. Obatoclax
and �avopiridol synergized in overcoming drug resistance
in human myeloma cells through a mechanism involving
Bim and Noxa [56]. e multikinase inhibitor sorafenib
could synergize with Obatoclax in inducing apoptosis in
acute myeloid leukemia (AML) through downregulating
Mcl-1 [57]. Obatoclax could overcome GC resistance in ALL
through induction of apoptosis and autophagy, an effect that
depends on the pro-apoptotic Bak and to a certain extent
also on Beclin-1 [58, 59], a mammalian orthologue of yeast
Atg6 that plays a central role in autophagy [60]. Under certain
conditions, cell death induced by Obatoclax and GC may be
executed in the absence of both Bax and Bak [59]. Under
these conditions, necroptosis ensues necroptosis ensues, a
process mediated by RIP-1 (receptor-interacting protein-1)
kinase and the cylindromatosis deubiquitinase CYLD [59].
RIP-1 kinase plays a dual role in determining the cell fate.
It may promote either cell death or cell survival dependent
on its ubiquitinated state, which is regulated by CYLD and
A20, two NF𝜅𝜅B target genes [61]. Altogether, there is a
general consensus that Obatoclax might be a favorable drug
that ought to be combined with dexamethasone/prednisone
and/or rapamycin to overcome GC resistance in ALL cells
and other hematological lymphoid malignancies.

1.2.1.3. Overcoming Bcl-2-Mediated Resistance with Small
Molecular Inhibitors of XIAP (X-Linked Inhibitor of Apopto-
sis). Bcl-2-mediated resistance in CLL may also be overcome
by small molecular inhibitors of the anti-apoptotic XIAP (X-
linked inhibitor of apoptosis) when exposed to TRAIL [62,
63]. XIAP and the cellular cIAPs 1 and 2 are expressed at high
levels in CLL cells [62, 63]. XIAP inhibitors enhanced Bcl-2
cleavage and induced a conformational change in Bax [62].
Similarly, XIAP inhibitors sensitized ALL for CD95-induced
apoptosis [64]. In patients with T-ALL, poor prednisone
response was associated with increased XIAP expression
[65]. XIAP inhibition using the low-molecular-weight SMAC
mimetic LBW242 resulted in increased prednisone-induced
apoptosis in vitro [65].

1.2.2. Targeting Notch1 as a erapeutic Approach for Over-
coming GC Resistance. Another anti-apoptotic protein that
negatively regulates GC-induced apoptosis is Notch1 [66–
68]. Notch1 is indispensable for normal T-cell development
[69–71] and is an attractive target in the treatment of
hematopoietic malignancies of the T lineage [72]. Mice
transplanted with bone marrow cells transduced with a
constitutively active form of Notch1 develop T-cell neo-
plasms [73], while mice transgenic for constitutively active
form of Notch3 develop thymic lymphomas [74]. Acute
lymphoblastic T-cell leukemia is frequently associated with
increased Notch signaling [75–79], which may be caused
by the chromosomal translocation t(7; 9)(q34; q34.3) [80],
gain-of-functionmutations of Notch1 [81], and/ormutations
in Fbw7 (F-box and WD repeat domain-containing 7), a
negative regulator of Notch1 [82].

One approach to avoid Notch activation is to prevent
its cleavage by the 𝛾𝛾-secretase complex using 𝛾𝛾-secretase
inhibitors (GSI) [83]. GSIs can induce apoptosis of var-
ious lymphoma cell lines [84–87]. However, GSI as a
monotherapeutic agent is oen insufficient for inducing
apoptosis. Rather, GSI can enhance the pro-apoptotic effect
of GCs and other chemotherapeutic agents including the
mTOR inhibitor rapamycin [84, 88]. GSI restored GR auto-
upregulation and induced apoptosis through induction of
Bim [88]. GSI does not overcome GC resistance in T-ALL
de�cient for PTEN [89, 90], supposedly due to elevated Akt
activity. e constitutive Akt activation in the absence of
PTEN leads to increased glucose metabolism and bypasses
the requirement of Notch signaling to sustain cell growth
[89]. In this context it should be noted that Notch1 by itself
may upregulate the P13K/Akt pathway via its target gene
Hes1 [89]. As PTEN is a target of several microRNAs that are
oen expressed abnormally in cancer (see Section 2.4.2.3),
resistance to GSI may be far more prevalent. GSI is also not
efficient in T-ALL carrying activating mutations in Notch1.
Nevertheless, GSI compounds, such as PF-03084014, have
entered clinical trials for refractory T-ALL [91]. Preclinical
data do show a synergistic effect between GSI inhibition
and GC in reducing xenograed T-ALL tumor burden [92].
Another concern associated with the clinical use of GSIs is
severe toxicity to various organs at therapeutic doses, which
may be explained by the broad action of Notch1 as well as 𝛾𝛾-
secretase on various biological systems.e simultaneous use
of GCsmay prevent the GSI-induced gastrointestinal toxicity
via inhibition of goblet cell metaplasia [92]. A more speci�c
inhibition of Notch1 can be achieved by the SAHM1 peptide
that prevents Notch-mediated transcription by interfering
with the Mastermind-Notch interaction essential for Notch-
mediated transcription of target genes [93]. e effect of
this peptide on GC sensitivity awaits examination as well
as its toxicity. Since Notch signaling is intertwined with the
PI3K/Akt/mTOR signaling axis [94–96], the inhibition of
the latter has proven to be more efficient in overcoming
GC resistance (see Section 1.2.3) and would be a better
therapeutic choice.
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1.2.3. Targeting Pro-Survival Protein Kinases. Accumulating
data show that GC therapy can affect the activity of several
protein kinases, and, vice versa, many protein kinases can
affect GC-induced apoptosis [30, 31, 97–99]. e mTOR sig-
naling pathway is frequently activated and found to be essen-
tial for cell growth and survival in lymphoid malignancies
[100–106]. GC resistance frequently appears in malignant
cells due to aberrant activation of various protein kinases
that exert anti-apoptotic effects [30, 31, 67, 97, 107–109].
One strategy to overcome GC resistance would be to prevent
the activities of the PI3K/Akt/mTOR, MEK1/ERK1/2, and
other activated protein kinase pathways.emTOR inhibitor
rapamycin especially has proven efficient in sensitizing
human GC-resistant T-ALL, B-ALL, MM, and NPM-ALK+

(nucleophosmin-anaplastic lymphoma kinase)-DLBCL to
GC-induced apoptosis [110–117]. e combinatory therapy
of rapamycin with dexamethasone was proven to be effective
also in PTEN-negative cells [111]. A lower dose of dex-
amethasone was sufficient for reducing T-ALL burden in a
xenogra model when used together with rapamycin [111].
One major drawback with rapamycin therapy is its immuno-
suppressive function, which adds to the immunosuppressive
function of GCs.

e dual PI3K/mTOR inhibitor NVP-BEZ235 synergis-
tically enhanced cytotoxicity of dexamethasone, doxoru-
bicine, and cytosine arabinoside (AraC), even inGC-resistant
ALL cells [118]. NVP-BEZ235 also overcomes bortezomib
resistance in mantle cell lymphoma cells [119]. e broad-
acting protein kinase staurosporine was especially effective
in overcoming GC resistance in mouse lymphomas that
overexpressed Notch-1, Bcl-2, and/or Bcl-XL [120].is sen-
sitization was achieved through prevention of Akt-mediated
inhibition of GSK3 [67] and induction of the pro-apoptotic
Nur77 [120]. However, staurosporine was less effective on
human T-ALL cell lines (unpublished data), which could
rather be sensitized to GC by rapamycin. In order to
choose the right kinase inhibitor for combinatory therapy,
it is important to determine the kinase responsible for GC
resistance prior to therapy.

e cyclin-dependent kinase (Cdk) inhibitors �avopiri-
dol (Alvocidib), BMS-387032 (SNS-032), sunitinib, and
sorafenib are currently under clinical trials for relapsed/
refractory CLL [121]. Multityrosine kinase inhibitors have
also been developed for the treatment of lymphoidmalignan-
cies. ese include Vandetanib (ZD6474), Bosutinib (SKI-
606), TKI258 (CHIR-258), Pazopanib (GW786034), and
Axitinib (AG013736). CHIR-258, a potent inhibitor of Flt3
(fms-like tyrosine kinase receptor-3), c-Kit tyrosine kinase,
and �broblast growth factor receptor 3 (FGFR3), prevented
cell growth of FGFR3-positive human multiple myeloma
cell lines and augmented their sensitivity to GC-induced
apoptosis [122]. Importantly, neither interleukin-6 (IL-6) nor
stromal cells conferred resistance to CHIR-258 [122].

Other protein kinase inhibitors with more cell-type spe-
ci�c effects have been developed, which are expected to have
less adverse effects. e classical example for efficient use of
a speci�c protein kinase inhibitor in the clinics is the Bcr-Abl
kinase inhibitor STI-572 (Imatinib) used for the treatment of
chronic myelogenic leukemia (CML) [123]. A similar strong

response of a single agent was observed in ALK+-anaplastic
large cell lymphoma (ALCL) patients treated with Crizotinib,
an inhibitor of the ALK tyrosine kinase [124]. Two patients
that relapsed aer CHOP treatment received Crizotinib as a
single agent. Both showed complete response [124].

Another promising target is the B-cell receptor (BCR)
signaling, which is important during B-cell oncogenesis and
is a key to the survival of malignant B cells, including CLL
and DLBCL [125, 126]. e survival of DLBCL may depend
on the nonligand-dependent (tonic) signals from the BCR.
e BCR signaling can be targeted with small molecular
inhibitors directed against Bruton’s tyrosine kinase (Btk),
spleen tyrosine kinase (Syk), or phosphoinositide 3′-kinase
(PI3K) isoform p110𝛿𝛿 (PI3K𝛿𝛿), all being efficient in the
treatment of CLL [125]. Targeting Btk with the inhibitor PCI-
32765 leads to disruption of BCR signaling and was effective
in a preclinical model of B cell non-Hodgin’s lymphoma [127,
128]. PCI-32765 seems also to be promising for the treatment
of CLL [128–131] and MM [132]. Importantly, PCI-32765
induced apoptosis in CLL cells even in the presence of various
exogenous stimuli, including CD40L, BAFF, IL-6, and IL-4
and when cultivated together with stromal cells [131]. Two
other Btk inhibitors, Ibrutinib and AVL-263, are also under
investigation for CLL [121]. e Syk (spleen tyrosine kinase)
inhibitor Fostamatinib had clinical activity in non-Hodgkin
lymphoma and CLL [133]. Syk is a cytoplasmic tyrosine
kinase that is important for immunoreceptor signaling in
B cells. Syk has also been shown to be critical for the
survival and maintenance of mature normal and malignant
B cells [125, 134] and is frequently expressed at high levels
in follicular lymphoma [135]. e PI3K𝛿𝛿 inhibitor GS-1101
(CAL-101) had preclinical and clinical activity against CLL,
mantle cell lymphoma, and MM [121, 129, 136–138]. While
the PI3K𝛼𝛼 and 𝛽𝛽 isoforms are ubiquitously expressed, PI3K𝛿𝛿
expression is largely restricted to hematopoietic cells, where
it plays a role in B-cell homeostasis and function [139]. PI3Ks
are constitutively activated in CLL cells [140–142]. e effect
of the Btk, Syk, and PI3K𝛿𝛿 kinase inhibitors on the sensitivity
to GCs warrants investigations.

Accordi et al. [143] found aberrant activation of pro-
tein kinases in poor prognosis pediatric B-cell precursor-
ALL patients. e p56Lck (lymphocyte cell-speci�c tyrosine
kinase) activity was enhanced in patients with poor clinical
response to prednisone with respect to those with good
response [143]. p56Lck is a nonreceptor tyrosine kinase of
the Src oncogene family mostly expressed in T cells where
it plays an essential role in activation and development,
and in some B cells. Its activity is negatively regulated by
the membrane-bound tyrosine kinase Csk (c-Src tyrosine
kinase). e p56Lck inhibitor Dasatinib (BMS-354825) was
shown to enhance apoptosis induction by dexamethasone in
otherwise GC-resistant CLL cells [144]. is �nding concurs
with the observation by Sade et al. [68] showing that Notch-
mediated resistance of a mouse lymphoma cell line could
be overcome by inhibiting p56Lck. In MM, a synergistic
effect was observed between the Aurora A kinase inhibitor
MNL8237 (Alisertib) and dexamethasone [145].



ISRN Hematology 5

AMPK (AMP activated protein kinase) activation has
a dual effect on cell death and survival, which contextually
depends on signaling alterations with related oncogenic
pathways [146]. MLL-rearranged tumors showed Bcl-2
hyperphosphorylation through AMPK activation [143].
However, in ALL and CLL, activation of AMPK by AICAR
(5-Aminoimidazole-4-carboxamide riboside or Acadesine),
a cell-permeable nucleotide, induces growth inhibition
and apoptosis [146–148]. However, AICAR prevented
glucocorticoid-induced apoptosis [149] and thus cannot
be combined with steroids in the treatment of lymphoid
malignancies.

Of note, inhibition of either Bcl-2 family members,
Notch1, or the Akt/mTOR survival pathways was indepen-
dently sufficient for sensitizing resistant cells to GC, suggest-
ing a tight crosstalk between these pathways, interruption
of one of them being sufficient for abrogating the resistant
phenotype. However, it is likely that using a combination
of these three strategies together with GC should lead to a
more efficient therapy, whichmay require lower dosages with
reduced adverse effects.

2. Parameters Affecting the Susceptibility of
LymphoidMalignancies to
GC-Induced Apoptosis

In order to develop strategies to overcome GC resistance, it
is essential to understand the signaling network regulating
GC-induced apoptosis. Main factors affecting the response to
GC include the basal and inducible GR expression levels, the
induction of and basal expression of genes involved in the
intrinsic apoptotic pathway, the ability of GR to translocate
to the mitochondria, the activity of GSK3 (glycogen synthase
kinase 3), the general protein kinase activation pro�le of
the cell prior to and following GC therapy, the expression
pro�le of anti-apoptotic proteins, and the activities of pro-
survival signaling pathways. e main traits will only be
brie�y described here as these have been extensively reviewed
elsewhere [30, 31, 99, 150–153], and the scope of this paper
is to provide updated data with a speci�c focus on the
microRNA world that has emerged to comprise important
regulators of most biological processes.

2.1. Sufficient Expression Levels of the Glucocorticoid Receptor
(GR/NR3C1). Numerous factors have been shown to affect
GC responsiveness by regulating glucocorticoid receptor
(GR) activity and expression level. ese include GR co-
activators and corepressors [154, 155], GR splice variants
[156–159], GR isoforms [160, 161], and regulators of GC
nucleocytoplasmic shuttle [162–164].

e transcription of human GR is regulated by at least 11
different promoters (1A1, 1A2, 1A3, 1B, 1C, 1D, 1E, 1F, 1H,
1I, and 1J) [155, 165], seven of them being embedded in a
highly enriched CpG island region subjected to methylation
and harbor single nucleotide polymorphisms (SNPs) that
affect their activity [166]. Promoter 1A is involved in the
upregulation of GR by GC in some kinds of T cells, while
downregulated in other cell types [167–169]. GC resistance

in primary pediatric T- and B-ALL could not be correlated
with either basal or stimulated expression of the 1A-, 1B, or
1C transcripts [170].

e GR expression level prior and following GC therapy
affects drug responsiveness. e cellular response to GCs
depends on sufficient GR expression [30, 171–179], and
resistance to GC therapy has been associated with down-
regulation and loss of GR expression in malignant plasma
cells [180, 181]. However, most primary ALL cells showed
upregulation of GR expression upon prednisolone treatment
regardless of their phenotype or sensitivity to GC-induced
apoptosis, suggesting that other factors are more dominant
for conferring a GC-resistant phenotype in these cells [29,
170, 182–184]. Many glucocorticoid-regulated genes (e.g.,
FKBP5 and SOCS1) were upregulated by dexamethasone in
all primary ALL xenogras tested, suggesting for a functional
GR in these leukemic cells [29]. Also, Beesley et al. [185]
observed that receptormutation is not a commonmechanism
of GC resistant in primary ALL [185]. However, the minor
C allele of rs10482605 (1C) has been associated with a
higher complication rate in childhood ALL [186]. A BclI
polymorphism in the NR3C1 gene was associated with
increased lymphocyte response tomethylprednisolone [187].
Also, initial good responder cells may develop resistance
upon repeated GC dosages, a phenomenon that sometimes
occurs due to downregulation of GR [156, 179, 188, 189].
Regulation of GR expression by microRNAs is discussed in
Section 4.1.

Posttranslational modi�cations of GR are another way of
regulating its target gene speci�city and involve several cell-
signaling cascades [30, 190, 191]. GR can be phosphorylated
at Ser211 by CDKs and p38 MAP kinase, and at Ser226 by
JNK. Phosphorylation of GR modulates its transcriptional
activity, alters its protein stability and subcellular location
[192–195]. GR phosphorylation appears to be cell-cycle
dependent [196, 197] andmay affect GC-sensitivity of T-ALL
cells [98, 195].

2.2. e Ability to Upregulate the Pro-Apoptotic Gene Bim in
Response to GC

2.2.1. GR as a Transcription Factor. GR is a well-known
regulator of transcription. In the absence of ligand, GR
is mostly located to the cytosol sequestered to heat-shock
protein complexes [30, 162]. Following GC binding to GR,
the receptor undergoes phosphorylation, dissociates from
the heat-shock complexes, dimerizes, and translocates to the
nucleus where it either promotes or represses a whole series
of genes. Transcriptional activation is either directly medi-
ated by binding of GR to glucocorticoid response elements
(GREs), or through interaction with other transcription fac-
tors such as forkhead transcription factors, thereby increas-
ing their transcriptional activity on target genes. GR may
repress gene expression either through binding to negative
GREs (nGREs) or through interaction with and inhibition
of the transcription factors activating protein-1 (AP-1) and
NF𝜅𝜅B. e O-GlcNAc transferase (OGT) was found to be
involved in GC-mediated transrepression [198]. Hundreds of
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genes are regulated by GCs [199–203], and some genes are
differentially regulated in GC-sensitive versus GC-resistant
cells [29, 199, 204].

2.2.2. Importance of Bim in GC-Induced Apoptosis. Of special
importance is the induction of the pro-apoptotic Bim (BH3-
only B-cell lymphoma 2 (Bcl-2) interacting mediator of cell
death; or BCL2L11—Bcl-2-like apoptosis initiator-11) for
achieving the propensity to undergo apoptosis in response
to GC [29, 30, 67, 205–208]. e central role of Bim in
GC-induced apoptosis is understated by the partial GC
response of Bim−/− thymocytes [205], and GC resistance of
lymphoma cells aer knocking down Bim [67, 207]. Bim is
oen expressed at high basal levels in lymphoid cells [30,
120, 209, 210], and in these cells there is no further need for
upregulating Bim in order to achieve an apoptotic response to
GCs [30, 59]. However, in several T-ALL and B-ALL cells, an
upregulation of Bim in response to GCs is an absolute must,
especially when the basal level is low.

Bim was shown to be upregulated in GC-sensitive pri-
mary T-ALL samples, but not in resistant ones [29, 182].
Also, a comparison of established T-ALL cell lines, Bim was
upregulated in the sensitive ones only [211]. When sufficient
Bim expression cannot be achieved, GC resistance pursued. A
signi�cantly lower Bim expression was detected in high risk
childhood ALL patients who exhibited slow early response to
a standard 4-drug induction regimen compared with patients
who responded rapidly [212].

Homozygous deletion of Bim has been seen in many
mantle cell lymphomas [213] and silencing of Bim by
promoter methylation and mutation is common in B-cell
lymphomas [214]. However, in pediatric ALL, no correlation
between Bim CpGmethylation and GC resistance was found
[29]. Rather, GC resistance in primary pediatric ALL sam-
ples correlated with decreased histone H3 acetylation [29].
e histone deacetylase inhibitor vorinostat relieved Bim
repression and exerted synergistic antileukemic efficacy with
dexamethasone both in vitro and in vivo using a xenogra
model [29]. Bimhas been shown to be a prognostic biomarker
for early prednisolone response in pediatric ALL [4].

2.2.3.e Pro-Apoptotic Function of Bim andOther Proteins in
GC-Induced Apoptosis. Bim is a potent pro-apoptotic protein
belonging to the Bcl-2 protein family [215, 216]. Bim binds to
the pro-survival proteins Bcl-2, Bcl-XL, and Mcl-1, thereby
allowing Bax and Bak to promote apoptosis [217]. Bim may
also directly bind to Bax andBak, triggering a conformational
change required for their subsequent oligomerization on the
mitochondrial outermembrane [215]. Bimappears in various
alternative splice variants, which exhibit different intrinsic
toxicities and modes of regulation [218]. In GC-resistant
primary CLL, Bim was upregulated by dexamethasone, but
failed to activate Bax and Bak due to exclusive sequestration
to Bcl-2 [219].

Bim may cooperate with the pro-apoptotic PUMA (p53
upregulated modulator of apoptosis) in mediating apoptosis
induced by dexamethasone [220]. In B-lymphoid cells, Bmf
(Bcl-2 modifying factor) is also important for GC-induced

apoptosis [221]. Other pro-apoptotic members of the Bcl-
2 family that is not directly upregulated by GCs, but may
contribute to the cell death response, include Bid, Bad,
and Noxa. Essential downstream mediators are Bak and
Bax [222] that are activated by Bim. Also the thioredoxin-
interacting protein Txnip (VDUP1/TBP-2) has been shown
to be upregulated byGC and could contribute to GC-induced
apoptosis in onemouse lymphoma cell line [223]. DuringGC
monotherapy of childhood ALL, GCwas found to repress the
expression of the pro-apoptotic PMAIP/Noxa, which could
be one mechanism leading to impaired GC sensitivity [224].
Conditional overexpression of Noxa restored GC sensitivity
[224]. Another transcript of the Bim locus, termed “Bam,” is
also induced by GCs in ALL cells, but its importance in GC-
induced apoptosis is still not de�ned [225].

2.2.4. Regulation of Bim Expression by Transcription Factors.
Bim expression is tightly regulated both at the transcription
and posttranscriptional levels [215, 218] (Figure 1). No GRE
element has been found in the Bim promoter. Rather, GC-
induced Bim expression in lymphoid cells requires p38 acti-
vation and is mediated by the forkhead transcription factor
FoxO3a/FKHR-L1 [226]. FoxO3a has also been shown to
promote Bim transcription in various other cellular systems
[227–229] andmay cooperatewithRunx1 (Runt-related tran-
scription factor 1) [230]. Differential recruitment of FoxO3a
to the Bim promoter was observed aer dexamethasone
treatment of GC-sensitive versus GC-resistant childhood
ALL xenogras [29]. FoxO3 was found to be an immediate
early GR target, whose transcription is further enhanced
by stimuli that activate the AMP-activated protein kinase
AMPK [231]. e activity of FoxO transcription factors is
tightly regulated, inhibited by Akt and ERK signaling, while
promoted by p38 signaling [232–236].

Both ERK1/2 and Akt antagonize apoptosis by reducing
the Bim expression level. ERK1/2 also directly phosphory-
lates Bim leading to its proteosomal-dependent degradation
[237]. e ribosomal protein S6 kinase (RSK) activated
downstream of ERK1/2, phosphorylates BimEL, providing
a binding site for the F-box proteins beta-transducin repeat
containing protein (𝛽𝛽TrCP)1 and 𝛽𝛽TrCP2, which promote
the polyubiquitination of BimEL [238]. ERK1/2 phospho-
rylates BimEL at Ser55, Ser69, and Ser73. e ERK1/2-
mediated phosphorylation of BimEL at Ser69 facilitates
optimal phosphorylation by RSK at Ser93, Ser94, and Ser98
and this motif serves as the binding sites for 𝛽𝛽TrCP1/2 [238].
While ERK1/2 lowers the affinity of Bim for Mcl-1 and Bcl-
XL and targets Bim for degradation [239], phosphorylation of
Bim by JNK increases the pro-apoptotic activity of Bim [240,
241]. GCs may repress ERK1/2 activity through upregulation
of mitogen-activated protein kinase phosphatase 1 (MKP-1)
[242]. Several drugs that inhibit the ERK1/2 and PKB/Akt
pathwaysmay facilitate upregulation of Bim expression.MEK
inhibitor-induced Bim expression per se is usually insuffi-
cient to promote apoptosis. Additional signals are required,
such as simultaneous inhibition of the PKB/Akt pathway or
the downstream mammalian target of rapamycin (mTOR)
kinase [218]. Apoptosis may be induced in a variety of ALL
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cells when cotreated with dexamethasone and a MEK/ERK
inhibitor or an Akt inhibitor [67, 108, 243].

Early studies by the ompson research group noticed
that c-Jun played a role in GC-induced apoptosis [244].
An increase in c-Jun was observed in GC-sensitive, but
not GC-resistant T-ALL cell lines, while c-Fos and JunD
were unaffected by the steroid. Antisense to c-Jun conferred
GC resistance [244]. Recently, the c-Jun issue was revisited.
Chen et al. [204] recon�rmed that c-Jun was upregulated by
GCs in GC-sensitive, but not GC-resistant ALL cells. ey
further showed that c-Jun is recruited to the AP-1 site of
the Bim promoter upon GC treatment [204]. Another study
showed that dexamethasone-induced Bim expression was
decreased in cells harboring a dominant-negative c-Jun [245],
suggesting a role for c-Jun in the upregulation of Bim. is
research group also found a Runx2-dependent upregulation
of Bim. A p38 inhibitor prevented dexamethasone-induced
expression of Runx2, c-Jun, and Bim, suggesting that p38-
MAPK activation acts upstream to the induction of these
three molecules [245].

2.2.5. Regulation of Bim Expression by MicroRNAs. Another
level of Bim regulation is through microRNAs. Bim tran-
scription is repressed by the miR-17∼92 microRNA cluster
[246], which, in turn, is repressed by GCs [206]. us,
one mechanism by which GCs upregulate Bim is through
repression of miR-17∼92. Of note, the miR-17∼92 cluster is
o�en overexpressed or ampli�ed in human cancers [247–
252], thereby preventing the upregulation of Bim required for
an apoptotic response. Another microRNA that suppresses
Bim expression is miR-26a, which is frequently upregulated
in T-ALL patients [253]. In gastric cancer, miR-106a∼363
targets Bim [254].emiR-106a∼363 cluster located at chro-
mosome Xq26.2 is the paralogue of miR-17∼92 and encodes
formiR-363, miR-106a, andmiR-20b [255]. In hepatocellular
carcinoma, miR-25 of the miR-106b∼25 cluster targets Bim
[256]. Also, the miR-106b∼25 cluster, which includes miR-
106b, miR-93 and miR-25, is a paralogue of the miR-17∼92
cluster and located on chromosome 7 within the thirteenth
intron of the protein-coding gene Mcm7.

2.2.6. Regulation of FoxO Transcription Factors by MicroR-
NAs. Also, the FoxO transcription factors, important for
Bim upregulation, are regulated by microRNAs [257] (Figure
2). FoxO1 and FoxO3 transcripts might be targeted by
miR-182 [258–261], miR-1 [262], miR-27a [258], miR-96
[258], and miR-155 [263, 264]. miR-155 plays a role in
the activation and function of B and T lymphocytes [265,
266] (see Section 3.1.6). miR-182 is upregulated in several
human lymphoid cell lines [261]. miR-182 expression was
higher in GC-resistant cells in comparison to GC sensitive
ones [261]. Increased expression of miR-182 reduced total
FoxO3a expression inT-ALL cells with consequent lower Bim
expression. FoxO3a and Bim increased upon downregulation
ofmiR-182, suggesting thatmiR-182 is involved in conferring
GC resistance [261].

e expression of the miR-182∼96∼183 cluster was
induced in splenocytes from mouse with experimental sys-
temic lupus erythematosus (SLE) [267], suggesting a role
of these microRNAs in the breakdown of immunological
tolerance and the manifestation of chronic autoimmune
in�ammation. is microRNA cluster was also upregulated
upon T-cell activation by an IL-2-dependent manner. Pre-
vention of the expression of the miR-182∼96∼183 cluster
led to increased FoxO1 expression and limited population
expansion of activated T-helper cells, due to increased cell
death [260].

Vice versa, FoxO3a was found to negatively regulate the
oncomiR miR-21, which may be one mechanism by which
FoxO3a regulates apoptosis [268]. As miR-21 targets PTEN
[269, 270], activation of FoxO3 by GCs [271] may be one
mechanism responsible for the GC-induced reduction in Akt
activity.

2.3. Mitochondrial Translocation of GR. Besides function
as a transcription factor in the nucleus, GR was found to
translocate to the mitochondria in GC-sensitive, but not
GC-resistant, lymphoma cell lines [272]. GR was also found
to translocate to the mitochondria in GC-sensitive thymo-
cytes [272, 273]. Although there is one paper describing
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an interaction between GR and Bcl-2 in the mitochondria
[274], GC-induced mitochondrial GR translocation in GC-
sensitive thymocytes and lymphoma cells proceeded in the
absence of Bcl-2 [272]. Exclusive overexpression of GR in
the mitochondria was sufficient for inducing apoptosis [272],
suggesting that mitochondrial GR may contribute to GC-
induced apoptosis.

Glucocorticoids are known to exertmultiple effects on the
mitochondria. Glucocorticoid treatment inhibited Complex
I and Complex III of the electron transport chain, and the
mitochondria was found to be the primary source of H2O2
production required for GC-induced apoptosis of lymphoma
cells [275, 276]. GCs may interact with the mitochondrial
thioredoxin Trx2, a redox regulator [277], and directly
modulate mitochondrial gene transcription [278]. Several
mitochondrial metabolite and protein transporters and two
subunits of the ATP synthase were downregulated in T-
ALL and precursor B-ALL cells at the gene expression level
by dexamethasone. ese changes were observed in GC-
sensitive, but not GC-resistant, cells [279]. Corticosterone
and other steroids were found to directly act onmitochondria
to inhibit mitochondrial ATP production by suppressing
electron transfer from NADH to the electron transfer chain
through complex I [280].

2.4. e Kinome. e cellular protein kinase network
(kinome) has critical in�uence on the GC sensitivity of
lymphoid cells [30, 31, 97, 281]. Above, I discussed the
importance of p38 in Bim induction and activity. Below,

I will provide data supporting an involvement of GSK3
(glycogen synthase kinase 3) in GC-induced apoptosis, and
the antagonism of its activity by protein kinases such as Akt
and mTOR, which leads to GC resistance.

2.4.1. GSK3 (Glycogen Synthase Kinase 3) Activity. e activ-
ity of GSK3 was found to be essential for GC-induced
apoptosis [67, 282]. GSK3 inhibitors prevented GC-induced
apoptosis, and GC resistance frequently occurs through inhi-
bition of GSK activity. Reactivating GSK3 by using inhibitors
of the PI3K-Akt or mTOR pathways sensitized GC-resistant
cells to GC-induced apoptosis [67, 108, 115, 116, 243, 283].
GSK3𝛼𝛼 was found to interact with GR in the absence of
ligand and released from GR following exposure to GC [67].
GC treatment led to interaction of both GSK3𝛼𝛼 and GSK3𝛽𝛽
with Bim [67]. GSK3𝛽𝛽 also regulates GR transcriptional
activity of Bim, IAP1 (Inhibitor of Apoptosis 1), and GILZ
(glucocorticoid-induced leucine zipper) [282, 284]. is
effect of GSK3 on GR transactivation was independent of
known GSK3𝛽𝛽 phosphorylation sites [284]. GSK3𝛽𝛽 was also
shown to be involved in GC-induced bone lost [285].

2.4.2. Activity of the PI3K-PKB/Akt, mTOR, and ERK Pro-
Survival Pathways. ePI3K/Akt andmTOR signaling path-
ways are frequently hyperactivated in GC-resistant T-ALL
[104, 286, 287] and is associated with poor prognosis and
chemotherapeutic resistance in pediatric B-precursor ALL
[288]. mTOR is a crucial regulator of cell metabolism,
growth, and proliferation and mTOR is positively regulated
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by PI3K/Akt and Notch1 [96, 289], while negatively regu-
lated by the tuberous sclerosis tumor suppressor complex
(TSC1/TSC2). mTORC2 activity was essential for Notch-
driven T lymphomagenesis [290]. Activation of mTOR con-
tributes to tumor cell survival in ALK (anaplastic lymphoma
kinase)-positive ALCL (anaplastic large cell lymphoma)
[102], mantle cell lymphoma [103], childhood B-precursor
ALL [112], T-ALL [110], and AML [291]. Akt and mTOR
confer drug resistance by phosphorylating a series of targets
[292, 293]. Phosphorylation and inactivation of GSK3 is a
major cause for GC resistance [67] that can be overcome
by reactivating GSK3, for example, by Akt inhibitors or
mTOR inhibitors. As mentioned in Section 1.2.3, the mTOR
inhibitor Rapamycin is efficient in overcoming GC resistance
in various lymphoid malignancies. GC resistance can also
be overcome in Akt-active lymphoma cells by inhibiting Src
members (e.g., by PP1), PI3K (e.g., Wortmannin), or an Akt
inhibitor [67, 68].

Combination of GC with rapamycin or GC with Oba-
toclax led to reduced Akt phosphorylation at Ser473 [59],
suggesting that mTOR may also act upstream to Akt
[294]. mTORC1 directly phosphorylates Akt/PKB on Ser473
and facilitates r308 phosphorylation by PDK1 [295].
GCs could also independent of other cytotoxic agents
reduce mTOR activity in lymphoid cells [296]. Low-dose
arsenic trioxide could sensitize GC-resistant ALL to Dex
through an Akt-dependent pathway [286]. Inhibition of
mTOR with rapamycin, which binds to FKBP12, leads to
increased Bim expression and overcomes Ras-dependent
survival signals [297]. Synergy between mTOR inhibitors
(e.g., rapamycin (Sirolimus) and CCI-779 (Temsirolimus))
and other chemotherapeutic agents has been observed in B-
and T-lineage ALL cell lines and preclinical models [96, 298].

2.4.2.1. Negative Regulation of Akt by PTEN. e Akt activity
is negatively regulated by PTEN (phosphatase and tensin
homolog deleted on chromosome 10), a tumor suppressor
gene that is suppressed, mutated, or deleted at high frequency
in a large number of cancers [299]. PTEN mutations or
deletions are frequent in T-ALL and PTEN deletions are
associated with less favorable outcome in T-ALL [104, 300].
e PTEN status of the cell affects drug sensitivity. For
instance, treatment of T-ALL with gamma secretase inhibitor
(GSI) was only efficient if the cells expressed functional
PTEN [90]. One mechanism by which Notch confers GC
resistance is through PTEN inhibition leading to Akt activa-
tion. PTEN speci�cally catalyzes the dephosphorylation of 3′-
phosphate of the inositol ring in phosphatidylinositol (3,4,5)-
triphosphate (PIP3) resulting in the biphosphate product
phosphatidyl (4,5)-biphosphate (PIP2). PIP3 is a second
messenger generated by PI3K that binds to the pleckstrin
homology (PH) domain of Akt, which allows its phospho-
rylation and activation by the 3-phosphoinositide-dependent
protein kinase 1 (PDK1) [292].

2.4.2.2. Regulation of PTEN Stability by Phosphorylation
and Ubiquitination. Taken into account the important role
of PTEN in determining drug sensitivity, mechanisms

regulating PTEN activity and stability have strong impact on
the drug response. PTEN is regulated by several mechanisms
[301]. Besides gene mutation and deletion, reduced PTEN
expression has been attributed to epigenetic events such as
promoter methylation [302, 303]. At the posttranslational
level, phosphorylation and ubiquitination decrease PTEN
protein levels, while oxidation and acetylation reduce PTEN
activity [301]. Rak phosphorylation of PTEN at Tyr336
stabilizes the PTEN protein [304], while phosphorylation at
r366, Ser370, Ser380, r382, and Ser385 by casein kinase
2 (CK2) and GSK3𝛽𝛽 reduces its stability [305, 306].

PTEN is regulated by the protooncogene ubiquitin ligase
NEDD4-1 (neural precursor cell expressed, developmentally
downregulated 4) that promotes PTEN for proteasomal
degradation [307]. In multiple human cancer samples where
the genetic background of PTEN was normal, but its protein
level was low, NEDD4-1 was highly expressed [307]. Upon
TCR/CD28 stimulation of T cells, PTEN undergoes inacti-
vation by NEDD4-1 [308]. e association between PTEN
and NEDD4 could be impeded by the E3 ubiquitin ligase
Cbl-b (Casitas-B-lineage lymphoma protein-b) [308]. Cbl-
b−/− T cells show elevated Akt activity, which was abrogated
by simultaneous de�ciency in NEDD4 [308]. PTEN is also
negatively regulated by the anti-apoptotic XIAP (X-linked
inhibitor of apoptosis) that promotes PTEN for polyubiq-
uitination and proteosomal degradation [309]. Induction of
apoptosis in B-CLL by arsenic trioxide was shown to lead
to activation of c-Jun-NH2 terminal kinase (JNK), inactiva-
tion of AKT and NF𝜅𝜅B, XIAP downregulation, and PTEN
upregulation [310]. Two other E3 ligases downregulating
PTEN include WWP2 (WW-domain containing protein-
2 or AIP-2, atrophin-1-interacting protein 2) [311], and
CHIP (chaperone-associated E3 ligase C terminus of Hsc70-
interacting protein) [312]. Recently, PTEN was shown to be
upregulated by dexamethasone [313].

2.4.2.3. Regulation of PTEN Stability by MicroRNAs. PTEN
expression can also be repressed by a range of microRNAs
including the miR-17∼92 cluster [247, 248], miR-106b∼25
[314], miR-21 [269], miR-26a [253, 315], miR-29b [316],
miR-214 [317, 318], miR-216a and miR-217 [319], miR-212
[320], miR-221, and miR-222 [321] (Figure 3).

2.5. Expression Levels of Anti-Apoptotic Proteins of
the Bcl-2 Superfamily

2.5.1. Bcl-2 and Bcl-𝑋𝑋𝐿𝐿. Bcl-2 and Bcl-XL are anti-apoptotic
proteins residing in the mitochondrial outer membrane and
in the endoplasmic reticulum.ey prevent apoptosis of vari-
ous chemotherapeutic drugs includingGCs by capturing pro-
apoptotic members of the Bcl-2 superfamily, including Bim,
Bax, and Bak [215, 322, 323]. Bcl-2 may also regulate gene
expression [324, 325], cell cycle [326–328], activate ERK1/2
[324, 329], andmodulate the activities of transcription factors
such as p53 [330], E2F [325], NF𝜅𝜅B [331], and Notch [332,
333]. Bcl-2 promotes T-cell lymphoma in a p27Kip1-de�cient
background [334]. is may be explained by the ability of
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Bcl-2 to modulate p27Kip1 expression and promote G0 arrest
[325, 327, 331, 335, 336].

Long-term exposure to GCs could overcome resistance
caused by either Bcl-2 or Bcl-XL [30, 120, 337]. Overexpres-
sion of Bcl-2 is common in leukemias and lymphomas [338–
341]. In follicular lymphoma (FL) and diffuse large B-cell
lymphoma (DLBCL), Bcl-2 upregulation is commonly due
to the t(14,18)(q32; q21) translocation, which places the Bcl-
2 gene under the control of Ig heavy chain enhancers [342–
344].

2.5.1.1. Targeting of Bcl-2 by MicroRNAs. Overexpression of
Bcl-2 is common in CLL due to the loss or downregulation
of the human chromosome 13q14 locus, which harbors
the miR-15a and miR-16-1 cluster [345]. ese microRNAs
directly target the anti-apoptotic Bcl-2 protein [346]. Over-
expression of either microRNA was sufficient to completely
abrogate Bcl-2 expression in CLL cells. Overexpression of
miR-15a and miR-16-1 in CLL cells led to cleavage of
procaspase-9 and PARP (poly-ADP-ribose polymerase) and
activation of the intrinsic apoptosis pathway. ese two
microRNAs could serve as natural antisense Bcl-2 actors that
have potential use in the therapy of Bcl-2 overexpressing
tumors [346].

e tumor-suppressor miR-34a, a pivotal member of the
p53 network, also downregulates Bcl-2 [347, 348], which
may be one mechanism by which p53 activation leads to
downregulation of Bcl-2. Recent studies suggest that miR-
125b also may contribute to Bcl-2 repression [349–351].
It also targets Mcl-1 and Bcl-w, and indirectly Bcl-XL by
attenuating IL-6/STAT-3 (signal transducer and activator of
transcription 3) signaling pathway [350, 352]. miR-125b may
function both as tumor suppressor and as an oncogene [350]
and has beenwidely considered as conferring drug resistance,
among others by downregulating Bak1 (Bcl-2 antagonist
killer 1) [353–355] and Bmf [356]. Over-expression of miR-
125b could induce leukemia in a mouse model [357].

miR-181a/b that shows altered expression in CLL could
also target Bcl-2, besides acting on Mcl-1 and XIAP [358–
360]. Bcl-XL can be targeted by the tumor suppressor
microRNA let-7 [361] and miR-491 [362]. A putative GR

binding site was found within the promoter region of let7a2
[363].

2.5.2. Mcl-1. A predominant feature of the gene expression
signature leading to GC resistance in ALL was found to
be elevated expression of the anti-apoptotic Mcl-1 (myeloid
cell leukemia sequence 1) [364, 365]. Mcl-1 expression is
especially high in MLL-rearranged ALL, which represents an
unfavorable type of leukemia that is oen highly resistant
to GCs [365]. Mcl-1 is also frequently overexpressed in
B-cell and mantle-cell lymphomas, CML, CLL, and MM.
Mcl-1 expression renders cancer cells resistant to the Bcl-2
antagonist ABT-737.

Mcl-1 is an anti-apoptotic protein that sequesters the
pro-apoptotic proteins tBid, Bim, Puma, Noxa, and Bak
[366]. Besides preventing GC-induced apoptosis [287], Mcl-
1 confers resistance to TRAIL (tumor necrosis factor-related
apoptosis inducing ligand)-induced cell death [367].

2.5.2.1. Regulation of Mcl-1 Stability. Mcl-1 differs from Bcl-
2 and Bcl-XL in having a short protein turnover regulated
by the 26S proteasome and its expression is tightly regulated
[368]. Unlike Bcl-2, chromosomal translocations have not
been implicated in dysregulated Mcl-1 levels. Rather, cellular
signaling regulates Mcl-1 function and expression at the
posttranslational level.

Rapamycin, a mTOR inhibitor that sensitizes resistant
ALL cells to GC, reduces the expression level of Mcl-1 [113,
287]. Mcl-1 level could also be reduced by the protein kinase
inhibitor Sorafenib. e degradation of Mcl-1 depends on
GSK3-mediated phosphorylation of Mcl-1 at Ser159 [369,
370]. E3 ubiquitin ligases implicated in the regulation of
Mcl-1 include Mule (Mcl-1-ubiquitinase ligase E3) [371],
SCF𝛽𝛽-TrCP (Skp1/Cul1/F-box protein 𝛽𝛽-transducin repeat-
containing protein) [369], and Fbw7 (F-box and WD repeat
domain-containing 7) which is part of the Skp1-Cullin1-
F-box (SCF) E3 ligase complex [372]. e deubiquitinase
USP9X (ubiquitin speci�c peptidase 9 X-linked) is an impor-
tant regulator of Mcl-1 stability [373]. Silencing of USP9X
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resulted in loss of Mcl-1. USP9X removes degradative Lys48-
linked polyubiquitin chains on Mcl-1. High levels of Mcl-
1 correlated with elevated USP9X expression in follicular
lymphoma, diffuse large B-cell lymphoma, and some other
cancer samples. Increased expression of USP9X mRNA was
associated with poor prognosis of multiple myeloma [373].
USP9X also interacts with mTOR, negatively regulating its
activity [374].

Interaction with BH3-only family members may also
affect Mcl-1 stability. Whereas Noxa may destabilize Mcl-1,
Bim increases its stabilization [375]. Noxa-induced degrada-
tion of Mcl-1 requires the E3 ligase Mule. Overexpression
of Noxa triggered an increase in the Mule/Mcl-1 interaction
in parallel to a decrease in Mule/USP9X complex formation
[376].

In an Akt-driven, E𝜇𝜇-Myc lymphoma mouse model,
translational regulation of Mcl-1 by mTOR has been impli-
cated in promoting lymphomagenesis [377]. As GC may
activate GSK3 [67] and GSK3 inhibits mTOR through phos-
phorylation of TSC2 [378] and promotes Mcl-1 degradation
[369, 370], Mcl-1 expressing lymphoid cells may ultimately
undergo apoptosis if the exposure time to GC is sufficiently
long. is may explain why many Mcl-1-positive ALL cells
exhibit delayed response to GCs, and not complete resistance
[67, 108]. Also, the anti-apoptotic function of Mcl-1 appears
to require simultaneous expression of other anti-apoptotic
Bcl-2 family members [379]. Similarly, overexpression of
Mcl-1 in Bcl-2- and Bcl-XL-negative mouse double posi-
tive thymic lymphoma cells did not confer GC resistance
upon these cells [120]. Usually, Mcl-1 is expressed together
with other anti-apoptotic proteins in GC-resistant lymphoid
malignancies.

2.5.2.2. Regulation of Mcl-1 by MicroRNAs. Mcl-1 is also
regulated bymicroRNAs (Figure 2), includingmiR-29a [380],
miR-29b [381–383], miR-101 [384], miR-125b [350], miR-
181a/b [358, 385], miR-133b [386], miR-193b [387], and
miR-512 [388]. ALK-positive anaplastic large cell lymphomas
(ALCL) express low levels ofmiR-29a, whose downregulation
requires an active NPM-ALK kinase, and may probably also
be due to methylation repression [380]. Enforced miR-29a
expression reduced Mcl-1 expression in ALCL cells and
reduced tumor growth in a xenograed model [380]. miR-
29b is downregulated in primary MM and AML samples
and forced overexpression of miR-29b-induced apoptosis in
MM and AML cells [381, 383]. miR-29b overexpression also
downregulated the expression of the DNAmethyltransferase
isoforms DNMT1, DNMT3A, and 3B [383].e global DNA
hypomethylation induced by miR-29b led to reexpression of
tumor suppressor genes such as the CDK inhibitor p15INK4b
[383]. Altogether, these data propose that targeting Mcl-1
with microRNAs such as miR-29 represents a potential tool
to constrict tumor growth of Mcl-1 positive lymphomas.

2.5.3. Effect of Bcl-2 Family Proteins on Intracellular Ca2+

Mobilization. GCs release Ca2+ from the endoplasmic retic-
ulum into the cytosol, which in turn increases the amount
of mitochondrial Ca2+. e increase in mitochondrial Ca2+

induces cytochrome C release and trigger apoptosis. Elevated
expression of calcium-binding proteins S100A8 and S100A9
and of the anti-apoptotic Mcl-1 (myeloid cell leukemia-
1) inhibits the free cytosolic Ca2+ and mitochondrial Ca2+
signals, respectively, thereby imposing GC resistance [287,
365, 389, 390]. Downregulation of S100A8 and S100A9 by
the Src kinase inhibitor PP2 sensitized MLL-arranged ALL
cells otherwise resistant to prednisolone-induced cell death
[389]. Bcl-2 inhibits apoptosis in part by decreasing the size
of Ca2+ stores in the endoplasmic reticulum resulting in
reduced Ca2+ transfer to the mitochondria [391–393]. One
mechanism is through interaction of Bcl-2with IP3R (inositol
1,4,5-triphosphate (InsP3) receptor), which is the principle
ERCa2+ release channel inmost cell types [394]. Also, Bcl-XL
and Mcl-1 act in part by inhibiting IP3R [393, 395, 396]. Bcl-
XL overexpression also leads to reduced expression of IP3R
[397].

2.6. Presence of Reactive Oxygen Species (ROS) Scavengers.
An increase in hydrogen peroxide (H2O2) is a necessary
signal for GC-induced apoptosis [276]. e mitochondria is
the source of this signal [275], GCs inhibit complex I and
complex III of the electron transport chain [275]. Expression
of anti-oxidant defense proteins such as manganese super-
oxide dismutase, thioredoxin, and catalase prevents GC-
induced apoptosis [276, 398–400]. e anti-apoptotic Bcl-2
may regulate the mitochondrial redox state in cancer cells
[323, 401].

2.7. Increased Notch Activity. Notch is frequently activated
in T-ALL cells, which may be due to mutations in Notch1
(gain-of-function) and/or in the E3 ligase Fbw7 that targets
Notch1 for degradation [76–78, 80, 81, 402–405]. Some
other E3 ligases also regulate Notch signaling [406, 407]. For
example LNX1 (ligand of Numb-protein X1) is a positive
regulator of Notch signaling through degradation of Numb,
a membrane-associated protein that inhibits the function of
the Notch receptor [408]. Neuralized (neur) and Mind bomb
(mib) promote the monoubiquitination and endocytosis of
Delta [409, 410]. Itch binds to the N-terminal portion of
the Notch intracellular domain via its WW domains and
promotes ubiquitination of ICN-Notch1 through its HECT
ubiquitin ligase domain [411]. Recent studies showed that
Notch1 can be activated in leukemic cells through interaction
with bone marrow stromal cells that express Notch receptors
and ligands [412, 413]. Interaction with bone marrow stroma
is also amechanism forNotch activation inmultiplemyeloma
[414]. e simultaneous expression of Bcl-2 may enforce
Notch activity [332, 333]. Cyclin E, which is targeted for
degradation by Fbw7 [415, 416], is expressed at higher levels
in early relapsed pediatric B-cell precursor ALL patients, who
usually show an unfavorable prognosis [143].

Notch1 prevents GC-induced apoptosis, among others,
through activation of p56Lck, which activates the PI3K-
Akt axis [68], and through the transactivation of its target
genes Deltex and Hes1 [88]. Hes1 leads to downregulation
of PTEN, thereby activating the PI3K/Akt pathway [88].
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Deltex is a RING-domain ubiquitin ligase that may affect
Notch activity [417], and its overexpression prevents GC-
induced apoptosis [418]. Activation of the pro-survival
PI3K/Akt/mTOR pathway by Notch has also been observed
in other studies [95, 106, 419, 420] and may be responsible
for Notch-mediated inhibition of the p53 tumor suppressor
gene [95]. Another mechanism by which Notch1 protects
T-ALL cells from GC-induced apoptosis, is through the
anti-apoptotic GIMAP5/IAN5 (GTPase of the immunity-
associated protein/immune-associated nucleotide-binding
protein 5) [421, 422]. GIAMP5/IAN5 interacts with Bcl-2
and Bcl-XL and inhibits apoptosis during T-cell development
[423] and is highly expressed in human B-cell lymphoid
malignancies [424]. It is localized within the mitochondria
and endoplasmic reticulum (ER) and regulatesmitochondrial
integrity [425]. GIMAP has been linked to immunological
diseases such as T-cell lymphopenia and autoimmune dis-
eases [426]. Notch also activates NF𝜅𝜅B signaling [74, 427]
and induces c-Myc expression [428–430], both contributing
to apoptotic resistance. Long-term treatment with GCs can
overcome Notch1 resistance [67]. is resistance can be
overcome by the simultaneous exposure of the cells to Src
inhibitors, PI3K/Akt inhibitors, or mTOR inhibitors [67, 68],
understating the importance of the protein kinase network in
regulating the effects of Notch1 on GC-induced apoptosis.

A recent report showed that GC sensitivity of T-ALL is
associated with GR-mediated inhibition of Notch1 expres-
sion [431]. e serum- and glucocorticoid-inducible kinase
1 (SGK1) was also shown to control Notch1 signaling by
downregulating its protein stability through Fbw7 ubiquitin
ligase [432]. SGK1 phosphorylates Fbw7 at Ser227, an effect
inducing ICN-Notch1 ubiquitination and degradation [432].
Despite GC resistance induced by Notch, Notch- and Fbw7-
mutated T-ALL shows in general a favorable response to GC
therapy and in some studies, but not all, also exhibits a better
prognosis [405, 433–436]. is may be related to the fact
that GCs may overcome Notch-dependent drug resistance,
and in these T-ALL cases the cell survival depends on Notch
signaling.

2.7.1. Regulation of Notch Activity by MicroRNAs. Notch
activity may be affected by microRNAs [437]. Various
microRNAs negatively regulate Fbw7 expression including
miR-27a,miR-182,miR-363∼92, andmiR-223 [253, 438, 439]
and may increase the expression of Fbw7-regulated target
genes including Notch1, Mcl-1, c-Jun, c-Myc, and Cyclin
E [438]. miR-451 and miR-709 suppressed oncogenesis in
Notch1-induced mouse T-ALL [440]. miR-150, which is
upregulated upon thymocyte maturation, targets Notch3 and
thus regulates T-cell proliferation and survival [441]. miR-
326 acts in a feedback loop with Notch signaling [442]. e
p53-inducedmiR-34a also targets the Notch1 receptor as well
as its ligand DLL1 (Delta like-1) [443, 444].

Prevention of Notch activation in cutaneous T-cell lym-
phoma (CTLC) by GSI (𝛾𝛾-secretase inhibitor) treatment
led to alterations in the microRNA pro�le of the cell
[445]. Among others, miR-27a, miR92b, miR-181a, miR-
18a, miR-19b, miR-222, and miR-221 were downregulated,

while miR-122 and miR-214 upregulated [445]. miR-27a
targets Fbw7/hCDC4 [253, 438, 439], the substrate recogni-
tion component of the SCF (Skp1-Cullin-F-box) ubiquitin
ligase complex that targets Notch1 for degradation [82].
e repressive effect of miR-27a on Fbw7 mRNA is espe-
cially pronounced at the G2/M and early G1 phases [438].
us, GSI may indirectly deregulate Notch1 through the
miR-27a-Fbw7 pathway. Other targets of miR-27a includes
�BTB10 (zinc �nger and BTB domain containing 10), which
acts as a repressor of Sp (speci�city proteins) transcrip-
tion factors and induces G1 arrest, and the Myt-1 kinase,
which inhibits the transition through G2-M by enhanced
phosphorylation and inactivation of Cdc2 (Cdk1, cyclin-
dependent kinase 1) [446]. miR-27a is frequently upregulated
in pediatric B-ALL [438]. Upregulation of miR-122 by GSI
seems to be mediated by p53 and has an antagonistic effect
on apoptosis through activation of Akt [85].

2.8. c-Myc Overexpression. c-Myc is, among others, a target
of Notch [428–430] and has broad effects on tumorigenesis
[447] andmodulatesGC-induced apoptosis [99, 448]. Condi-
tional overexpression of c-Myc in hematopoietic cells in mice
culminated in the formation of malignant T-cell lymphomas
and acute myeloid leukemias [449]. c-Myc may also be acti-
vated in T-ALL independently ofNotch1 [450].ese authors
demonstrated a role for the PI3K/Akt axis in c-Myc activa-
tion. Dysregulation of the c-Myc gene is a common trait of
Burkitt’s lymphoma due to chromosomal translocations, the
most frequent one being t(8; 14)(q24:q32) involving c-Myc
and IgH (Immunoglobulin heavy locus) [451–453]. Other
hematopoietic malignancies characterized with c-Myc over-
expression include diffuse large B-cell lymphoma (DLBCL),
follicular lymphoma, CLL, B-cell lymphoma, and AML
[454–459]. Earlier studies have shown that dexamethasone-
induced apoptosis of a T-ALL cell line was associated with
c-Myc suppression [460, 461]. e GC-mediated down-
regulation of c-Myc expressionwas initially thought to be one
mechanism that contributes to apoptosis. Not all studies have
con�rmed this �nding [462], which may be explained by the
many signaling pathways induced by GCs.

2.8.1. e c-Myc-E2F1-MicroRNA Network. c-Myc uses dis-
tinct mechanisms for activating and repressing gene expres-
sion. For transcriptional activation, c-Myc dimerizes with
Max and binds to the promoters of its target genes [463–
465]. Transcriptional repression is achieved through protein-
protein interactions, where it antagonizes the activity of pos-
itive regulators of transcriptions [466]. c-Myc also regulates
gene expression by regulatingmicroRNA transcription [255].
e c-Myc-mediated upregulation of miR-17 and miR-20a
(belonging to the miR-17∼92 cluster) negatively regulates
E2F1 translation by targeting the 3-UTR of E2F1 mRNA
and may therefore �ne tune the direct Myc-mediated tran-
scriptional activation of E2F1, allowing a tightly regulated
proliferative signal [255] (Figure 4). E2F1-3 also binds to
the promoter of the miR-17∼92 cluster and activates its
transcription, thus generating an autoregulatory feedback
loop [467]. Another target of the miR-17∼92 cluster is cyclin
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D1, which also induces the expression of miR-17 and miR-
20a by binding to the promoter regulatory region of the miR-
17∼92 cluster [468]. e miR-17∼92 cluster prevents c-Myc-
induced apoptosis [469]. e GC-induced down-regulation
of miR-17∼92 [206] should actually stimulate E2F1 expres-
sion, which under certain circumstances may exert pro-
apoptotic effects [470]. E2F1may promote apoptosis through
transcriptional activation of the pro-apoptotic miR-15a∼16
cluster [471] and by activating JNK [472]. In a B-cell lym-
phomamodel, c-Myc down-regulated a series ofmicroRNAs,
an action that may contribute to tumorigenesis [473]. e
c-Myc mediated repression of the miR-30 cluster [473] may
affect autophagy, as Beclin-1 expression is regulated by miR-
30a [474]. Some of the pro-autophagy activity of cancer
therapy is mediated through down-regulation of miR-30a
[475]. Also the down-regulation of miR-15a and miR-16 by
c-Myc [473] is of interest as these microRNAs are deleted
or downregulated in over two-thirds of individuals with
CLL, and they target the anti-apoptotic Bcl-2 gene [345,
346]. A third miRNA downregulated by c-Myc is the tumor
suppressor let-7 miRNA cluster [473], which targets, among
others, the Ras oncogene [476], HMGA2 (high mobility
group A2) [477, 478], Bcl-XL [361], Cdc25A, CDK6 (cyclin-
dependent kinase 6), and cyclin D2 [479]. Other miRNAs
repressed by Myc include miR-22, miR-23a/b, miR-26a/b,
miR-29a/b/c, miR-34a, miR-146a, miR-150, and miR-195
[465, 473, 480].

miR-26a levels were found to be reduced in various
B-cell lymphomas, especially Burkitt lymphoma [465] as
well as various solid tumors [481, 482]. B-CLL, which does
not have a prominent pathological role of c-Myc, showed
higher expression of miR-26a than Myc-dependent Burkitt
lymphoma [465]. miR-26 restoration in Burkitt lymphoma
or nasopharyngeal carcinomas reduced proliferation and
colony formation through G1 arrest and repression of the
histone-lysine N-methyltransferase EZH2, a global regulator
of gene expression [465, 481, 483]. e tumor-suppression
function was only seen in Myc-transformed cells, but not
in v-Abl transformed cells [465, 483]. However, in T-ALL,
miR-26a was one of �ve microRNAs that independently

promoted tumorigenesis through inhibition of PTEN [253].
In the background of activating mutations in Notch1, miR-
26a overexpression decreased the latency of T-ALL [253].

Forced overexpression of miR-34a, miR-150, and miR-
15a/16-1 attenuated in vivo tumor growth of Myc-induced
B-cell lymphoma [473]. miR-34a is a crucial component
of the p53 tumor suppressor network with potential anti-
proliferative and pro-apoptotic activity [484–486]. c-Myc
transcriptionally induces Lin28B, which is an RNA-binding
protein that suppresses the maturation of let-7 family
microRNA precursors [487, 488]. is seems to be one
mechanism used by c-Myc to repress let-7 [487]. Lin28 is
involved in stem cell maintenance [489–491] and is a marker
of cancer stem cells [492].

2.9. GC-Induced Autophagy. e effect of autophagy on the
cellular response to chemotherapy is dual [493]. Under cer-
tain conditions, autophagy acts as a pro-survival mechanism
to protect cancer cells from chemotherapy, whereas under
other circumstances, autophagy mediates the therapeutic
effects of the anticancer agents. Autophagy is regulated by
Beclin-1 and autophagy-related genes (ATG) [60]. Another
important regulator of autophagy is the activity of mTOR
(mammalian target of rapamycin), which is a central element
signaling cell growth and enhancing protein translation.
When this kinase is inhibited, autophagy is promoted [60].

It should be noted that Beclin-1 may play a dual role
in both regulating autophagy and apoptosis, thus being at
the cross-road between these two physiological processes.
Beclin-1 has recently been recognized as a BH3-only protein
interacting with Bcl-2, Bcl-XL and Mcl-1 [59, 60, 494–496].
One report provides evidence that aer initiating apoptosis,
Beclin-1 is cleaved by caspases and the N-terminal fragment
of Beclin can inhibit autophagy, while the C-terminal frag-
ment can amplify mitochondrial-mediated apoptosis [497].
Perturbation of Beclin-1 cleavage by knockin mutation phe-
nocopied the autophagy induction observed in apoptosis-
defective cancer cells and rendered chemotherapy resistance
both in vitro and in vivo [498]. A role for Beclin in regulating
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tumorigenesis has been demonstrated in mice with heterozy-
gous disruption of Beclin-1 [499]. ese mice have increased
frequency of spontaneous malignancies. DLBCL expressing
high Beclin-1 levels had a favorable clinical outcome with
R-CHOP treatment than those with low Beclin-1 expression
[500].

GCs have been shown to promote autophagy in lym-
phocyte cell lines and primary T-ALL cells [501, 502].
One mechanism for induction of autophagy is through
upregulation of the mTOR-inhibitory stress protein Dig2
(dexamethasone-induced gene 2), also known as RTP801
and REDD1 (regulated in development and DNA damage
responses 1) [503]. mTOR inhibition by dexamethasone was
demonstrated by reduced phosphorylation of S6K (70kD
ribosomal protein S6 kinase 1), a member of the RSK family
of serine/threonine kinases [503]. Dig2 releases TSC2 from
14-3-3, thereby promoting the assembly of the TSC1/TSC2
complex, which inhibitsmTOR [504]. Dig2 knockout thymo-
cytes underwentmore extensive dexamethasone-induced cell
death, suggesting that autophagy promotes cell survival [503].
However, rapamycin, an inhibitor of mTOR and inducer of
autophagy, strongly sensitizes resistant MM and T-ALL cells
to GC-induced apoptosis [59, 111, 116, 117], suggesting that
induction of autophagy does not always combat apoptosis.
It could be that the higher degree of autophagy induced by
rapamycin itself may be pro-apoptotic. Bonapace et al. [59]
showed that rapamycin induces an autophagy-dependent
necroptosis, which is required for childhood T-ALL to over-
come GC resistance. Necroptosis is a form of programmed
necrosis that occurs when apoptosis is abortive due to caspase
inhibition [505].eGC-mediated necroptosis wasmediated
by RIP-1 (receptor-interacting protein-1) and CYLD (cylin-
dromatosis) [59]. miR-19, which is frequently overexpressed
in T-ALL patients and cell lines, represses CYLD expression
[506]. A miR-19 inhibitor induces CYLD expression with
consequent decrease in NF𝜅𝜅B expression [506]. Obatoclax,
a putative antagonist of Bcl-2 family members, could also
sensitize T-ALL cells to GC-induced apoptosis through
induction of autophagy [59]. is effect was associated with
dissociation of the autophagy inducer Beclin-1 from Mcl-1
and decreased mTOR activity [59]. e cell death process
could proceed in the absence of Bax and Bak [59]. e
apoptosis induced by GC in combination with Obatoclax or
rapamycin could be prevented by the autophagy inhibitors 3-
methyladenine and ba�lomycin [59]. GCs may also induce
autophagy by inhibiting Akt activity [501].

2.10. Additional Mechanisms Leading to GC Resistance.
CDKN2/p16INK4a, which acts as a G0/G1 cycle inhibitor,
is frequently lost in T-ALL [507, 508] and predicts relapse
in children with ALL [508–510]. p16INK4a sensitizes T-ALL
cell lines to GC-induced apoptosis through induction of
BBC3/Puma and repression of Mcl-1 and Bcl-2 [511]. Noxa
was repressed in p16INK4a transgenic cells, which could
be a result of the simultaneous repression of E2F1 due
to retinoblastoma protein and p130 activation [511]. e
Bim level was unaffected by p16INK4a overexpression [511].
Diffuse large B-cell lymphoma with CDKN2A deletion had

a poor prognosis under R-CHOP treatment [512]. Also,Myc
gene arrangement in diffuse large B-cell lymphoma patients
had a poor prognosis with R-CHOP chemotherapy [513].

3. MicroRNA in Normal andMalignant
Lymphoid Cells

During the last decade, microRNAs have become the focus of
having a central role in the pathogenesis of cancer including
lymphoid malignancies, besides their role in regulating gene
expression during cell division, development, and differen-
tiation [514–523]. MicroRNAs are short noncoding RNAs
that induce posttranscriptional gene silencing through base
pairing with the 3′ untranslated region (UTR) of their target
mRNAs, thereby inhibiting their translation, with subsequent
reduced protein levels [524, 525]. Bases 2–7 or 2–8 of the
microRNA are primary contributors to target speci�city
and are referred to as the microRNA seed region. e
microRNAs are usually transcribed by RNA polymerase II,
and sometimes by RNA polymerase III, into long primary
precursor transcripts referred to as pri-miRNAs. miRNA are
encoded by one arm of a stem loop structure embedded
in introns or, less frequently, exons of protein-coding or
noncoding transcripts. In the nucleus, the pri-miRNAs stem
loop is cleaved by the nuclear RNase III enzyme Drosha
together with its cofactor DGCR8 (DiGeorge syndrome
critical region 8)/Pasha (the microprocessor complex) to
generate∼70 nucleotides long precursors called pre-miRNAs.
In some cases, an entire intron consists of such a stem loop
structure, which is released by the splicing machinery in
a Drosha-independent manner. Such miRNAs are referred
to as mirtrons [526, 527]. Pre-miRNAs are exported by
RanGTP/exportin-5 to the cytoplasm, where they are further
processed by Dicer, another RNase III enzyme, to gener-
ate ∼22 base pair microRNA duplexes that enter effector
complexes called miRISC (miRNA-containing RNA-induced
silencing complex). Here, they are converted into single-
stranded mature miRNAs that target mRNAs and thereby
affect their translation and stability [516, 528, 529].

Cancer cells frequently display reduced levels of microR-
NAs that act as tumor suppressors, while expressing elevated
levels of oncogenic microRNAs, called “oncomiRs” that
promote tumor development by negatively regulating tumor
suppressor genes and/or genes that control cell differenti-
ation and apoptosis. A network of oncomiRs expressed in
lymphoid malignancies is depicted in Figure 5. Below I will
describe brie�y prominent microRNAs detected in normal
and malignant lymphoid cells. ere are variations in the
microRNA expression pattern described between the various
scienti�c reports, which can be explained by the use of dif-
ferent internal standards, different controls for comparison,
and the use of sample materials of malignant cells at different
developmental stage and at different ontogeny tumor grade.

3.1. MicroRNAs in T- and B-Cell Development. Virtually
every step in hematopoiesis seems to be �nely tuned by spe-
ci�c microRNAs [514, 530–533]. Dicer has an essential role
in the development of the adaptive immune system. Condi-
tional deletion of Dicer expression in the T-cell compartment
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resulted in impaired T-cell development and diminished
regulatory T-cell function [534–536], and ablation of Dicer
in the B-cell compartment attenuates B-cell development and
alters the antibody repertoire [537]. It should be noted that
there exists an alternative microRNA processing pathway
that is independent of Dicer, but dependent on Argonaute-
2 [538].

3.1.1. MicroRNA during ymocyte Development. Micro
RNA expression is dynamically regulated during thymocyte
development, with different enriched microRNAs expressed
at each developmental stage [539] (Table 1). It should be
emphasized that the CD4+CD8+ (double positive, DP) thy-
mocytes are the most GC-sensitive thymocyte population
[540–542]. Dicer-de�cient DP thymocytes expressed higher
levels of CD69 and TCR (T-cell receptor), but lower levels
of Bcl-2 [539]. e Dicer-de�cient thymocytes were more
prone to apoptosis than control cells [539, 543], understating
the role of microRNAs in regulating cell survival. Some
microRNAs, such asmiR-146a andmiR-182, play a dominant
role in the regulation of the innate and adaptive immune
responses, respectively [544, 545].

According to Neilson et al. [539], the pro-apoptotic miR-
15b is almost not expressed at the immature DN1 (double
negative 1) thymocyte stage but becomes gradually upreg-
ulated in DN3 and DN4, and further in DP cells. e pro-
apoptotic miR-16 is also low in DP1 and reaches a maximum
in DN4 cells, with a reduction upon transition to DP cells.
e oncogenic miR-21 is expressed at the highest level in
DN1 and becomes reduced upon transition to DN3 and is

almost not expressed in DP cells. miR-181a/b is expressed
at the highest level in DP thymocytes, together with miR-
92 and miR-350. It should be noted that in this study the
expression of each microRNA was determined relative to
the general microRNA pool of each subpopulation. Since
the amount of total microRNA becomes strongly reduced
upon transition from DN4 to DP (a drop from 32000 to
5200 copies/cell), the absolute microRNA number in each
cell population differs, which can be demonstrated by the
miR-181a transcript. While miR-181a presents 15.6% of the
microRNA in DP cells and 6.7% and 5% in DN3 and DN4,
respectively, the numbers of miR-181a copies in these three
populations were estimated to be 810 in DP, 1400 in DN3,
and 1600 in DN4 [539]. Li et al. [546] showed that miR-
181a is expressed at DN1 and becomes upregulated during
DN2 and DN3 and then downregulated at DN4. miR-181
is still signi�cantly expressed in DP cells, albeit at a slight
lesser extent than in DN4 and becomes downregulated upon
differentiation to the SP (single positive) stage [546].miR-146
is upregulated in CD4+ T cells [547].

3.1.�. Di�erenti�tion �t�ge��peci�c ��pression o� MicroRNAs
in B Lymphocytes. Malumbres et al. [533] performed an
extensive microRNA pro�ling to identify microRNAs specif-
ically expressed in B-cell subsets during peripheral B-cell
differentiation. Notably, miR-18a, miR-28, miR-15a∼16-1,
and miR-181 are expressed at higher levels in centroblasts
(germinal center B lymphocytes) compared with mem-
ory B cells, whereas miR-101c, miR-150, miR-29a,b,c, and
miR-23a∼24 are enriched in memory B cells. miR-17∼92,
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T 1: Alterations in microRNA signature during T-cell development in the thymus. (according to Neilson et al. [539]).

ymocyte population Relative high expression Relative low expression
DN1 miR-21, miR-29b, miR-342, miR-221, miR-223 miR-16, miR-128b, miR-15b, miR-24
DN3 miR-191 miR-142, miR-150
DN4 miR-142, miR-20a, miR-16, miR-128b
DP miR-92, miR-181a/b, miR-350, miR-15b, miR-16 miR-21, miR-27a
CD4+ SP miR-669c, miR-297, miR-142 miR-142
CD8+ SP miR-15b, miR-150, miR-24, miR-27a, miR-142 miR-142, miR-16, miR-128b, miR-92, miR-181b
DN: double negative (CD4−8−)
DP: double positive (CD4+8+)
SP: single positive (CD4+8− or CD4−8+).

miR-363∼106a, and miR25∼106b are highly expressed in all
B-cell subtypes. e high level of miR-15a∼16-1 in germinal
center B-cells corresponds with low Bcl-2 expression in these
cells. miR-223 is highly expressed in naïve and memory B
cells, but not in centroblasts.miR-125b is especially expressed
in germinal center B lymphocytes [533].

3.1.3. miR-181a/b in T- and B-Cell Development. miR-
181a represses the expression of Bcl-2, CD69, and the
T-cell receptor (TCR) 𝛼𝛼-chain [539]. miR-181a augments
the strength of TCR signaling and down-regulates sev-
eral phosphatases including DUSP5, DUSP6, SHP-2, and
PTPN22 that regulate the sensitivity of T cells to antigens
[546]. e down-regulation of PTPN22 by miR-181a led
to elevated phosphorylation of p56Lck at Y394 and the
down-regulation of DUSP5/6 to increased ERK activation
[546]. e normally high levels of miR-181a maintain T-cell
tolerance to self-peptide/MHC molecules, with a reduction
in this microRNA increasing the number of self-reactive
T cells [548]. Also, dampening miR-181a expression using
antagomiR-181a impaired positive selection with about a
70% reduction of mature CD4+ SP thymocytes [546]. us,
miR-181a plays a role in regulating TCR response dur-
ing T-cell development. Recently, miR-181a-1/b-1, but not
miR-181a-2b-2 and miR-181-c/d, was found to control the
development of normal thymic T cells and leukemia cells
[549]. Ectopic miR-181a-1 expression in thymic progenitor
cells potentiated DP cell development [549]. Conditional
deletion of miR-181ab1 allele resulted in 50%–75% decrease
in cellularity in the thymus and a signi�cant reduction in the
percentage of DP cells [549]. miR-181a expression decreased
during the DN3a to DN3b transition during 𝛽𝛽-selection, and
loss ofmir-181ab1 resulted in a reduction in the percentage of
DN3 andDN4 cells that expressed intracellular TCR-𝛽𝛽, while
preT𝛼𝛼 expression in DN3 thymocytes was normal [549].

miR-181a becomes downregulated when mouse T cells
are costimulated with TCR and CD28 [317]. Other alter-
ations occurring upon TCR/CD28 co-stimulation includes
the upregulation of the miR-466 family, miR-574, miR-346,
miR-214, miR-155, and miR-709, and the down-regulation
of the miR-29 family, miR-15a, miR-15b, miR-16, miR-146b,
miR-142, miR-27a, miR-150, and let-7 family [317].

Chen et al. [550] showed that miR-181 is expressed
in the B-lymphoid cells of the mouse bone marrow, and
its ectopic overexpression in hematopoietic stem/progenitor

cells signi�cantly increased B-cell production [550]. miR-181
also affects the development of NK cells through targeting
the Nemo-like kinase (NLK), an inhibitor of Notch signaling
[551]. miR-181 targets the RNA-binding protein Lin28,
thereby disrupting the Lin28-let-7 reciprocal regulatory loop,
with concomitant upregulation of let-7 and differentiation of
megakaryocytes [552].

3.1.4. miR-150 in T- and B-Cell Development. miR-150 is
highly expressed in mature and resting lymphocytes, but
not in their progenitors [547, 553]. Overexpression of miR-
150 led to a block in B-cell formation at the pro-B to pre-
B-cell transition by downregulating c-Myb, among other
targets [547], suggesting for a role for this microRNA in B-
cell differentiation. Within the lymphoid lineage the choice
between T and B cells is regulated by miR-150 [547, 553].
e T-cell population level was unaffected by overexpression
of miR-150 in hematopoietic progenitor cells, while the
mature B-cell levels were strongly reduced [553]. miR-150
drives megakaryocyte-erythrocyte progenitor (MEP) cells
towards megakaryocytes at the expense of erythroid cells
[554].miR-150 also regulates the development ofNK (natural
killer) and iNKT (invariant NK) cells [555]. Mice with target
deletion in miR-150 had a defect in their ability to generate
mature NK cells, while overexpression of miR-150 resulted
in a substantial reduction in iNKT in the thymus and in
the peripheral lymphoid organs [555], supposedly through
targeting of c-Myb by miR-150 [556].

3.1.5. miR-125b in T- and B-Cell Development. miR-125b
affects T-cell differentiation through regulation of IFN𝛾𝛾
(Interferon 𝛾𝛾), IL-2R𝛽𝛽, IL-10R𝛼𝛼, and PRDM1/Blimp1 (B
lymphocyte-induced maturation protein-1) [592]. Ectopic
expression of miR-125b in naïve lymphocytes inhibited
differentiation to effector cells [592]. During normal B-cell
development, miR-125b is enriched in germinal center B cells
and keeps the transcription factor IRF4 and PRDM1/Blimp1
down, while miR-223 is enriched in memory B cells, where
it targets the transcription factor LMO2, which is speci�-
cally expressed in germinal center B cells [533]. IRF4 and
PRDM1/Blimp1 expression are repressed in centroblasts, but
is necessary for differentiation into memory and plasma cells
[593, 594]. Overexpression of miR-125b alone in mice causes
an aggressive, transplantable myeloid leukemia [357]. Before
leukemia, these mice did not display elevation of white blood



ISRN Hematology 17

cells in the spleen or bone marrow, rather the hematopoietic
compartment showed lineage-skewing, with myeloid cell
numbers dramatically increase and B-cell numbers severely
diminished [357]. miR-125b targets Lin28A, an induced
pluripotent stem cell gene [595]. Knockdownof Lin28A led to
hematopoietic lineage-skewing similar to ectopic miR-125b
overexpression, with increased myeloid and decreased B-cell
number [595]. miR-125b is also a potent oncomiR in the
development of megakaryoblastic leukemia [596].

3.1.6. miR-155 in T- and B-Cell Development. miR-155 is
also important for lymphopoiesis and for preserving nor-
mal immune system responses [266, 597–599]. miR-155
is processed within the second exon of the nonprotein-
encoding gene BIC (B-cell integration cluster). miR-155 is
upregulated upon TCR/CD28 costimulation in mouse T
cells [317], and in macrophages by several TLR (Toll-like
receptor) pathways [600]. B cells require miR-155 for normal
production of isotype-switched, high-affinity antibodies and
for a memory response [599]. miR-155 knockout mice are
immunocomprised owing to defects in B and T lymphocytes
[597]. e transcription factor PU.1, which down-regulates
IgG1 levels, is a target gene of miR-155 in B cells [599]. is
may explain the reduced amount of circulating IgG1 in miR-
155 knockout mice [599]. As with B cells, it seems that miR-
155 is involved in T-cell differentiation [266, 597]. Naïve T
cells derived frommiR-155 knockout mice showed increased
propensity to differentiate into2 rather than1 cells, with
the concomitant production of 2 cytokines such as IL-4,
IL-5, and IL-10 [266, 597]. One explanation for this biased
development of 2 cells might be the miR-155 mediated
targeting of c-Maf (musculoaponeurotic �brosarcoma), a
transcription factor that transactivates the IL-4 gene [597].
With regard to the acute immune response, the T cells
had an impaired response and showed attenuated IL-2 and
IFN𝛾𝛾 release in response to antigens [266, 597]. miR-155 is
upregulated by the transcription factor FoxP3 and critical for
T regulatory cell function [601]. Mice overexpressing miR-
155 in the B-cell lineage results in preleukemic pre-B-cell
proliferation in the spleen and bone marrow, followed later
in life by B-cell malignancy [602]. miR-155 represses genes
encoding DNA damage response proteins [603].

3.1.7. miR-17∼92 in T- and B-Cell Development. e miR-
17∼92 cluster located on chromosome 13 at locus q31.3
is essential for B-cell development [246]. e expression
of miR-17∼92 peaked in pre-B cells, where it inhibited
cell death [246]. It is expressed at higher levels in normal
germinal center B cells compared to naïve and memory B
cells [533]. Knockout of miR-17∼92 leads to increased Bim
expression and inhibits B-cell development at the pro-B to
pre-B transition [246], a step also blocked by miR-150 [553].
Mice overexpressing the miR-17∼92 cluster in lymphocytes
developed lymphoproliferative disease and autoimmunity
and they died prematurely [247].ese animalswere found to
have increased numbers of activated B cells, and a higher ratio
of activated CD4+ T cells versus CD8+ T cells. e enhanced
proliferation and survival of B and T cells may result from

the down-regulation of Bim and PTEN [247]. miR-17∼92
expression is strongly induced aer activation of CD8+ T
cells, which is critical for the rapid clonal expansion of these
cells [604]. However, following the clonal expansion, miR-
17∼92 is downregulated and further silenced duringmemory
development [604].

3.2. MicroRNAs in Lymphoid Malignancies. Malignant lym-
phomas arise from normal B- or T-cell counterparts at
different ontogeny stages and commonly continue to express
gene signatures inherited from their nontransformed cellular
progenitors. Extensive miRNA pro�ling studies have been
performed on various lymphoid malignancies, including T-
ALL [605], cutaneous T-cell lymphoma [606], CLL [557,
563], pre-B-ALL [557, 605, 607], diffuse large B-cell lym-
phoma (DLBCL) [564, 580–582, 608–610], anaplastic large
cell lymphoma (ALCL) [587], multiple myeloma (MM) [574,
611, 612], mantle cell lymphoma (MCL) [583, 591, 613],
Burkitt Lymphoma (BL) [564, 614], and follicular lymphoma
(FL) [135, 582, 615]. A comprehensive study aimed to
integrate the many miRNAs upregulated in T-ALL into a
microRNA-transcription factor coregulatory network was
performed by Ye et al. [506]. Various microRNAs have
also been associated with poor prognosis [515]. A short
description of some important microRNAs in malignant
lymphoid diseases is described below and summarized in
Tables 2 and 3.

3.2.1. MicroRNAs in T-Acute Lymphoblastic Leukemia (T-
ALL). In general, T-ALL is characterized by upregulation
of the miR-17∼92 cluster, miR-26a, miR-128a/b, miR-146a,
miR-181a/b, miR-150, and miR-155, while let-7b and miR-
223 are downregulated [253, 557–561].

3.2.1.1. miR-17 ∼92 in T-ALL. e miR-19, miR-20a, miR-
92a, and miR-17 especially of the miR-17∼92 cluster are
upregulated in T-ALL [506]. All six miRNAs miR-17, miR-
18a, miR-19a, miR-20a, miR-19b, and miR-92a, of the miR-
17∼92 cluster promoted leukemogenesis in Notch1-induced
T-ALL in vivo [253, 616]. Among them, the miR-19 family
has been considered the key oncogenic component [248,
506, 617]. e miR-17∼92 cluster is located within a fragile
site that is frequently ampli�ed in a range of hematopoietic
malignancies [618]. Paralogues to the miR-17∼92 cluster
include miR-106b∼25 and miR-106a∼363 [246, 619].

miR-19 represses Notch1, PTEN, Hoxa9, Cyld, Runx1,
E2F1, andBcl2L11 (Bim) [506, 616, 620]. Reduced expression
of Bim attenuates GC-induced apoptosis. Posttranslational
inactivation of PTEN by miR-19 promotes activation of the
PI3K/Akt pathway, and incontrollable proliferation of T cells
[104, 105]. Increased Akt signaling antagonizes GC-induced
apoptosis by several mechanisms, including phosphorylation
of FoxO3a, thus preventing its nuclear translocation and
transcriptional activation of Bim, and through inactivation
of GSK3, which is essential for GC-induced apoptosis [30, 67,
97].

Hoxa9 is a leukemogenic homeoprotein in T-ALL [621],
and a target gene of the oncogenic MLL-AF4 fusion protein
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[622]. High expression of miR-196b was found in pediatric
ALL with aberrant activation of Hoxa genes [623].

Notch1 plays a vital role in T-cell development and trans-
formation, and about 50% of primary T-ALL samples show
abnormal Notch1 expression [79]. Downstream transcrip-
tional targets of Notch1 include Hes1 and c-Myc, the former
affecting the PI3K/Akt and NF𝜅𝜅B signaling pathways [624,
625]. c-Myc is a potent and direct transcriptional activator
of miR-17∼92, leading to modulation of E2F1 expression
[255]. Deletion of miR-17∼92 cluster repressedMyc-induced
oncogenesis [246, 248]. GCs repress the expression of miR-
17∼92 [206], which may be one means to overcome the
tumorigenicity of T-ALL cells and to elevate Bim expression
[206].

In contrast to miR-19, miR-451, and miR-709 are potent
suppressors of oncogenesis in Notch1-inducedmouse T-ALL
[440]. miR-451 represses c-Myc, while miR-709 represses
Ras-GRF-1 that acts upstream to Ras and prevents Akt
activation [625]. Both miR-451 and miR-709 are transcrip-
tional targets of the bHLH E2A tumor suppressor, which is
degraded upon Notch1 induction in mouse T-ALL cells [626,
627]. Repression of tumor suppressormiR-451 is essential for
Notch1-induced oncogenesis in a murine model of T-ALL
[440].HumanT-ALLswith activatingNotch1mutations have
decreased miR-451 and increased c-Myc levels compared
with T-ALLs with wild-type Notch1 [440]. One mechanism
of the tumor suppressive action of miR-451 could be through
down-regulation of the PI3K/Akt survival pathway [628].

3.2.1.2. miR-26a in T-ALL. Primary T-ALL cells also express
elevated levels of miR-26a that suppresses PTEN and Bim
[253]. miR-26a enhanced leukemogenesis in a mouse model
of T-ALL [253]. miR-26a was found to be repressed by c-Myc
in amouse lymphomamodel, leading to enhanced expression
of the EZH2 oncogene, a component of the Polycomb repres-
sive complex 2 [483]. c-Myc may also directly upregulate
EZH2 [629]. In mantle cell lymphoma, miR-26a was found
to affect NF𝜅𝜅B nuclear translocation [591].

3.2.1.3. miR-146a in T-ALL. miR-146a,miR-181a/c, andmiR-
221 were associated with overall survival in ALL patients
[559]. miR-146 seems to have opposing roles in tumorigen-
esis depending on the cellular context [517]. miR-146a and
miR-146b are elevated in several types of solid tumor [630–
633]. However, overexpression studies of miR-146a in trans-
planted bone marrow cells suggest a tumor-suppressive role
for this microRNA [634]. miR-146 overexpression reduced
the survival and engulfment of hematopoietic stem cells
in recipient cells [634]. miR-146a knockout mice devel-
oped massive myeloproliferation followed by hematopoi-
etic tumors, including myeloid sarcomas and lymphomas
[635, 636]. e myeloproliferative phenotype correlated with
enhanced NF𝜅𝜅B signaling [636]. miR-146a suppresses the
NF𝜅𝜅B activators IRAK1 (interleukin 1 receptor-associated
kinase 1) and TRAF6 (TNF receptor-associated factor 6)
[635, 637, 638].ereby, overexpression of miR-146a leads to
inhibition of NF𝜅𝜅B activity. A negative feedback loop exists

between NF𝜅𝜅B and miR-146. Whereas miR-146 represses
NF𝜅𝜅B signaling, NF𝜅𝜅B signaling upregulates miR-146 [637].

3.2.1.4. miR-181a in T-ALL. miR-181a family members are
highly expressed in T-ALL leukemia cells and downregulated
during remission [639]. Deletion of miR-181a-1/b-1 expres-
sion inhibits the development of Notch1 oncogene-induced
T-ALL in a mouse model [549]. miR-181a/b controls the
strength and threshold of Notch activity in tumorigenesis
in part by dampening multiple negative feedback regulators
downstream of Notch and pre-T-cell receptor (TCR) signal-
ing pathways [549].

3.2.1.5. miR-124a in T-ALL. miR-124a has been shown to be
downregulated inmore than 50% of ALL cases and associated
with higher relapse rate and mortality rate [560]. It targets
CDK6 and reduces Rb (retinoblastoma) phosphorylation. Its
down-regulation contributes to the abnormal proliferation of
ALL. Inhibition of CDK6 by sodium butyrate or PD0332991
decreased ALL cell growth. Overexpression of miR-124a
reduced tumorigenicity in a xenogeneic mouse model [560].

3.2.2. MicroRNAs in Chronic Lymphocytic Leukemia (CLL).
A comparison study of primary CLL samples with nor-
mal unstimulated or CpG-stimulated B cells showed high
similarities between CLL and activated B cells, including
upregulation of miR-34a, miR-155, and miR-342 and down-
regulation of miR-103 and miR-181a/b [565]. Activation
of normal B cells led to reduced miR-23a, miR-23b, miR-
24, miR-27b, miR-181a/b, and miR-223 and increased miR-
155 with all activation agents used. Differential effect on
miR-29 family was observed with the different activation
agents. One particular difference between activated B cells
and CLL was seen with miR-150. miR-150 was reduced
during B-cell activation, whereas it was upregulated in most
CLL cases [565]. e latter con�rms the study of Fulci
et al. [566], but is opposed to Wang et al. [682] showing
that miR-150 is downregulated in CLL. Ectopic miR-150
expression increased cell death in pro-B cells, while miR-
150 de�ciency led to B-cell expansion and an enhanced
humoral immune response [547]. Some differences in miR-
150 are observed between the mutated versus unmutated
IgVH (immunoglobulin heavy chain variable-region genes)
subgroups, where expression is higher at the average in the
mutated IgVH subgroup [566].

CLL cases with unmutated IgVH or with high expression
levels of ZAP-70 (70kD zeta-associated protein) show an
unfavorable course with rapid progression in comparison to
patients with a mutated IgVH [567]. Two research groups
[565, 566] observed decreased levels of miR-29c and miR-
223 in CLL with ZAP70+ and IgVH unmutated status. Calin
et al. [643] observed that the unmutated IgVH CLL subgroup
exhibited high levels of Tcl-1 due to low expression of miR-
29 and miR-181 that negatively regulate this oncogene. miR-
181 andmiR-29might therefore be considered to have tumor-
suppressor functions. Tcl-1 functions as a coactivator of Akt
[707], and B-cell forced expression of Tcl-1 in transgenic
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T 2: MicroRNA signature in various lymphoid malignancies. e table shows microRNAs that have been detected at higher or lower
levels in lymphoid malignancies according to data in the literature. More detailed description is found in Sections 3 and 4. It should be
emphasized that the table presents microRNAs that are frequently dysregulated, and the microRNA expression pattern may vary during
disease progression and depends on the ontogeny and tumor grade. Also, there are variabilities between the different studies which may be
due to generalized classi�cation or more speci�c classi�cation of the given malignancy. Also, the reference gene and cell type used as control
may affect the interpretation of microRNA pro�ling. MicroRNAs that can affect or are related to �C signaling and/or �C-induced apoptosis
are highlighted in bold.

Cancer type Increased expression Decreased expression References

ALL

miR-17∼92 cluster,miR-26a,
miR-29a/b/c, miR-125b-1∗,
miR-128a, miR-128b,miR-146a,
miR-204, miR-218, miR-331,
miR-181a,miR-181b, miR-181c,
miR-142-3P,miR-142,miR-150,
miR-155, miR-193a, miR-196b,
miR-30e-5p, miR-34b, miR-365,
miR-582, miR-708,miR-223∗

let-7b,miR-223∗, miR-100,
miR-125b∗, miR-151, miR-99a,
miR-124a

[253, 557–
562]

CLL

miR-21, miR-23b, miR-24-1,
miR-146a,miR-150∗,miR-155,
miR-106b, miR-195,miR-221∗,
miR-222∗,miR-181a/b∗,
miR-19a, miR-20a, miR-106b,
miR-142∗, miR-29a/c∗, miR-130,
miR-26a, miR-197, miR-342,
miR-483, miR-595

miR-15a, miR-16-1, miR-29∗,
miR-34a, miR-143, miR-45,
miR-30d, let-7a,miR-181a/b∗,
miR-223, miR-92,miR-150∗,
miR-126, miR-125b, miR-103,
miR-572, miR-494, miR-923,
miR-130a, miR-213, miR-17,
miR-142∗, miR-206, miR-220,
miR-221∗, miR-222∗, miR-182,
miR-199a, let7, miR-424,
miR-10a, miR-7, miR-126,
miR-218

[345, 346,
358, 557,
558, 563–

573]

MM

miR-21,miR-106b∼25 cluster,
miR-181a/b∗,miR-20a,
miR-19a, miR-19b, miR-93,
miR-25, miR-92a,miR-19a,
miR-19b, miR-32, miR-1,
miR-133a, miR-193b∼365,

let-7b, let-7-1, let-7c, miR-29a,
and miR-29b, miR-328,
miR-15a/16, miR-192∼194∼215,
miR-181a/b∗

[345, 574–
579]

DLBCL

miR-155, miR-124a miR-125b∗,
miR-143, miR-451, miR-145,
miR-10b, miR-34a, miR-100,
miR-9, miR-21, miR-17∼92,
miR-128a, miR-106a/b, miR-425,
miR-130b,miR-181b∗

miR-27a/b, miR-29a/b/c;
miR-142,miR-150, miR-125b∗,
miR-101, miR-28, miR-16,
miR-189, miR-363, miR-223,
miR-584, miR-361, miR-768,
miR-625, miR-495,miR-181a∗,
miR-189, miR-363, miR-595,
miR-663

[533, 564,
580–585]

C-ALCL miR-155, miR-27b, miR-30c,
miR-29b [586]

ALK+-ALCL
miR-886-3p, miR-17, miR-18a,
miR-20a, miR-363, miR-106a,
miR-20a, miR-20b, miR-135b

miR-146a, miR-101, miR-29b,
miR-26a, miR-29c, miR-29a,
miR-22, miR-150, miR-125b

[587, 588]

ALK−-ALCL miR-155 miR-101 [587]

cHL

miR-17∼92 cluster, miR-16,
miR-21, miR-24,miR27a,
miR-124a, miR-134, miR-138,
miR-155, miR-147, miR-182,
miR-185, miR-198, miR-216,
miR-220, miR-302a/b/c, miR-325

miR-23b, miR-30b, miR-31,
miR-96, miR-126, miR-128a/b,
miR-135a, miR-183, miR-204,
miR-205, miR-335,miR-150

[584, 589,
590]
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T 2: Continued.

Cancer type Increased expression Decreased expression References

MCL

miR-124a,miR-155,miR-182,
miR-183, miR-328, miR-326,
miR-302c, miR-345, miR-373,
miR-210, miR-617, miR-370,
miR-654, miR-106b, miR-93,
miR-25, miR-200c, miR-363,
miR-181c, miR-654, miR-768

miR-29a/b/c, miR-142,miR-150,
miR-15a/b, miR-31, miR-148a,
miR-27b, miR-126

[564, 583,
591]

FL

miR-9,miR-20a/b, miR-301,
miR-213, miR-330, miR-106a,
miR-338,miR-155, miR-210,
miR-138, miR-193a, miR-345,
miR-513b, miR-574, miR-584,
miR-663, miR-1287, miR-1295,
miR-1471

miR-30a, miR-33a, miR-106a,
miR-141, miR-202, miR-205,
miR-222, miR-301b, miR-320,
miR-149, miR-139, miR-431,
miR-570

[135, 564,
582]

Abbreviations: ALK: anaplastic lymphoma kinase; ALCL: anaplastic large cell lymphoma; C-ALCL: cutaneous large cell lymphoma; cHL: classical Hodgkin’s
lymphoma; DLBCL: diffuse large B-cell lymphoma; FL: follicular lymphoma; MCL: mantle cell lymphoma.
∗Variation in expression, dependent on the tumor grade.

mice resulted in tumors that resembled CLL [567]. CLL with
unmutated IgVH and high expression of ZAP-70 showed also
relative high expression of miR-15a, miR-16-1, miR-16-2,
miR-195, miR-23b, miR-155, miR24-1, and miR-146, while
low expression of miR-223, miR-29a-2, miR-29b-2, and miR-
29c [563]. In an aggressive subtype of CLLwith abnormalities
in the TP53 gene, the microRNAs miR-34a, miR-29c, and
miR-17 were downregulated [567].

3.2.2.1. miR-15a∼16 in CLL. CLL cases with good prognostic
features are typically characterized by down-regulation of
miR-15a and miR-16-1 [643, 708], located at the 13q14.3
locus. ese miRNAs map to a region between exon 2 and
5 of the Leu2 gene. Deletion of 13q14.3 (del(13q)) is the most
common cytogenetic abnormality in CLL occurring in more
than 50% of the cases and implies for a favorable prognosis
[709]. is deletion occurs also frequently in MM patients
[575]. Deletion in mice of the 13q14-minimal deleted region,
which encompasses the miR-15a∼16 cluster, caused the
development of indolent B-cell-autonomous, clonal lympho-
proliferative disorders, recapitulating the spectrum of CLL-
associated phenotypes observed in humans [644]. Repression
of miR-15a and miR-16-1, as well as miR-29b, in CLL may
also be mediated by histone deacetylases (HDACs) [710].
HDAC inhibition triggered the accumulation of the tran-
scriptionally activating chromatin modi�cation H3K4me2
and restored the expression of miR-15a, miR-16-1, and
miR-29b [710]. Deacetylase inhibition may therefore be an
attractive therapeutic strategy.

Both miR-15a and miR-16-1 negatively regulate Bcl-2
[643], and miR-29 targets Mcl-1 [381, 382]. e expression
of Bcl-2 in CLL cases is inversely correlated with the expres-
sion of miR-15a and miR-16-1 [563, 711]. Other targets of
miR-15/16 include CHEK1 [615], CyclinD1, CyclinD2, and
Cdc25A [525, 645]. Overexpression of miR-15a and miR-16-
1 induced cell cycle arrest at G1/G0 in anRb-dependentman-
ner [712]. A germ-line mutation in the primary precursor of
miR-15a/16-1 that impairs their processing was observed in

familial CLL patients [563]. Targeting deletion of miR-15a∼
16 in mice led to the development of a spectrum of diseases
resembling CLL-associated lymphoproliferation in humans,
including CLL, CD5+ monoclonal B-cell lymphocytosis, and
CD5− non-Hodgkin’s lymphomas [644]. e New Zealand
black (NZB) mouse that harbor a point mutation in the
3′-�anking region of miR-16 that leads to reduced miR-
16 expression and develops symptoms similar to B-CLL in
humans, further con�rming the tumor suppressor function
of this locus [713].

3.2.2.2. miR-181a/b in CLL. Underexpression of miR-181a/b
was associated with shorter overall survival in CLL [358],
while higher levels of miR-181a were associated with a
shorter time from diagnosis to initial therapy [563]. During
the course of CLL progression, the miR-181a/b levels were
decreased, which inversely correlated with increased levels
of its target genes Mcl-1 and Bcl-2 [385]. miR-181b was
especially downregulated in treatment-refractory cases [714].
e study of Marton et al. [568] showed consistent under-
expression of miR-181a, as well as let-7a and miR-30d in all
CLL cases studied. However, increased expression of miR-
181a/b was associated with favorable outcome in patients
with cytogenetically normal acute myeloid leukemia (AML)
[692].

Ectopic overexpression of miR-181a/b into primary CLL
increased �udarabine-sensitivity in p53 wild-type cells, but
not in CLL with attenuated p53 response [358]. e impor-
tance of the miR-181 target Mcl-1 in CLL survival was
demonstrated by rapid apoptosis of CLL cells following
siRNA-mediated down-regulation of Mcl-1 [715], and by the
Mcl-1 transgenic mice, which developed B-cell lymphoma
[715]. us, low miR-181 and miR-29 expression in CLL
could confer drug resistance through upregulation of Mcl-1
expression.

3.2.2.3. miR-29 in CLL and Other B-Cell Malignancies. e
miR-29 family consisting of miR-29a and miR-29b seems to
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T 3: Target genes of prominent microRNAs in lymphoid malignancies and their role in regulating GC-mediated apoptosis. Relations to
GC signaling and/or GC-induced apoptosis are highlighten in bold. More detailed description is found in Sections 3 and 4.

miRNA Important
target genes Regulation/expression Effect on GC-induced apoptosis References

let-7
family

K-Ras, Myc,
HMGA2, PLC𝛾𝛾1,
IMP-1, Dicer,
IL-6, E2F2,
CCND (Cyclin D2, Cdc25A,
CDK6, Bcl-XL, PRDM1/Blimp1

↓ CLL
↓MM
↓ T-ALL
↓ BL
↓Myc

Anticipated to synergize with GC [345, 361, 473, 476–
479, 525, 564, 640]

miR-9 PRDM1/Blimp1
NF𝜅𝜅B

↑ FL [564, 640–642]

miR-15a∼16

Bcl-2, CHEK1, CCND1 (Cyclin
D1), CCND2 (Cyclin D2),
CCND3 (Cyclin D3), CCNE
(Cyclin E), CDK4, CDK6,
Wnt3a, E2F, Cdc25A, Mcm5

↑↓ CLL
↓MM
↑GC
↑E2F1-3
↓c-Myc

Promote GC-induced apoptosis
[255, 345, 346, 471,
473, 515, 525, 564,
566, 576, 643–646]

miR-17∼92
cluster

Bim (Bcl2L11), PTEN, E2F1,
Notch1, Hoxa9, CYLD, RUNX1,
p21

↑ T-ALL
↑ CLL
↑MM
↑ BCL
↑ ALK+-ALCL
↑ DLBCL
↑ BL
↓GC
↑ c-Myc
↑ E2F1
↓ GSI

Attenuates GC-induced
apoptosis.
Considered as an OncomiR.

[135, 206, 246–
248, 255, 445, 467,
469, 515, 525, 564,
574, 618, 647, 648]

miR-18
(member of the
miR-17∼92
cluster)

GR Reduced GR-mediated
transactivation [649]

miR-21 PTEN, PDCD4,
TPM-1, Tap63, SPRY2, Msh2,
SHIP1, TRAIL-3

↑ CLL
↑ CML
↑MM
↑ BCL
↑ DLBCL
↓FoxO3a

Expected to prevent GC-induced
apoptosis, due to increased Akt
signaling.
Considered as an OncomiR.

[268, 269, 525, 566,
574, 579, 580, 650–

654]

miR-23a/b Notch1, PLK3, PAX, MTSS1
↑ CLL
↓ cHL
↓ Relapsed T-ALL

[590, 655, 656]

miR-26a
PTEN, Bim,
EZH2, c-Myc, CCND3 (Cyclin
D3), CCNE2 (Cyclin E2)

↑ T-ALL
↑ CLL
↓ BL
↓Myc

Expected to prevent GC-induced
apoptosis.
Considered as an OncomiR.

[253, 315, 465, 473,
481, 565, 566, 629]

miR-27a Fbw7, ZBTB10, Myt-1, MDR,
BMI1, FoxO1/3

↑ B-ALL
↓ DLBCL
↓GSI
↓GC

[253, 258, 438, 439,
445, 446, 657, 658]

miR-29a/b
Mcl-1, Tcl-1,
CDK6, PTEN,
DNMT1, DNMT3A, DNMT3B
p85𝛼𝛼, CDC42

↓ ALCL
↓ CLL
↓MM
↓MCL
↓ DLBCL
↓ BL
↓Myc
↓ NF𝜅𝜅B

Expected to synergize with GC.

[316, 380–
383, 473, 564–

566, 569, 574, 583,
587, 643, 655, 659–

662]
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T 3: Continued.

miRNA Important
target genes Regulation/expression Effect on GC-induced apoptosis References

miR-34a/b/c

Bcl-2, E2F1,
c-Myb, B-Myb
SIRT1, ZAP70,
Notch1, Delta1, Jagged1

↑↓ CLL
↑p53
↑PMA
↓Myc

[347, 348, 443, 473,
570, 663–667]

miR-101 mTOR,Mcl-1, Cox2, Fos, EZH2 ↓ ALCL Expected to synergize with GC. [384, 587]

miR-106a∼363
and
miR-106b∼25

p21/CDKN1a
Bim, PTEN

↑MCL
↑MM
↑ DLBCL
↓GC

Attenuates GC-induced
apoptosis

[254–256, 314, 574,
591, 668, 669]

miR-124a GR ↑MCL
↓ ALL

Reduced GR-mediated
transactivation [560, 583, 649, 670]

CDK6
Hes-1

miR125a PDPN, Bak1, KLF13, preproET1,
ARID3B, HuR, ERBB2, ERBB3 [576]

miR-125b

IRF4
PRDM1-Blimp1
Lin28, STAT3
Bak1, Bmf
Mcl-1, Bcl-w,
Bcl-2

↓ CLL It has both pro- and
anti-apoptotic effect.

[349–352, 356, 533,
571, 595, 671]

miR-128b BMI1
↓ Relapsed T-ALL
↓MLL-AF4-ALL
↓GC

miR-128 sensitizes MLL-AF4
ALL to GC. [646, 655, 672, 673]

miR-130b GR ↑ DLBCL
↑ Relapsed T-ALL

Attenuates GC-induced
apoptosis. [655, 674–676]

RUNX3
p21

miR-135a/b JAK2, ↓ cHL [590, 677]

miR-142 GR ↓MCL
↑ T-ALL
↓GC

Confers GC resistance [583, 657, 678–680]
AC9

miR-143 and
miR145

MLL-ALL
ERK5 ↓ CLL [525, 573]

miR-146a TRAF6, IRAK1, Fas, Smad4,
TBP, CCL8-MCP-2

↑MM
↑ T-ALL
↑ CLL
↓ BL
↓Myc

[473, 564, 576, 635,
637, 638, 681]

miR-150 c-Myb, DKC1
AKT2, Notch3

↑↓ CLL
↑ T-ALL
↓MCL
↓ cHL
↓ DLBCL
↑GC
↓Myc

[441, 473, 547, 565,
566, 583, 589, 682–

684]

miR-155

SOCS1, ETS1,
c-MAF, HGAL,
FoxO3a, SHIP1, SMAD5, PU.1,
C/EBP𝛽𝛽, CSFR, KPC1, CEBPB,
IL-13R𝛼𝛼1, CUTL1, CYR61,
SMAD1, ETS1, SMAD2,

↓↑ CLL
↑ DLBCL
↑ C-ALCL
↑ ALK−-ALCL
↑MCL
↑ cHL
↑ NHL

Expected to prevent GC-induced
apoptosis.
Considered as an OncomiR.

[263, 264, 515, 525,
564, 566, 568, 576,
583, 584, 587, 589,
599, 602, 681, 685–

691]
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T 3: Continued.

miRNA Important
target genes Regulation/expression Effect on GC-induced apoptosis References

MEIS1, RUNX2, MYO10, PKI𝛼𝛼,
JARID2, AGTR1, PICALM,
BACH1, ZIC3,

↑↓ BL
↓GC
(in MΦ)
↑ NF𝜅𝜅B
↑ TLR4
↑ c-Myb
↑ EBV

miR-181a/b

Tcl1, Lin28,
Bcl-2, Mcl-1, XIAP, CYLD, GR,
CD69, TCR, Hoxa7, Hoxa9,
Hoxa11, PBX3, NLK, TIMP3,
Prox1, DUSP5, DUSP6, SHP-2,
PTPN22, FoxP1, p27Kip1

↓↑ CLL
↓↑ DLBCL
↑MM
↑ T-ALL
↓ GC
↓ GSI

Dual role on GC-induced
apoptosis: attenuation through
repression of GR, but
sensitization due to reduced
expression of anti-apoptotic
proteins.

[270, 358, 359, 385,
445, 539, 546, 549,
551, 552, 565, 568,

569, 574–
576, 684, 692–694]

miR-182
FoxO1/3,
Fbw7

↑ T-ALL cell lines
resistant to GC
↓ CLL
↑MCL

Confers GC resistance. [253, 258–261, 564]

miR-221 and
miR-222

p27Kip1, p57Kip2,
PTEN, TIPM3,
FoxO3a, c-Kit, Puma, Dicer,
APAF-1, WTAP, Ets1, Bmf,
Mdm2

↑ CLL
↑ DLBCL
↑MM
↓MLL-AF4 ALL
↓GSI

Dual effect on GC-induced
apoptosis. Usually oncogenic
with anti-apoptotic effect. In
MLL-AF4 ALL, miR-221
sensitizes the cells to GC.
Considered as an OncomiR.

[321, 445, 525, 533,
563, 575, 576, 580,
672, 695–699]

miR-223 LMO2, NFI-A, MYBL1, E2F1,
Fbw7, Mef2c, IGFR

↓↑ T-ALL
↓ CLL
↓ DLBCL
↓ Relapsed T-ALL
↑ GC
↑ C/EBP𝛼𝛼
↓ NFI-A
↓ E2F1

May sensitize to GC-induced
apoptosis by preventing Akt
activation.

[515, 533, 565, 566,
646, 655, 700–706]

miR-708 FoxO3 ↑ Relapsed T-ALL May confer GC resistance. [655]

↑ upregulated, ↓ downregulated.
Abbreviations: AC9: adenylyl cyclase 9; BCL: B-cell lymphoma, Blimp1: B lymphocyte-induced maturity protein 1; cHL: classical Hodgkin’s lymphoma; GSI-
gamma secretase inhibitor; LMO2: LIM domain only 2; MDR: multidrug resistant gene; Msh2: DNAMutS homolog 2; MTSS1: Metastasis suppressor 1; NHL:
non-Hodgkin’s lymphoma;NLK: nemo-like kinase; PDCD4: programmed cell death 4; PMA: phorbolmyristate acetate; SHIP1: SH2 (Src-homology 2) domain-
containing inositol phosphatase 1; SOCS1: suppressor of cytokine signaling; SPRY2: Sprouty2; TPM-1: Tropomyosin 1; TRAF6: TNF receptor-associated factor
6; WTAP: Wilms’ tumor-associated protein isoform 1; XIAP: X-linked inhibitor of apoptosis protein.

play a dual role in tumorigenesis [517]. On the one hand,
miR-29a and miR-29b are downregulated in mantle cell
lymphoma [583], aggressive CLL samples (high ZAP-70 with
unmutated IgVH) [659, 710, 716], ALK-positive anaplastic
large cell lymphomas (ALCL) [380], MM [381], and AML
[383]. On the other hand, miR-29a and b are expressed at
higher degree in indolent CLL (low ZAP-70/mutated IgVH)
than in normal CD19+ cells [563, 569, 716]. miR-29c together
with miR-223 down-regulation is associated with higher
tumor burden, disease aggressiveness, and poor prognosis in
CLL [700].

Forced overexpression of miR-29b induced apoptosis in
MM and AML cells [381, 383].e tumor suppressor activity

of miR-29 may be achieved through targeting cell cycle regu-
lators and oncogenes such as Cdk6, DNA methyltransferase
3A (DNM3A) and 3B (DNMT3B), Mcl-1, and Tcl1A [382,
569, 583, 717]. Another tumor suppressor function of miR-
29 is mediated through activation of p53, which is achieved
by targeting p85𝛼𝛼 (the regulatory subunit of PI3K kinase) and
CDC42 (a Rho family GTPase) [660].

However, in another setting miR-29 acts as an oncogene.
miR29a overexpression in immature and mature B cells
promoted CLL development [716], and transplantation of
miR-29-transduced hematopoietic stem and progenitor cells
into irradiated mice resulted in myeloproliferative disease
and AML [661]. One mechanism for the oncogenic feature



24 ISRN Hematology

of miR-29 could be through repression of the tumor suppres-
sor cell-adhesion molecule peroxidasin homologue (PXDN)
[716]. us, depending on the cellular contexts, miR-29 can
function as an oncogene or a tumor suppressor.

3.2.2.4. miR-221/222 in CLL. miR-221 and miR-222 are
expressed at higher levels in CLL with unmutated IgVH and
high expression of ZAP-70, the most aggressive CLL subtype
with poor prognosis [563].esemicroRNAsmay contribute
to oncogenesis by targeting the CDK inhibitor p27Kip1 [695,
696, 718, 719], FoxO3a [720, 721], Apaf-1 [721, 722], p57Kip2
[719], Bmf [723], PTEN [321], and TIMP3 (tissue inhibitor of
metalloproteinase 3) [321]. In other CLL cases, the miR-222
was found to be lower than that of normal CD19+ cells [566].
miR-221 was expressed at reduced levels in CLL harboring
the 13q14 deletion [711].

3.2.2.5.miR-34 inCLL.ep53 targetmiR-34a is decreased in
CLL patients with 11q deletions, leading to increased ZAP-70
expression [663]. miR-34a also targets Bcl-2 [348, 484], and
the E2F1 and B-Myb oncogenes in CLL [664]. Reduced miR-
34a expression has been associated with resistance to DNA
damage in CLL [570].

3.2.2.6. miR-17∼92 in CLL. Members of the miR-17∼92
polycistron are upregulated in B-cell lymphoma, as well as
miR-155 [469, 568, 685]. Adoptive transfer of hematopoietic
stem cells bearing a truncated portion of the miR-17∼92
polycistron in c-Myc transgenicmice resulted in amore rapid
onset of malignant B-cell lymphomas. ese lymphomas
exhibited resistance to apoptosis and increased proliferation
[469]. Transgenic overexpression of the entire miR-17∼
92 in the murine hematopoietic compartment led to the
development of lymphoproliferative disease and increased
lethality [247]. e negative regulation of Bim by the miR-
17∼92 cluster seems to be a major mechanism by which B-
cell lymphomas evade apoptosis [247]. Silencing of miR-17
and miR-20a in mantle cell lymphoma led to upregulation of
the cyclin-dependent kinase (CDK) inhibitor p21, suggesting
that p21 is an essential target of themiR-17∼92 cluster during
B-cell lymphomagenesis [647]. Overexpression of c-Myc
mRNA together with miR-17-5p/miR-20a was associated
with a more aggressive behavior in mantle cell lymphoma
[724]. miR-17∼92 confers chemoresistance in mantle cell
lymphoma through activation of the PI3K/Akt pathway
[725]. Knockdown of miR-17∼92 inhibited tumor growth in
a xenogra mantle cell lymphoma model [725].

3.2.2.7. miR-21 in CLL. miR-21 is commonly upregulated
in CLL [650] as well as CML [726] and many other
cancer cell types [525]. Forced overexpression of miR-
21 under the control of the nestin promoter resulted in
severe pre-B-cell lymphoma [727]. miR-21 overexpression
potentiated lung tumorigenesis of a constitutively acti-
vated K-Ras proto-oncogene [728]. miR-21 deletion in
mice reduced 7,12-dimethylbenz[a]anthracene (DMBA)/12-
O-tetradecanoylphorbol-13-acetate (TPA) skin carcinogene-
sis [729]. miR-21-null mice exhibited an increase in cellular
apoptosis and decrease in cell proliferation [729]. miR-21 is

an oncomiR that promotes tumorigenesis by targeting a range
of genes involved in regulating cell proliferation and/or sur-
vival, including PTEN [269], Sprouty (Spry2) [730], PDCD4
(programmed cell death 4) [731], TPM1 (tropomyosin 1)
[651], and human DNA MutS homolog 2 (hMSH2) [732].
In glioblastoma cells, miR-21 also targets a network of
p53 pathways, TGF𝛽𝛽, and mitochondrial tumor suppres-
sor genes [733]. PDCD4 inhibits AP-1-mediated trans-
activation [734] and negatively regulates the pro-survival
RAL guanine-nucleotide dissociation stimulator (RALGDS)
signaling pathways [517, 729]. PDCD4 also induces the
expression of the CDK inhibitor p21 [735]. Down-regulation
of PDCD4 by miR-21 confers growth advantages to the
cells. PDCD4 is a tumor suppressor that is upregulated
during apoptosis [736] and downregulated in several cancer
forms [737–739]. Spouty, which is downregulated bymiR-21,
negatively regulates the c-Raf pro-survival signaling pathway
[729].

3.2.2.8. miR-125b in CLL. Both aggressive and indolent
CLL patients showed reduced expression of miR-125b [571].
Overexpression of miR-125b in CLL-derived cell lines
resulted in the repression of many transcripts encoding
enzymes implicated in cell metabolism [571]. ese authors
proposed that miR-125b acts as a regulator for the adaptation
of cell metabolism to a transformed state.

3.2.2.9. miR-150 in CLL. One microRNA consistently down-
regulated in most B-lymphomas is miR-150 [682], which
is proposed to act as a tumor suppressor [523, 547, 589].
Mice lacking miR-150 have increased expression of its target
transcription factor c-Myb, which plays an important role
in lymphocyte development and maturation [547]. miR-150
is especially expressed in mature lymphocytes, but not in
their progenitors [547]. Premature expression of miR-150
blocked the transition from pro-B to the pre-B stage [553].
Overexpression of miR-150 in NK/T lymphomas increased
apoptosis and reduced cell proliferation, with concomitant
reduction in DKC1 (Dyskeratosis congenita 1) and Akt2,
reduced Akt phosphorylation, and elevated levels of Bim and
p53 [683].

3.2.2.10. miR-155 in CLL. miR-155 is overexpressed in many
B-cell lymphomas including CLL, primarymediastinal B-cell
lymphoma (PMBL), aggressive activated B-cell like (ABC)
subtype of DLBCL, Hodgkin’s lymphoma, and pediatric
Burkitt’s lymphoma, but is almost absent in adult Burkitt’s
lymphoma [515, 566, 568, 576, 583, 584, 587, 602, 685, 686].
c-Myb (v-Myb myeloblastosis viral oncogene homolog),
which is overexpressed in a subset of CLL patients, associates
with the promoter of miR-155 host genes (miR155HG,
also known as BIC, B-cell integration cluster) and stimu-
lates its transcription [687]. Forced overexpression of miR-
155 in B cells (E𝜇𝜇-miR-155 transgenic mice) led to initial
preleukemic pre-B-cell proliferation followed by frank B-
cell malignancy [602]. e miR-155 orthologue miR-K12-
11 in Kaposi sarcoma-associated herpes virus (KSHV) has
been associatedwith B-cell tumors [740].miR-155 is essential
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for immune function and is strongly induced in activated
T and B cells [597]. miR-155 represses SH2-domain con-
taining inositol-5-phosphatase-1 (SHIP-1), which is a critical
phosphatase that negatively downmodulates Akt pathway
and is involved in normal B cell development [688]. us,
sustained overexpression of miR-155 in B cells unblocks
Akt activity, inducing B-cell development. miR-155 targets
c-Maf in lymphocytes [597], and HGAL and SMAD5 in
diffuse large B-cell lymphoma (DLBCL) [741, 742]. HGAL,
a germinal center (GC)-speci�c gene, inhibits lymphocyte
and lymphoma cell motility by activating RhoA signaling
cascade [743] and by interacting with actin and myosin
proteins [744]. SMAD5 is a bone morphogenetic protein
(BMP)-responsive transcription factor and is activated by
various cytokines [745]. DLBCL expressing high levels of
miR-155 concomitant with low HGAL expression showed
high aggressiveness and cell dissemination [741]. siRNA-
based SMAD5 knockdown recapitulated the effects of miR-
155 overexpression in DLBCL [742]. us, down-regulation
of SMAD5 in diffuse large B-cell lymphoma de�nes a
unique mechanism used by the cancerous cells to escape
TGF𝛽𝛽 growth inhibitory effects [742]. In breast cancer, miR-
155 targeted FoxO3a, thus modulating their response to
chemotherapy [264]. As FoxO3a is a positive regulator of the
pro-apoptotic Bim essential for GC-induced apoptosis [227–
229],miR-155 overexpressionmay prevent Bimupregulation.

3.2.3. miRNAs in Multiple Myeloma (MM). In one study,
miR-93, miR-25, miR-92, miR-19a/b, miR-181a/b, and miR-
32 were shown to be signi�cantly overexpressed, while let7-b,
let7-I, let7-c, miR-29a, and -29b signi�cantly downregulated
inMM[574]. Roccaro et al. [575] found decreased expression
of miR-15a∼16 and increased expression of miR-222, miR-
221, miR-382, and miR-181a/b in their MM samples.
Heterogeneous expression of miR-181a and -181b was
observed in MM cells from many patients [574]. Also, the
13q14.3 locus containing the miR-15a and miR-16-1 is
sometimes deleted in MM [345, 746–748]. e absence
of miR-15a expression and overexpression of miR-181a/b
correlated with worse prognosis of MM [575]. Antagonists
especially to miR-19a/b and miR-181a/b (AntagomiRs)
suppressed tumor growth of humanmyeloma cells implanted
into nudemice [574].is �nding demonstrates the potential
use of microRNAs in therapy.

Some differential miRNA expression was observed
between malignant MM and MGUS (monoclonal gam-
mopathy of undetermined signi�cance) [574], which is the
precancerous state precedingMM[749].MGUS show already
upregulation of miR-21, miR-106∼25, miR-181a/b, miR-1,
and miR-133a, while during the progression to malignant
multiple myeloma miR-17∼92, miR-32, miR-193b∼365 are
upregulated and miR-192∼194∼215 and miR-15a∼16 are
downregulated [574, 576, 577].e upregulation of miR-17∼
92 could be related to the upregulation of c-Myc observed
during MM progression [750, 751]. Upregulation of miR-1
and miR-133a correlated with t(14; 16) translocation in MM
cases, suggesting that deregulation of microRNA expression
could be associated with chromosomal abberations [578].

MGUS premalignant cases displayed higher levels of Dicer
than MM cells [752]. Higher expression of Dicer was associ-
ated with improved progression-free survival in symptomatic
MM cases [752].

e global increase in microRNA expression in high-
risk MM patients with poor prognosis was associated with
increased expression of Argonaute (AGO2/ElF2C2) [611], a
master regulator of miRNA maturation and function [753,
754]. Silencing of AGO2 decreased viability in MM cell lines
[611].

3.2.3.1. IL-6 andMM. Adhesion of multiple myeloma to bone
marrow stroma triggers cytokine production and enhances
cell proliferation and resistance to chemotherapy through
IL-6-induced activation of NF𝜅𝜅B, PI3K/Akt, and STAT3
pathways [755]. It should be noted that these pro-survival
pathways antagonize GC-induced apoptosis in MM [756–
760]. miR-19a and miR-19b that are part of the miR-17∼
92 cluster downregulate SOCS-1 (suppressor of cytokine
signaling-1), a gene frequently silenced in MM that plays a
critical role as inhibitor of IL-6 growth signaling [574], thus
enforcing the IL-6-induced survival signals.

3.2.3.2. miR-21 in MM. e oncogenic miR-21 is upregulated
in MM patient samples and cell lines [574, 579, 652].
In IL-6-dependent MM cell lines, miR-21 transcription is
controlled by IL-6 through a STAT-3 mechanism. Ectopic
miR-21 expression was sufficient to sustain growth of IL-
6-dependent cell lines in the absence of IL-6 [761]. miR-
21 is upregulated in a NF𝜅𝜅B-dependent manner in MM
cells upon cell adhesion to bone marrow stromal cells [762].
CombiningmiR-21 inhibition with dexamethasone inhibited
MM cell survival more effectively than either treatment alone
[762]. e p300-CBP-associated factor (PCAF) was found
to be a target of the combined action of the miR106b∼25
cluster and miR-32 [574]. PCAF is a positive regulator of p53
through ubiquitination activity on Hdm2 [763]. miR106b∼
25, miR-17, and miR-20a target the CDKN1A1/p21 cell cycle
regulator, which prevents cell cycle progression in general
and prevents the growth of MM cells [764, 765].

3.2.3.3. miR-15a∼16 in MM. miR-15a∼16 is a pro-apoptotic
microRNA that targets Bcl-2, cyclin D1, cyclin D2, and
Cdc25A [346, 748, 766–768]. Overexpression of miR-15a∼
16 in MM led to inhibition of Akt3, ribosomal protein
S6, MAP kinases, and the NF𝜅𝜅B-activator MAP3KIP3, ulti-
mately resulting in an antiproliferative effect and apoptosis
[575]. e anti-MM effect of miR-15a∼16 was observed
even in the context of the bone marrow microenvironment
[575]. miR-15a∼16 reduced VEGF secretion from MM cells,
thereby reducing MM cell-induced pro-angiogenic activity
on endothelial cells [575]. VEGF represents one of the major
pro-angiogenic cytokines responsible for the induction of
neoangiogenesis in MM patients [769, 770].

3.2.4. miRNAs in Anaplastic Large Cell Lymphoma (ALCL).
A distinct microRNA pro�le could distinguish between
ALK+ and ALK− subtypes of ALCL, an aggressive form of
non-Hodgkin’s lymphoma (NHL) belonging to the T-cell
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lineage [587]. More than 80% of ALK+ ALCL harbor the
t(2; 5)(p23; q35) translocation, resulting in the expression
of the chimeric nucleophosmin (NPM)-ALK [771]. e
constitutive ALK activity leads to the activation of many
different growth-promoting and anti-apoptotic pathways
including PI3K/Akt/mTOR, Jak/Stat, c-Jun, JunB, and c-Myc.
e prognosis of ALK− ALCL is worse [772, 773]. ALK+

ALCL has a high cure rate with CHOP treatment, in contrast
toALK− cells that are relative resistant [774]. Fivemembers of
themiR-17∼92 cluster were expressed higher in ALK+ ALCL,
whereas miR-155 was expressed more than 10-fold higher in
ALK− ALCL [587].e upregulation of miR-17∼92 cluster in
ALK+ ALCL cells is in agreement with the observation that
c-Myc is expressed in ALK+ ALCL and absent from ALK−

samples [775]. miR-101 was downregulated in all ALCL
tested [587]. miR-101 targets mTOR [776], Mcl-1 [777], and
the histone methyltransferase EZH2 [778, 779]. Inhibition of
mTOR, which is targeted by miR-101, led to reduced tumor
growth in engraed ALCL mouse models [587]. Overex-
pression of miR-101 reduced cell proliferation in ALK+, but
not in ALK− [587]. e former was also more sensitive to
mTOR inhibition by the rapamycin analogue CCI-779 [587].
miR-29a andmiR29b down-regulation inALK+ ALCL confer
apoptotic resistance due to Mcl-1 upregulation [380, 587].

Another microRNA that has been implicated in NPM-
ALK-driven oncogenicity is miR-135b [588]. miR-135b tar-
gets FoxO1 and promotes a IL-17-producing immunopheno-
type. miR-135b inhibition reduced tumor angiogenesis and
growth in vivo, suggesting that targeting this microRNA has
therapeutic potential [588].

3.2.5. miRNAs in Diffuse Large B-Cell Lymphoma (DLBCL).
A 9-miRNA signature (miR-146b-5p, miR-146a, miR-21,
miR-155, miR-500, miR-222, miR-363, miR-574-3p, and
miR-574-5p) could differentiate the diffuse large B-cell
lymphoma (DLBCL), the most common subtype of non-
Hodgkin’s lymphoma, into ABC (activated B-cell) or GCB
(germinal center B-cell) subtypes, with a general higher
expression in the ABC subtype [533]. Another study [780]
found that miR-331, miR-151, miR-28, and miR-454 were
upregulated in the GCB type, whereas miR-222, miR-144,
miR-451, and miR-221 upregulated in the ABC type. e
microRNA expression of both GCB-like and ABC-like cells
was more similar to germinal center lymphocytes than
memory B-cells [533]. e region encoding the miR-17∼
92 cluster was more commonly ampli�ed in GCB-like
than ABC-like DLBCL [781]. Lawrie et al. [580] identi�ed
3 miRNAs, miR-155, miR-21, and miR-221, more highly
expressed in ABC type than GCB type cells. Expression of
miR-21 was an independent prognostic indicator in DLBCL
[580]. Expression of miR-155 and miR-21 was also higher in
nonmalignant ABC than in GCB cells [580]. miR-150 was
strongly downregulated in both ABC and GCB-like DLBCL
cells [533]. Patients with GCB DLBCL have longer overall
survival and event-free survival compared with patients with
an ABC phenotype when treated with R-CHOP [782, 783].
Increased expression of miR-18a in DLBCL was associated
with a shorter OS (overall survival) of patients receiving

R-CHOP regimen [693]. Increased expression of miR-181a
was associated with longer PFS (progression-free survival),
while increased expression of miR-222 was associated with
shorter PFS [693]. In DLBCL, miR-181a regulates FoxP1
(Forkhead Box protein P1) and MGMT (O6-methylguanine-
DNA methyltransferase) expression in DLBCL cells [693].
FoxP1 is expressed in normal activated B cells, mantle
zone B cells, and some germinal center B cells [784, 785].
FoxP1 is recurrently targeted by chromosomal translocations
involving the immunoglobulin heavy chain locus inmarginal
zone lymphomas and DLBCL, suggesting a potential role for
FoxP1 in lymphomagenesis [786, 787]. FoxP1 has in some
studies been shown to be associated with poor prognosis and
survival [788, 789]. MGMT encodes an enzyme that protects
cells from the toxicity of alkylating agents.e ability of miR-
181a to reduce MGMT protein expression may contribute to
better cyclophosphamide chemosensitivity [693].

miR-222 is part of the miR-221/miR-222 cluster, which
is highly expressed in ABC-like DLBCL cell lines [533]
and ABC-like DLBCL tumors [580]. miR-222 regulates the
expression of the stem cell factor c-Kit [697], and the cyclin-
dependent kinase inhibitors p27Kip1 and p57Kip2 [695, 698].
High expression of miR-222 was associated with inferior
overall survival and progression-free survival [533].

3.2.6. MicroRNA in Follicular Lymphoma (FL). FL is char-
acterized by high miR-9, miR-138, miR-20a/b, and miR-155
expression [135, 564, 582].

3.2.6.1. miR-9 in FL. miR-9, which is activated by c-Myc,
regulates NF𝜅𝜅B [641]. miR-9 targets also the transcription
factor PRDM1/Blimp1 in lymphoma and may contribute to
the phenotype maintenance and pathogenesis of lymphoma
cells by interfering with normal B-cell terminal differenti-
ation [582, 608]. BRDM1/Blimp1 has been considered to
be a tumor suppressor [790, 791]. Besides miR-9, let7a and
miR-125b regulate BRDM1/Blimp1 expression [533, 640].
BRDM1/Blimp1 and Bcl6 are critical regulators of germinal
center B-cell differentiation [594, 792, 793]. BRDM1/Blimp1
and Bcl6 are expressed in a mutual exclusive pattern and evi-
dence suggests that they repress each other in germinal center
B cells [792, 794]. Amarked decrease of BRDM1/Blimp1 and
an increase of Bcl6were observed in follicular lymphoma cells
[135], whichmight be related to the increasedmiR-9 levels in
these cells [564].Mutations in BRDM1/Blimp1 are frequently
found in activated B cell (ABC)-like DLBCL [790, 795].

3.2.7. miRNAs in Hodgkin’s Lymphoma (HL). e malignant
Hodgkin’s lymphoma cells are usually derived from B cells,
but have lost the expression of typical B-cell genes. Multiple
signaling pathways are deregulated, including NF𝜅𝜅B, JAK
(Janus kinase)/STAT (signal transducer and activator of tran-
scription), PI3K/Akt, ERK, Notch1, and receptor tyrosine
kinases [796]. Patients with low miR-135a expression had
a higher probability of relapse and a shorter disease-free
survival [677].miR-135a targets JAK2, a cytoplasmic tyrosine
kinase involved in a subset of cytokine receptor signaling
pathways. Transfection of pre-miR-135a into classical HL
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(cHL) caused apoptosis and decreased cell growth [677]. e
miR-135a-mediated JAK2 down-regulation led to decreased
Bcl-XL expression [677], a downstream effector of JAK2
[797].

About 40%–60% of Hodgkin’s lymphomas have EBV
(Epstein-Barr virus) associated with the malignant cells. EBV
could transactive miR-155 through NF𝜅𝜅B activation [689].
Since miR-155 is overexpressed in Hodgkin’s lymphoma
[590] and promotes B-cell lymphoma formation [602, 798,
799], EBV may be important in the pathogenesis of cHL.

4. MicroRNA in Regulating GC-Induced
Apoptosis of LymphoidMalignancies

4.1. MicroRNAs in the Regulation of GR Expression

4.1.1. Downregulation of GR by miR-18 and miR-124a.
MicroRNAs have been shown to modulate GR expression in
neuronal tissue [649, 800, 801]. miR-18 and miR-124a espe-
cially reduced GR-mediated events in addition to decreasing
GR protein levels [649]. miR-18 is part of the miR-17∼92
cluster, which is repressed by GCs [206]. Upregulation of the
miR-17∼92 has causally been related to small cell lung cancer
[802, 803], where reduced GR levels have been associated
with GC resistance [804].

miR-124a was found to bind to the 3′ untranslated
region of GR mRNA [649]. Activation of the GR-responsive
glucocorticoid-induced leucine zipper (GILZ) was impaired
by miR-124a and -18 overexpression, while miRs-22, -328,
and -524 did not have any effect [649]. Of note, miR-124
regulatesHes1 expression in P19 teratocarcinoma cells [670],
a transcription factor that negatively regulate GR expression
[88]. GC resistance in sepsis patients was associated with
miR-124-induced downregulation of GR [805].

4.1.2. Downregulation of GR by miR-130b. While miR-130b,
-181a, and -636 have putative complimentary binding sites
in the 3′-UTR of GR𝛼𝛼, only miR-130b was found to down-
regulate endogeneous GR protein expression in the multiple
myeloma cell line MM.1 [674]. e miR-130b, -181a, and
-636 were differentially expressed between GC-sensitive and
GC-resistant MM.1 cell lines [674]. miR-130b was expressed
at higher levels in the resistant MM cell line [674]. Overex-
pression of miR-130b in MM.1S cells resulted in decreased
expression of endogeneous GR, decreased induction of the
GR-target gene GILZ, and induction of GC resistance [674].
Expression of miR-130b was therefore suggested to be a
potential biomarker for patients who could be refractory to
GC therapy.

In gastric cancers, miR-130b regulated the tumor sup-
pressor gene RUNX3 [675]. miR-130b may also down-
regulate p21Waf1/Cip1, resulting in inhibition of cellular senes-
cence [676, 806].

4.1.3. Downregulation of GR by miR-142 and miR-181a.
Another study [678] showed that elevated miR-142 expres-
sion in human T-ALL cells confers GC resistance by reducing

the GR expression level. Other mechanism for the oncogenic
role ofmiR-142might be explained by its targeting of adenylyl
cyclase 9mRNA[679] leading to reduced production of cyclic
adenosine monophosphate (cAMP) production with con-
comitant inhibition of the protein kinase A (PKA) signaling
pathway [678]. e reduction in cAMP levels and reduced
PKA activity caused by miR-142 relieve the inhibitory effect
of PKA on T-leukemic cell proliferation. T-ALL with poor
prognosis expressed higher levels of miR-142 than those with
good prognosis [678]. Also, miR-142 was expressed at higher
levels in relapsedT-ALL than newly diagnosed samples [678].
Transfection of miR-142 inhibitor increased GR𝛼𝛼 expression
levels and sensitized T-ALL cells to GC-induced apoptosis
[678].

ese �ndings are in accord with previous �ndings
showing a synergistic effect of cAMP mimetics on GC-
induced apoptosis [99, 460, 807]. cAMP signaling can also be
negatively regulated by phosphodiesterase 4B (PDE4B) that
is frequently overexpressed in diffuse large B-cell lymphoma
(DLBCL) [808]. Pharmacological inhibition of PDE4 in a
xenogra model of human lymphoma unleashed cAMP
effects, inhibited Akt, and restored GC sensitivity [808].
PDE4 inhibitors may thus improve the clinical outcome of
patients with B-cell malignancies.

Triptolide, a drug that overcomes dexamethasone-
resistance in human multiple myeloma cells [809], was
found to regulate GR expression in the MM1.S cell line by
downregulating the expression of miR-142 and miR-181a
[680]. miR-142 and miR-181a mimetics slightly attenuated,
whereas miR-142 and miR-181a inhibitors enforced GC-
induced apoptosis of MM1.S cells [680]. miR-181a/b can
also increase GC-induced apoptosis in virtue of their ability
to repress the expression of the anti-apoptotic Bcl-2, Mcl-1,
and XIAP proteins [385, 539, 810].

4.2. MicroRNAs Affected by GCs in Lymphoid Cells

4.2.1. Repression of miR-17∼92 by GCs. Smith et al. [648]
showed that broad microRNA repression occurs during GC-
induced apoptosis of rat thymocytes. is repression was
associated with reduced expression of both nuclear (Drosha
andDGCR8/Pasha) and cytoplasmic (Dicer)microRNApro-
cessing enzymes. Silencing of Dicer in two human leukemic
cell lines (CEM-C7 and ectopic GR𝛼𝛼-overexpressed Jurkat
cells) led to enhanced sensitivity to GC-induced apoptosis
[648]. Global downregulation of microRNA levels, espe-
cially the miR-17 family, by GCs was also observed in
GC-sensitive ALL cell lines, with concomitant upregulation
of Bim [657]. Later studies showed that GCs selectively
upregulate and downmodulate speci�c miRNAs [646] that
cannot be explained by altered Dicer expression.

One polycistron cluster repressed by GCs is miR-17∼92
[648, 657], which regulates Bim expression [246, 247]. Down-
regulation of miR-17∼92 contributes to the GC-mediated
upregulation of Bim [206]. is microRNA cluster also
represses PTEN [247], a negative regulator of the PI3K/Akt
signaling pathway. e GC-mediated downregulation of
miR-17∼92 might be one mechanism responsible for the
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GC-induced dephosphorylation of Akt. Primary thymocytes
derived from mice transgenic for the miR-17∼92 polycistron
members in the lymphocyte compartment exhibited dimin-
ished sensitivity to GC-induced apoptosis in lymphocytes,
further supporting a role for GC-induced repression of miR-
17∼92 in promoting apoptosis [648]. Harada et al. [657]
observed that GCs reduced miR-17 family expression in 50%
of primary GC-sensitive ALL, but not in any of the GC-
resistant ones. Overexpression of miR-17∼92 attenuated GC-
induced cell death, while inhibition of miR-17∼92 increased
the sensitivity to GC [657]. ey also reported that in a
pre-B ALL cell line, a 10-hour dexamethasone treatment led
to a reduction in miR-142 and miR-27a, while miR-9 was
induced. ere is also some evidence that GCs can reduce
miR-27a expression in mouse muscle cells [811].

4.2.2. Upregulation of miR-15∼16 by GCs. Rainer et al.
[646] reported an induction of the myeloid-speci�c miR-
223 and the apoptosis and cell-cycle arrest inducing miR-
15∼16 clusters by GC in a subset of B- and T-ALL cells,
together with downregulation of the miR-17∼92 complex. A
transient upregulation of miR-19b and miR-181a was also
observed. Overexpression of miR-15b∼16 mimics increased,
whereas silencing by miR-15b∼16 inhibitors decreased GC
sensitivity [646]. e miRNAs of the miR-15∼16 family are
encoded in two clusters (15a∼16-1 and 15b∼16-2) embedded
in the DLEU2 (deleted in leukemia 2) and SMC4 loci,
respectively [766, 812]. ey have been implicated in cell-
cycle arrest [813] and in cell death/survival decisions, the
latter supposedly by targeting Bcl-2 [346]. Other microRNAs
affected by GCs in pediatric ALL include upregulation of
miR-548d-1 and repression of miR-128b along with miR-
106b∼25∼93, the paralogue of miR-17∼92 [646].

4.2.3. Upregulation of miR-223 by GCs. It is still not known
whether the GC-induced upregulation of miR-223 affects
GC-induced apoptosis [646]. Increased expression of miR-
223 is involved in the differentiation of myeloid precur-
sors into granulocytes such as neutrophils [701, 814]. Dur-
ing granulopoiesis, miR-223 targets E2F1, which in turn
represses miR-223 expression, creating an autoregulatory
negative feedback loop [702]. A negative feedback loop also
exists between miR-223 and the transcription factor NFI-
A [814]. miR-223 is positively regulated by C/EBP𝛼𝛼 during
differentiation to granulocytes [814] and negatively regulated
by AML1/ETO in leukemia cells [703]. Moreover, miR-223
targets the myeloid ELF-1-like factor (Mef)-2c and IGFR
(insulin-like growth factor receptor), which may account for
some of its negative regulation of granulocyte proliferation
[701]. rough suppression of IGF-1R, the downstream
PI3K/Akt/mTOR/p70S6K pathway is suppressed, with con-
sequent inhibition of cell proliferation [704]. miR-223 atten-
uates hematopoietic cell proliferation and positively regu-
lates miR-142 through LMO2 isoforms and C/EBP𝛽𝛽 [815].
Ectopic expression of miR-223 restores differentiation of
AML leukemic cells [703]. miR-223 knockout mice showed
increased numbers of granulocyte progenitors in the bone
marrow and hypermature neutrophils in the circulation,
suggesting thatmiR-223 is involved in the negative regulation

of maturation rather than differentiation of granulocytes
[701]. miR-223 may also target Fbw7 [705, 816], a negative
regulator of the anti-apoptotic Mcl-1 [372]. us, it may
indirectly increase apoptotic resistance by up-regulatingMcl-
1.

4.2.4. Upregulation of miR-150 and miR-342 by GCs. Dex-
amethasone treatment of thymocytes led to upregulation of
miR-150 and miR-342, while miR-181a and miR-181d were
downregulated [684]. miR-181d represses CD69 and Prox-1
to a similar extent asmiR-181a [684].miR-181d, but notmiR-
181a, repressed Lif (leukemia inhibitory factor) [684]. Lif is
a member of the IL-6 cytokine family expressed in thymic
epithelial cells and T lymphocytes, which elevates GC levels
following LPS exposure and is responsible for thymic atropy
induced by stress [817–819]. Other effects of miR-181 are
described in Sections 3.1.3 and 3.2.2.2.e effects ofmiR-150
are described in Sections 3.1.4 and 3.2.2.9.

4.2.5. Effect of GCs on MicroRNA Expression in Macrophages.
A recent report showed that GCs could prevent
lipopolysaccharide (LPS)-mediated in�ammatory responses
in macrophages by downregulating miR-155 [690]. LPS
induces miR-155 expression in macrophages through
TLR4-mediated activation of NF𝜅𝜅B [690]. Overexpression
of miR-155 reversed the suppressive action of GCs, while
inhibition of miR-155 exhibited an effect similar to that
of GCs on LPS-treated macrophages, suggesting that GC-
induced repression of miR-155 is one mechanism for the
immunosuppressive function of GC. is effect of GC on
miR-155 was dependent on GR and NF𝜅𝜅B [690]. miR-155
transgenic mice produced more proin�ammatory cytokines
in response to LPS [820]. miR-155 is transcribed from B-cell
integration cluster (BIC) [584, 691] and targets among
others SOCS1 (suppressor of cytokine signaling 1), which
negatively regulates JAK/STAT signaling. GCs also prevented
the LPS-mediated upregulation of miR-146, miR-147,
miR-148, miR-32b, and miR-301 in macrophages [690].

4.2.6. Other MicroRNAs Affected by GCs. In the brain,
GCs prevents BDNF (brain-derived neurotrophic factor)-
regulated synaptic function through suppression of miR-
132 expression [821]. miR-132 is increased by BDNF and is
involved in promotion of neuronal outgrowth [822]. In some
carcinoma cell lines, dexamethasone was shown to down-
regulate miR-27b, miR-148a, and miR-451 [823].

4.3. MicroRNAs in the Regulation of Apoptotic GC-Sensitivity.
From all we have learned above, any microRNA that modu-
lates any of the many factors regulating GC-induced apop-
tosis may affect the apoptotic response to GCs (Figures
1–6). ese include microRNAs that affect GR expression
(e.g., miR-18,miR-124a,miR-130b,miR-142, andmiR-181a),
those affecting Bim expression (miR-26a, miR-93, miR-17∼
92, miR-106a∼363, and miR-106b∼25) or its transcription
factor FoxO3 (e.g., miR-1, miR-21, miR-27a, miR-96, miR-
135b, miR-155, and miR-182), those affecting PTEN expres-
sion (miR-17∼92, miR-106b∼25, miR-21, miR-26a, miR-29b,
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miR-214, miR-216a, miR-217, miR-221, and miR-222) or
mTOR (e.g., miR-101), and those downregulating directly
or indirectly the anti-apoptotic proteins Bcl-2, Bcl-XL, Mcl-
1, XIAP, and CYLD (e.g., miR-15a∼16, miR-181a/b, miR-
34a, miR-125b, miR-29a/b/c, miR-101, miR-133b, miR-193b,
miR-512, let-7, and miR-491). e effect of some of these
microRNAs on GC-sensitivity has already been described
above and will not be repeated here. Rather, I will present
here some data from primary samples showing the in�uence
of microRNAs on clinical outcome.

A study searching for differential miRNAs expression
in ALL relapse cells versus childhood ALL with complete
remission showed signi�cant associations for miR-708, miR-
223, and miR-27a with individual relapse-free survival [655].
For samples at relapse versus diagnosis, the most differ-
entially expressed microRNAs included miR-223, miR-23a,
let-7g, miR-181, miR-708, and miR-130b, while comparison
of complete response with diagnostic samples showed dif-
ferential expression pattern of miR-27a, miR-223, miR-23a,
miR-181, and miR-128b [655]. Among these microRNAs,
miR-223,miR-128b,miR-23a, and let-7gwere downregulated
in the relapse samples compared with complete response
samples, while miR-181 family members, miR-708, andmiR-
130b were upregulated in the relapse samples [655]. It should
be remained here that miR-130b targets GR [674], RUNX3
[675], and p21 [676], and miR-223 is upregulated by GCs
[646] and targets IGFR [701] and E2F1 [702]. E2F1 has a dual
role in cell-cycle control, as it affects several cell processes. It
can either act as a tumor-suppressor or oncogene depending
on the cellular context [824]. us, the upregulation of
miR-130b together with downregulation of miR-223 may
contributes to GC resistance.

miR-708 was the most upregulated microRNA in the
relapse samples, whereas miR-223 was signi�cantly down-
regulated, suggesting that these two microRNAs may have
important role in pediatric ALL relapse [655]. Moreover,
upregulation of miR-708 was found to be associated with
the in vivo GC therapy response and with disease risk
strati�cation in childhood ALL [655]. Standard and middle
risk strati�cation groups had a higher miR-708 expression
at diagnosis than the high risk group. Interestingly, miR-708
was low in high relapse patients at diagnosis, while spec-
imens of relapsed samples showed abundance of miR-708,
suggesting for an upregulation of miR-708 during disease
progression.

FoxO3, that is critical for hematopoietic stem cell self-
renewal and mediates the initial apoptotic response [825–
827], contains a conserved miR-708 response element in
its 3′-UTR [655]. FoxO3 can act as either an oncogene or
a tumor suppressor in leukemia [828, 829]. FoxO3 tran-
scriptional activity was found to prevent B-CLL and CML
proliferation [825, 828]. FoxO3a is also targeted by other
microRNAs, including miR-27a (see Section 2.2.6).

Moreover, miR-27a directly regulates the drug-resistant
factor P-glycoprotein, and overexpression of miR-27a
increased sensitivity of leukemia cells to doxorubicin [658].
miR-27a is relevant to treatment outcome in vivo and may
be involved in relapse of both lymphocytic leukemia and

myeloid leukemia [658]. Low expression of miR-27a might
promote ALL relapse [655, 658]. On the contrary, miR-27a
exerts oncogenic effects by regulating ZBTB10 [446, 830]
and Fbw7 [253, 438].

miR-128b, which was higher in relapse ALL and at
diagnosis compared to complete response [655], has been
reported to confer drug resistance in many cancers includ-
ing ALL [672, 673]. Both miR-27a and miR-128b might
target BMI1 [655], a transcription factor of the polycomb-
group gene necessary for hematopoietic stem cell (HSC)
and leukemia stem-cell self-renewal [831, 832]. Deletion of
BMI1 inhibits self-renewal of tumor stem cells and prevents
leukemia recurrence [833].

A role for miR-128 and miR-221 in regulating GC
sensitivity in cells from MLL-AF4 ALL patients has been
proposed [672]. miR-128b and miR-221 are downregulated
in MLL-arranged ALL relative to other types of ALL [672].
eMLL gene is located at 11q23, a site frequently involved in
chromosomal translocations in aggressive human lymphoid
and myeloid leukemias. As a result of chromosomal translo-
cations, a portion of MLL becomes fused to one among
more than 40 different partner proteins. MLL-AF4 ALL,
which results from the translocation between MLL and AF4,
is associated with GC resistance and has a poor prognosis
[834, 835]. Re-expression ofmR-128 andmiR-221 in cultured
MLL-AF4 ALL cells sensitized them to GCs [672]. miR-
128 targets MLL, AF4, and the MLL-AF4 pusion protein
resulting in lower expression of HOXA9, whereas miR-221
downregulates CDKN1B (cyclin-dependent kinase inhibitor
1B, p27Kip1), another gene transcriptionally activated by
MLL-AF4 as well as the wild-type MLL protein [672]. e
targeting of different proteins may explain the cooperative
effect of miR-128b and miR-221 on GC sensitization [672]. It
should be noted that miR-221 in other settings, for example,
CLL, has anti-apoptotic effects and functions as an oncogene.

4.4. Potential Use of miRNA Regulators in erapy of Cancer
Cells. In light of the multiple effects of various microRNAs
on cell survival and apoptosis,modulatingmicroRNAexpres-
sion in tumor cells is an attractive approach for sensitizing
the tumor cells to chemotherapeutic drugs. Inhibition of spe-
ci�c microRNAs is performed by using antisense sequences
(termed antagomiRs) targeting the microRNA guide stand
that blocks the interaction with the microRNA recognition
elements within the 3′-UTR of the target mRNA genes [836].
To increase their binding affinity and stability in biological
�uids, the antagomiRs are oen modi�ed with 2′-O-methyl-
, phosphorothioate, or locked nucleic acid substitutions. To
overexpress microRNAs, chemically synthesized microRNAs
(called microRNA mimics) are used.

One potential use of microRNAs is to repress the expres-
sion ofMLL-AF4 fusion protein in ALL that is responsible for
GC resistance. is fusion protein can be repressed through
overexpression of miR-143 [837], or miR-128 together with
miR-221 [672].e latter combinationwas shown to sensitize
the MLL-AF4-carrying ALL cells to GCs [672].

Another promising approach is to target miR-155, an
oncogenic microRNA oen correlated with poor prognosis.
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A proof-of-principle was demonstrated by Babar et al. [838].
ey showed that overexpression of miR-155 in lymphoid
tissues resulted in disseminated lymphoma characterized by
a clonal, transplantable pre-B-cell population of neoplastic
lymphocytes. Withdrawal of miR-155 in mice with estab-
lished disease resulted in rapid regression of lymphadenopa-
thy. Systemic delivery of antisense peptide nucleic acids
encapsulated in unique polymer nanoparticles inhibitedmiR-
155 and slowed the growth of these pre-B-cell tumors in vivo
[838].

5. Summary

Glucocorticoid-induced apoptosis appears to be a complex
process involving several signaling pathways (Figure 6).
ese include (1) transactivation of pro-apoptotic genes
(importantly Bim); (2) alterations in microRNA expression
(upregulation of miR-15∼16 that targets the pro-apoptotic
Bcl-2; miR-223 that targets IGFR; miR-150 that targets Akt
and Notch, while suppressing miR-17∼92 that prevents Bim
and PTEN translation); (3) direct action of GR on the mito-
chondria (including mitochondrial GR translocation and
production of reactive oxygen species within the mitochon-
dria); (4) activation of the protein kinases GSK3 and p38; (5)
activation of the FoxO3a transcription factor that upregulates
Bim; (6) inhibition of the Notch1, PI3/Akt/mTOR, and
ERK1/2 survival pathways. Interruption of any of the pro-
apoptotic processes may lead to drug resistance. Altered
microRNA expression inmalignant cellsmaymodulatemany
of these processes thereby imposing apoptotic resistance
(Figures 1–6).

GC-resistant lymphoid cells might be divided into two
major subgroups according to the underlying mechanism of
resistance.e �rst group consists of cancer cells whose drug

resistance can be overcome by exposing the cells to GCs in
combination with drugs that target protein kinases such as
Akt, mTOR, Src, ALK, and/or BCR, or drugs antagonizing
Bcl-2, Bcl-XL, Mcl-1, c-Myc, or Notch. ese lymphoid
malignancies show in general a more favorable response to
combined GC therapy and in many cases may be explained
by their growth dependency on these signaling molecules.
e second group of GC-resistant cells exhibits an intrinsic
defect in theGC-mediated apoptotic process and can thus not
be turned sensitive to this drug. It is important to distinguish
between these two subgroups prior to therapy initiation in
order to choose the right drug combination. A diagnostic
test needs to be developed that can distinguish between the
different resistance backgrounds.

Recently, Burnsides et al. [839] have developed an ex
vivo stimulation assay that determines the ability of leuko-
cytes to upregulate anti-in�ammatory genes such as GIL�
and FKBP51 following exposure to dexamethasone. It is
reasonable that a similar test may be developed to gene
pro�ling lymphoid malignancies prior to and following GC
treatment, where upregulation of the pro-apoptotic Bim gene
would be a favorable predictor. Also, Bim induction may be
measured aer combiningGCwith a protein kinase inhibitor.
Simultaneous expression pro�ling of microRNAs, Notch1,
and Bcl-2 family proteins together with the activated protein
kinase status in the malignant cell would provide valuable
information for choosing the proper drug combination. A
predictor for a good GC response would be to determine the
ability of GCs to downregulate miR-17∼92 and upregulate
miR-15∼16, miR-150, and miR-223.

A tentative therapeutic approach would be to modulate
the microRNA status of the cell using microRNA mimics
or antagomiRs as described in Section 4.4. What we have
learned from the studies described in this paper is that it
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seems that in general it would be favorable to augment the
expression of miR-29, miR-27, miR-15a∼16, miR-34a, miR-
150, and let-7, while suppressing miR-155, miR-181, miR-
182, miR-21, and miR-221/222 as well as miR-17∼92. Obvi-
ously, an initial microRNA pro�ling should be performed,
and the cancer-type classi�cation should be considered.
Some microRNAs may have cell-type speci�c effects. While
down-regulation of miR-181 may suppress the growth of T-
ALL and MM, augmented miR-181 expression prevents the
growth of unmutated IgVH CLL cases. Also, miR-26a has
a dual effect. Its overexpression prevents growth of c-Myc-
positive Burkitt lymphoma, while it must be downregulated
in Notch-positive T-ALL to achieve growth inhibition. miR-
451 and miR-709 could prevent growth of Notch-positive T-
ALL. A reduction in miR-142, and maybe also of miR-708,
which is highly expressed in relapsed childhood T-ALL, is
anticipated to improve T-ALL therapy. For classical HL, miR-
135a may cause apoptosis.

In conclusion, in certain types of lymphoidmalignancies,
GC resistance may be overcome by relieving the inhibitory
effects of protein kinases and Bcl-2 family members. Both
the activity of protein kinases and the expression of Bcl-2
members are affected by themicroRNAnetwork.Modulation
ofmicroRNA expressionmight increaseGCdrug responsive-
ness and thus improve the therapy of lymphoidmalignancies.

Abbreviations

ALCL: Anaplastic large cell lymphoma
BL: Burkitt’s lymphoma
CLL: Chronic B-lymphocytic leukemia
DLBCL: Diffuse large B-cell lymphoma
FL: Follicular lymphoma
GC: Glucocorticoid
GR: Glucocorticoid receptor
GSI: 𝛾𝛾-secretase inhibitor
HL: Hodgkin’s lymphoma
MM: Multiple myeloma
NHL: Non-Hodgkin’s lymphoma
NR3C1: Nuclear receptor subfamily 3, group C,

member 1
NPM-ALK: Nucleophosmin-anaplastic lymphoma

kinase
T-ALL: T-cell acute lymphoblastic leukemia.
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